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Abstract

Background and Aims: Bowel smooth muscle experiences mechanical stress constantly
during normal function, and pathologic mechanical stressors in disease states. We tested the
hypothesis that pathologic mechanical stress could alter transcription to induce smooth muscle
phenotypic class switching.

Methods: Primary human intestinal smooth muscle cells (HISMCs), seeded on electrospun
aligned poly-ε-caprolactone nano-fibrous scaffolds, were subjected to pathologic, high frequency
(1 Hz) uniaxial 3% cyclic stretch (loaded) or kept unloaded in culture for 6 hours. Total RNA
sequencing, qRT-PCR, and quantitative immunohistochemistry defined loading-induced
changes in gene expression. NicheNet predicted how differentially expressed genes might
impact HISMCs and other bowel cells.

Results: Loading induced differential expression of 4537 genes in HISMCs. Loaded HISMCs
had a less contractile phenotype, with increased expression of synthetic SMC genes,
proinflammatory cytokines, and altered expression of axon guidance molecules, growth factors
and morphogens. Many differentially expressed genes encode secreted ligands that could act
cell-autonomously on smooth muscle and on other cells in the bowel wall.

Discussion: HISMCs demonstrate remarkably rapid phenotypic plasticity in response to
mechanical stress that may convert contractile HISMCs into proliferative, fibroblast-like cells or
proinflammatory cells. These mechanical stress-induced changes in HISMC gene expression
may be relevant for human bowel disease.

Key Words:
Human intestinal smooth muscle cells, mechanotransduction, mechano-transcription,
phenotypic class switching, inflammation, cytokines, ligand-receptor interactions, NicheNet
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Introduction

The gastrointestinal (GI) tract is constantly moving to digest and absorb nutrients, and to

eliminate waste. This movement creates mechanical stress that can be sensed by cells and may

alter gene expression through mechanotransduction pathways (1–5). In the bowel, pathologic

radial or longitudinal force occurs from mechanical obstruction (stricture, web, volvulus,

adhesions), motility disorders (achalasia, gastroparesis, Hirschsprung disease, chronic intestinal

pseudo-obstruction (CIPO)), and surgical manipulation. Similar to physiologic mechanical

forces, pathological mechanical forces may also induce transcriptional changes that alter cell

phenotypes (2, 5, 6). While many bowel cell types respond to mechanical cues (5), we

hypothesized that unusual mechanical stressors might particularly impact gene expression in

bowel (visceral) smooth muscle cells (SMCs), altering cell fate. These changes in visceral SMC

fate were predicted based on decreased contractile smooth muscle marker expression in

pediatric CIPO bowel (7), and by extrapolating from vascular smooth muscle cells, which

undergo “phenotypic class switching” to a synthetic, proliferative phenotype in response to injury

(7–9). This phenotypic class switching for vascular SMCs is thought to be protective, but is also

an important pathophysiologic mechanism in hypertension, ischemic vascular disease, and

atherosclerosis.

Phenotypic class switching is not as well studied in visceral SMCs, and many differences

between visceral and vascular SMCs may make extrapolation inappropriate. However, prior

studies suggest visceral SMCs also change fate in response to specific physiologic mechanical

stressors. For example, partial intestinal obstruction increases SMC expression of COX-2

(PTGS2), mPGES-1, and PGE2 (10) in vivo, while stretch in vitro of primary colon SMCs

increases levels of IL-8, IL-6, MCP1, iNOS, COX2, BDNF, and NGF (11). Mechanical stress also

induces human fetal visceral SMC expression of pro-fibrotic mediators, including TGFβ1 and α1

collagen (12), markers of synthetic SMCs.
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To test the hypothesis that mechanical stress could rapidly alter gene expression in

visceral SMCs, and to gain insight into early changes in SMC phenotype in response to

mechanical stress, we evaluated gene expression in cultured human intestinal smooth muscle

cells (HISMCs) after only 6 hours in culture with or without cyclic stretching. We used a low

amplitude, high frequency mechanical stress (3%, 1 Hz), a frequency up to an order of

magnitude greater than physiologic bowel contraction. This pathologic stress rapidly altered

expression of 4537 genes (adjusted p-value < 0.05 for loaded versus unloaded cells). Of these

