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Immunotherapy, particularly immune checkpoint blockade 
(ICB) therapy, is a promising treatment modality in oncology 
that involves augmenting the tumor-attacking capabilities of 
the immune system. Several preclinical and clinical studies have 
underscored the transformative potential of ICBs in the con-
text of malignancies.1 However, the efficacy of ICB therapy is 
often impeded by intrinsic and acquired resistance mechanisms 
in solid tumors, which are commonly due to a paucity of tumor 
neoantigens, checkpoint targets, and the inflammatory presence 
of cytotoxic T lymphocytes.2 The tumor microenvironment 
(TME) is profoundly immunosuppressive, which is the key 
reason for the limited clinical efficacy of ICB therapy. Within 
this milieu, tumor-associated macrophages (TAMs) are the pre-
dominant myeloid cell subset, and their high infiltration levels 
have been implicated in mediating resistance to ICB therapy, 
thereby correlating with adverse prognosis across a spectrum 
of cancers.3 Recent advances reported in Nature Cancer have 
shed light on specific TAM subpopulations that are instrumen-
tal in facilitating tumor immune evasion and resistance to ICB 
therapy. Two recent studies have delineated the roles of Sirpα+ 
TAMs in colorectal cancer (CRC)4 and Siglec-9+ TAMs in glio-
blastoma multiforme (GBM),5 respectively. These studies sug-
gest that targeted ablation of these key immunosuppressive 
subsets within solid tumors could lead to the reprogramming of 
the tumor immune micro-environment, termed ReTime, thereby 
potentially augmenting the efficacy of immunotherapy. This tar-
geted approach to modulate the TIME may offer a novel strat-
egy to overcome the barriers posed by ICB resistance, thereby 

enhancing the clinical benefits of immunotherapy for patients 
with cancer.

Macrophages are diverse and multifunctional components of 
the innate immune system and play crucial roles in balancing 
immune responses and promoting tissue healing to maintain 
homeostasis.6 Macrophages can be classified into 2 distinct phe-
notypes: proinflammatory (classically activated, M1) and tissue 
repairing (alternatively activated, M2).7 However, the M1/M2 
dichotomy is not adequate for describing their complicated 
roles in the TIME. With the development of single-cell RNA 
sequencing (scRNA-seq), recent studies have revealed that the 
polarization state of TAMs often exists as a continuum rather 
than a simple binary polarization.8 By refining our classifica-
tion of TAMs, researchers can better understand the nuances of 
macrophage polarization and its implications for immune reg-
ulation, tumor progression, and therapeutic intervention. The 
pursuit of a more nuanced taxonomy of macrophage pheno-
types within the TME is not only a scientific endeavor but also 
a critical step toward the development of targeted immunother-
apies that harness the potential of macrophages to modulate the 
immune response and promote a favorable microenvironment 
for cancer treatment.

Sirpα, an inhibitory receptor expressed on myeloid cells, 
interacts with its conventional ligand CD47, which is expressed 
on all normal cells and often highly expressed on tumor cells.9 
The CD47-Sirpα signaling pathway, also known as a “don’t 
eat me” signal and phagocytic checkpoint, impedes phagocy-
tosis and promotes tumor immune escape by facilitating the 
phosphorylation of immune receptor tyrosine inhibitory motif 
(ITIM) in Sirpα.10 Despite many preclinical studies suggesting 
CD47 as a promising target owing to its ability to inhibit phago-
cytosis in tumor cells,11 recent clinical trials have demonstrated 
the limited therapeutic efficacy of CD47 monoclonal antibodies 
in treating solid tumors.12 This indicates that targeting CD47-
Sirpα signaling pathway through CD47 blockade may not be 
the optimal strategy to treat solid tumors, and further investiga-
tion is required to elucidate the underlying mechanisms.

A recent and noteworthy study published in Nature Cancer 
comprehensively characterized the TME of colorectal tumors.4 
Through the analysis of scRNA-seq data of 62,288 immune 
cells from patients with CRC, they identified pronounced 
enrichment of TAMs and granulocyte-like myeloid-derived 
suppressor cells (gMDSCs) within the TIME. These cell popula-
tions exhibited robust immunosuppressive properties and were 
characterized by elevated expression of the inhibitory recep-
tor SIRPA.4 Utilizing CRISPR-Cas9 technology, the authors 
generated Sirpα-deficient (Sirpα−/−) mice to dissect the role of 
the Sirpα inhibitory receptor in tumor progression. Compared 
with wild-type mice, the progression of tumors was notably 
restrained in both subcutaneous and spontaneous model of 
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CRC in Sirpα−/− mice, and the survival rate of mice increased 
significantly. A similar phenomenon has been observed in liver 
and lung cancers. Moreover, by analyzing public clinical data-
sets, they found that SIRPA negatively correlated with the prog-
nosis of patients with colon cancer, lung squamous carcinoma, 
or liver cancer. These findings confirmed the important role of 
Sirpα in tumor progression.