genes, 2500 had log2 fold change > 0.48 or < -0.48. Compared to unloaded HISMCs, loaded

cells had increased expression of genes typically produced in synthetic phenotype SMCs,

increased production of many cytokines, chemokines, cytokine receptors, axon guidance

molecules, junctional proteins, and altered levels of many signaling molecules predicted to act

on nearby cells in the bowel. Collectively, these data suggest that bowel SMC phenotype, in

part, depends on the unique physical forces these cells experience as nutrients move through

the bowel, waste is eliminated, and in response to bowel injury or disease. This suggests that

even a brief pathologic mechanical insult may profoundly affect visceral smooth muscle

phenotype. Furthermore, our NicheNet analyses suggest mechanotransduction-induced

phenotypic changes in smooth muscle gene expression may lead to secretion of ligands that

subsequently alter function of most bowel cells on a timescale much longer than the duration of

the original insult.

Methods

Sex as a biological variable

Our study used human HISMCs that express XIST (gene count 1536 to 5403 based on

our RNAseq data), indicating they were derived from a human female.
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Preparation of Nanofibrous Scaffolds

Aligned and non-aligned poly(ε-caprolactone) (PCL) nanofibrous scaffolds (Mol. Wt.

80kDa, Shenzhen Bright China Industrial Co., Ltd., China) were fabricated via electrospinning,

as described (13). Scaffolds were hydrated and sterilized in ethanol diluted in distilled water

(100%, 70%, 50%, 30%; 30 min/step), and then incubated in a laminin (20 μg/mL) (14, 15)

solution in 1x Phosphate Buffered Saline (PBS) (Invitrogen, Catalog# 14190136) overnight at

37oC to enhance cell attachment.

HISMC Preparation and expansion

5x105 smooth muscle cells from human small intestine (cryopreserved at passage 1,

ScienCell Research Laboratories, Catalog# 2910) were plated on 10 cm tissue culture dishes

coated with 0.1% gelatin (MilliporeSigma, Catalog# G1890) and cultured (37oC, humidified

incubator, 5% CO2) in HISMC culture media (SMC medium (Sciencell, Catalog# 1101), 2% FBS

(fetal bovine serum, Sciencell, #0010), 1% Penicillin/Streptomycin (Sciencell, Catalog# 0503),

1% smooth muscle cell growth supplement (Sciencell, Catalog# 1152)). HISMC culture media

was changed every other day. Cells were passaged at 90% confluence. After 1-2 passages,

confluent HISMCs were cryopreserved in 90% FBS/10% dimethyl sulfoxide (DMSO) at 5x105

cells/mL. All experiments then used HISMCs at passage 3-5.

Dynamic mechanical loading of HISMC-seeded scaffolds

Frozen HISMCs were thawed in a 37oC water bath for 2-3 minutes and then added to 10

mL of Iscove’s Modification of DMEM (Corning, Catalog# 10-016-CM), and pelleted (270 x g, 3

minutes). Aligned laminin-coated PCL scaffolds (30 mm x 5 mm) were seeded with 350,000

HISMCs resuspended in 80 μL HISMC culture media. Cell-seeded scaffolds were maintained

free-floating in HISMC culture media for 72 hours. “Loaded” scaffolds then experienced cyclic
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stretch (3% uniaxial stretch, 1 Hz, parallel to the long axis of HISMCs) for 6 hours in fresh

HISMC culture media using a custom bioreactor (16). In parallel, “unloaded” HISMCs were

maintained free-floating on scaffolds in fresh HISMC culture media for 6 hours. All cells were

maintained at 37oC, 5% CO2 in a humidified incubator. Scaffolds were then cut in half. One half

was dissolved in Trizol (Ambion, Catalog# 15596018) for RNA extraction and the other half fixed

for immunohistochemistry (see below).

RNA extraction and purification

To isolate RNA from HISMCs on PCL scaffolds, each scaffold was minced in 500 μL

TRizol (Ambion, Catalog# 15596018) using sharp scissors and then vortexed for up to 15

minutes until the scaffold dissolved. RNA was purified from cells lysed in TRIzol using the

RNeasy Plus Mini kit (QIAGEN, Catalog# 74134), with RNase Free DNase Set (QIAGEN,

Catalog# 79254) to remove residual DNA. RNA concentrations were measured by NanoDrop

(ND-2000, Thermo Fisher Scientific).

Quantitative real-time PCR.

Quantitative real-time PCR (qRT-PCR) was performed using SsoFast Evagreen

Supermix with Low ROX (Bio-Rad, Catalog# 172-684 5211) and primers in Supplemental Table

1. Cycle threshold (Ct) values were normalized to YWHAZ mRNA.

Immunofluorescent staining

Scaffolds were washed once with 1x PBS, fixed (4% paraformaldehyde, 30 minutes,

room temperature), washed twice with 1x PBS (5 minutes each, room temperature), blocked

(5% normal donkey serum [NDS], 0.5% Triton X-100 in PBS (0.5% PBST), 1 hour, room

temperature), incubated in primary antibodies (5% NDS, 0.5% PBST 1 hour, room temperature)
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(Supplemental Table 2), washed 3 times for 5 minutes (0.5% PBST), and then incubated in

secondary antibodies (Supplemental Table 2) (0.5% PBST, 30 minutes, dark, room

temperature). Phalloidin staining was performed after secondary antibody staining by washing 3

times for 5 minutes (PBS) and incubating (1 hour, dark, room temperature) in Alexa

Fluor–conjugated phalloidin (488 nm, 555 nm, or 647 nm; Invitrogen Catalog# A12379, A34055,

and A2287) diluted 1:1000 in PBS. Cells were washed 2 times in 1x PBS, incubated in 1:30,000

SYTOXTM green (Thermo Fisher Scientific, Catalog# S7020) diluted in Hanks Balanced Salt

Solution (30 minutes, dark, room temperature), washed twice in 1x PBS, mounted in ProlongTM

Diamond AntiFade Mountant (Thermo Fisher Scientific, Catalog#P36961), and allowed to set

(overnight, dark, room temperature) before long-term storage in PBS at 4°C.

Immunofluorescence microscopy

Scaffolds were imaged using a Zeiss LSM 710 (Zeiss ZEN 2.3 SP1 FP3 (Black; (version

14.0.18.201; data in Figure 1) or LSM 980 (Zeiss Zen Blue 3.5 software; data in all other

figures) laser scanning confocal microscopes. Images were acquired with a x20/0.8 air or

x63/1.4 oil DIC M27 Plan-Apochromat objective. Confocal images were processed in ImageJ

(NIH) to crop, scale, and uniformly color adjust. Confocal images are represented as “sum of

slices” or “maximum intensity” projections after ImageJ processing.

Quantitative image analysis

MYH11 fluorescence intensity quantitative analysis employed Imaris software (version

9.02, Bitplane Inc.). Phalloidin staining was used to generate isosurfaces corresponding to

individual cells. Cell volume and total MYH11 fluorescence intensity were obtained from the

isosurfaces and fluorescence intensity was normalized to cell volume, as previously reported

(17). For nuclear to cytoplasmic intensity ratio calculations, images were processed using
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ImageJ (NIH). Z stacks containing identified cells were condensed to “sum of slices” projections.

Cells and their nuclei were outlined using the “freehand selection tool” and intensity was

measured for each antibody stain of interest. Parameters calculated included raw intensity and

volume of the cell and the nuclei.

Statistical Analysis

GraphPad Prism (version 9.5.1) was used for statistical analysis of qRT-PCR and

quantitative image analysis data. Two-tailed Student’s t-test (parametric data) or Mann-Whitney

rank sum tests (nonparametric data) were used for comparisons between 2 groups. P<0.05 was

considered significant. Data are represented as mean +/- SEM for parametric data and median

[interquartile range] for nonparametric data. Statistical analysis of RNA-seq data was performed

as discussed below.