This work also reported intriguing findings regarding the 
role of Sirpα in tumor immune evasion. They demonstrated that 
Sirpα could facilitate this process independently of its interaction 
with CD47, through various approaches such as CD47 knock-
out in tumor cells, the use of CD47 monoclonal antibodies, or 
Sirpα-ED-Fc fusion proteins. Moreover, scRNA-seq analysis 
of intestinal tumor tissues from orthotopic colorectal models 
revealed that the deficiency of Sirpα reprogrammed the TIME 
through facilitating the differentiation of TAMs and gMDSCs 
into subsets with stronger antitumor activity: TAM_Ccl8hi 
and gMDSC_H2-Q10hi, which are characterized by enhanced 
phagocytosis, antigen presentation, inflammatory response, and 
chemokine activity. In vitro experiments showed that Sirpα−/− 
TAMs facilitated T cell recruitment via Syk/Btk-dependent Ccl8 
secretion. In addition, they observed enhanced tumor suppres-
sion when combining Sirpα defect with anti-PD-L1 treatment, 
suggesting that targeting Sirpα may be a potential combination 
strategy to enhance the efficacy of ICB therapy. Collectively, 
Sirpα deficiency can enhance both innate and adaptive immune 
responses independently of CD47, and may emerge as a novel 
immunotherapy target that has the potential to overcome the 
challenge of immunotherapy resistance in solid tumors.

Another seminal study published in Nature Cancer high-
lighted the critical role of Siglec-9, a TAM receptor, in the patho-
genesis of GBM.5 GBM is the most common and aggressive type 
of primary brain tumor, accounting for up to 50% of all glio-
mas.13 Unfortunately, despite progress in current treatments for 
GBM, including a combination of neurosurgery, adjuvant radio-
therapy, and temozolomide (TMZ), the prognosis of patients is 
still extremely poor.14 Therefore, new therapeutic strategies for 
the treatment of GBM are urgently required.

Siglec-9, a member of the sialic acid-binding immunoglobulin- 
like lectin (Siglec) family, is a receptor expressed on the surface 
of myeloid cells and acts as an immune checkpoint to transmit 
immunosuppressive signals upon binding to sialic glycoproteins 
on the host or cancer cell membranes.15 TAMs with high Siglec-9 
expression were found to be particularly abundant in the tumors 

of anti-PD-1 treatment-resistant GBM patients using scRNA-seq 
and spatial transcriptome analysis.5 In particular, an increase in 
the infiltration of Siglec-9+SEPP1+ and Siglec-9+MARCO+TAMs 
was observed in non-responders to neoadjuvant PD-1 blockade 
compared to that in responders. These clusters are character-
ized by the upregulation of anti-inflammatory genes, indicative 
of a highly plastic and immunosuppressive phenotype. RNA 
velocity analysis revealed that both Siglec-9+ TAM clusters 
originated from CD14+ monocytes and underwent a sequential 
differentiation process, with Siglec-9+MARCO+ TAMs poten-
tially representing an intermediate state during the transition to 
Siglec-9+SEPP1+ TAMs.

Using an intracranial tumor model, this study demonstrated 
that the genetic ablation of SiglecE, the murine homolog of 
human Siglec-9, effectively curtailed GBM tumor growth.5 
This knockout also induced a phenotypic shift in macrophages 
from an immunosuppressive to a more tumoricidal subtype 
and significantly bolstered T cell activation and proliferation. 
Furthermore, the combination of Siglece−/− mice with anti-PD-1 
therapy yielded an improved prognosis, highlighting the ther-
apeutic potential of targeting Siglec-9. In summary, Siglec-9 
was identified as a novel immune checkpoint in macrophages 
and presents a promising target for augmenting the efficacy 
of anti-PD-1/PD-L1 therapies in GBM treatment. This discov-
ery offers a compelling avenue for future research and clinical 
development, with the potential to transform the therapeutic 
landscape for patients with GBM.

The elimination of cancer by T cells requires a series of steps 
to establish a complete Cancer-Immunity Cycle, in which each 
step has the potential to act as a constraining factor in generat-
ing potent anticancer immunity.16 Within the TIME, TAMs can 
facilitate tumor progression through the expression of inhibitory 
receptors and the secretion of inhibitory cytokines and chemo-
kines, which restrain the recruitment and function of multiple 
immune cell subtypes,17 suggesting that TAMs are one of the 
major obstacles in the Cancer-Immunity Cycle. However, TAMs 
can also exert antitumor effects such as phagocytosis of tumor 
cells, major histocompatibility complex (MHC) class II antigen 
presentation, and expression of proinflammatory cytokines. 
Therefore, reprogramming TAMs from protumor subtypes into 
antitumor subtypes has the potential to elicit a durable and potent 
antitumor immune response. Furthermore, adopting a combina-
tion therapy approach targeting multiple steps of the Cancer-
Immunity Cycle rather than relying on monotherapy with ICB, 

Figure 1.  Targeting macrophages to reprogram the tumor immune microenvironment. CCLs = C–C chemokine ligands, CXCLs = the chemokine (C-X-C motif) 
ligand, Gzms = granzymes, IFN = interferon, TAM = tumor-associated macrophage.
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which fails to adequately reverse the immunosuppressive state in 
the TIME, represents a more strategic direction for tumor treat-
ment in the future. Strategies aimed at Re-TIME are designed to 
systematically enhance the Cancer-Immunity Cycle with the goal 
of achieving sustained tumor control. These approaches may 
involve modulation of the macrophage population, inhibition of 
immunosuppressive pathways, and stimulation of effector T-cell 
responses to favor antitumor activity (Fig. 1). In summary, a 
comprehensive understanding of the multifaceted roles of TAMs 
in tumor initiation and progression is essential for developing 
more effective therapeutic strategies. By elucidating the mecha-
nisms governing the behavior of TAMs and developing interven-
tions that can harness their potential to combat cancer, we can 
pave the way for novel and efficacious cancer immunotherapies 
that may ultimately improve patient outcomes.
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