Bulk RNA Sequencing Analyses

Libraries were prepped using TruSeq total RNA sequencing kit (Illumina, 20020596;

TruSeq® Stranded Total RNA Library Prep Human/Mouse/Rat; 48 Samples) and samples were

sequenced (paired-end) on Illumina NovaSeq 6000. The bioinformatics pipeline nf-core/rnaseq

(18) (reference genome: GRCh38, aligner: STAR (19), quantifier: RSEM (20)) provided counts

for 29,972 genes. Additional analyses of bulk RNA-sequencing gene count data were performed

in R (v4.4) (21) using RStudio Server (2023.06.1 Build 524) (22). Gene count data was filtered

using the WGCNA (23) function goodSamplesGenes() with default parameters to remove genes

with too many missing entries across samples, resulting in 20,410 remaining genes. Additional

filtering removed genes with fewer than 50 counts across all samples. The remaining 14,892

genes were used for downstream analysis. DESeq2 (v1.44, Wald test method, contrasting

loaded versus unloaded samples, and using the log2 fold change (log2FC) shrinkage method;
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Benjamini–Hochberg procedure for FDR) was used for differential gene expression analysis to

compare loaded versus unloaded conditions (24).

Gene Set Enrichment Analysis (GSEA)

Gene Set Enrichment Analysis employed fgsea (v3.17) (25) in R. Genes were ranked

based on log2FC from the differential expression analysis of loaded versus unloaded HISMCs.

Normalized enrichment scores (NES) reflect the degree to which genes are overrepresented at

the top or bottom of the entire ranked gene list, normalized to the mean enrichment of random

samples of the same size. The Human MSigDB Collections Hallmark (MSigDB v7.5.1) (26, 27))

gene sets were used for this analysis (26–28). MSigDB human gene sets were downloaded via

the R package msigdbr (v7.5.1) (27).

STRING Analyses

STRING is a database of known and predicted protein-protein interactions. This includes

direct/physical and indirect/functional associations (29). STRING (v11.5) was used to examine

possible interactions between differentially expressed genes based on DESeq2 analyses.

STRING input included 500 genes with the lowest adjusted p-values filtered for log2FC < -0.48

or > 0.48). Pathway enrichment analysis in the STRING software used the “whole genome”

background option in STRING for statistical comparison employing KEGG and GO Pathways.

Ligand-receptor association analyses using NicheNet

NicheNet (nichenetr, v2.0.0) was employed to characterize potential interactions

between HISMC-expressed ligands and receptors present in various bowel cell types (30).

NicheNet prioritizes ligands in the “sender/niche” population that are most likely to affect

(according to the NicheNet model) the transcriptional state of a gene set of interest in the
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“target/receiver” population. For our analyses, “sender/niche” genes were genes differentially

expressed (identified in DESeq2 analysis) in HISMCs cultured for 6 hours on loaded versus

unloaded scaffolds, filtered for adjusted p-value less than 0.05 and log2FC < -0.48 (for “up in

unloaded”; 14 ligands) or > 0.48 (for “up in loaded”; 57 ligands). Gene symbols were converted

to official HUGO Gene Nomenclature Committee at the University of Cambridge (HGNC)

symbols using the GeneSymbolThesarus() function in Seurat (v4.4.0) (31) prior to NicheNet

analysis. The NicheNet analysis was run separately for ligands “up in loaded” and ligands “up in

unloaded”. Selected cell types from the human single nucleus RNA-seq (droplet-based

MIRACL-seq) dataset published by Drokhlyansky et al. were used as the “receiver/target”

populations (32). Patient-specific clusters ("H3", "MHC.I_H1", "MHC.I_H9", "OXPHOS_H3")

described by Drokhlyansky et al. were removed from the dataset prior to analysis. The following

cell types from the Drokhlyansky et al. paper were used for this analysis with their original cell

type annotations: Epithelial, Fibroblast_1, Fibroblast_2, ICCs, Macrophage, and Neuron.

Myocyte clusters from Drokhlyansky et al. were reannotated for our analysis based on

differential gene expression reported by Drokhlyanksy et al. 2020. According to the average

log2FC in Drokhlyansky et al. in their Supplemental Table 4, Myocyte_3, Myocyte_4, and

Myocyte_5 all had MYH11, suggesting that these myocyte clusters are smooth muscle clusters.

Myocyte_3 and Myocyte_5 had more ACTG2 than ACTA2, suggesting that these are a visceral

SMC clusters (reannotated as VisceralSMC_1 and VisceralSMC_2, respectively), and

Myocyte_4 had more ACTA2 than ACTG2, suggesting that this is a vascular SMC cluster

(reannotated as VascularSMC). The following cell type groups were generated and used for this

analysis by grouping and renaming the original cell type annotations: Glia (includes Glia_1,

Glia_2, and Glia_3) and Vascular (includes Vascular_1 and Vascular_2, probably endothelial

cells based on marker gene expression). The gene set of interest for each “receiver/target” cell

type was defined as differentially expressed genes identified using the FindMarkers function
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(Wilcoxon Rank Sum test) in Seurat (31). Genes were only considered for differential expression

testing if expressed in at least 10% of cells in that population, and differential expression for

each cell type compared each cell type against all other cell types in the Drokhlyansky et al.

dataset. The resulting differentially expressed genes were filtered to keep only genes with

adjusted p-value < 0.05 and average log2FC > 0.25 or < -0.25. These filtered results were used

as the receiver gene sets of interest in the NicheNet analysis. The NicheNet prior model (v2)

was modified according to the developer “model construction” instructions to keep only data

sources classified as “literature” and “comprehensive_db”. NicheNet ranks potential ligands

based on the presence of receptors and target genes in the gene set of interest that are

associated with each ligand in the NicheNet model (compared to the background of genes for

that cell type; background genes were identified for each cell type individually via the

get_expressed_genes() function in NicheNet with default parameters). For each cell type, the

results of the ligand activity analysis were filtered based on their log2FC (from the DESeq2

differential expression analysis), keeping only the “top 20” ligands (or fewer if not more than 20)

by absolute value of log2FC for each receiver cell type. To infer potential ligand-to-target

signaling paths, the get_ligand_signaling_path() function in NicheNet was run for each set of

ligands and receiver cell type. The inferred signaling network for each receiver cell type was

filtered to remove target genes if they were also identified as receptors within a particular cell

type and to keep only ligand-receptor, ligand-target, and receptor-target links that contributed to

a complete ligand-receptor-target signaling path. The Sankey plots of inferred

ligand-receptor-target paths were generated using subsets of the “top 20” ligands results for

each receiver cell type, separated into “top 10” (ligands 1-10, ranked by greatest fold change)

and “next 10” (ligands 11-20, ranked by greatest fold change). As these subsets of ligands were

generated individually for each receiver cell type, the “top 10” and “next 10” refers to the top

ligands prioritized for each receiver cell type, and the prioritized ligands are not identical for all
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receiver cell types. A schematic for how NicheNet was used for this analysis is shown in

Supplemental Figure 1. Sankey plots were generated using R package sankeyD3 (v0.3.2) (33)

and manually edited in Adobe Illustrator (2023) for legibility.

Data availability

A Supporting Data Values file is available in supplemental materials. Full data sets are

deposited in Gene Expression Omnibus (GEO) accession: GSE264225. Differentially expressed

gene lists can be accessed as Supplemental Data. All code and package version information

used for DESeq2, GSEA, and ligand-receptor-target NicheNet analyses is available on GitHub

at github.com/HeuckerothLab/Mechanobiology_Wolfson2024/.

Results

HISMCs grown on aligned scaffolds have more smooth muscle myosin heavy chain 11

(MYH11) protein and less vimentin (VIM) mRNA than HISMCs grown on non-aligned

scaffolds.

Our initial goal was to test the hypothesis that pathological mechanical stress might

acutely alter gene expression in contractile bowel smooth muscle cells. One challenge is that

SMCs cultured on hard plastic rapidly undergo phenotypic class switching from a “contractile”

(MYH11-expressing) phenotype to a “synthetic” phenotype that produces extracellular matrix

(ECM), migrates, and proliferates (8, 34). To study the effects of mechanical stress in a more

contractile phenotype cell, we seeded HISMCs onto electrospun poly-caprolactone (PCL)

scaffolds (35) coated with laminin, an extracellular matrix protein that promotes the contractile

SMC phenotype (14, 36) (Figure 1A, B). One set of PCL scaffolds was spun to have aligned

fibers that promote growth of elongated spindle-shaped SMCs reported to be more contractile

(37, 38). In parallel, HISMCs were cultured on laminin-coated PCL scaffolds with non-aligned
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fibers (Figure 1A, B). After 72 hours with scaffolds floating freely in HISMC culture media, cells

were fixed and stained with antibodies to MYH11, a contractile apparatus protein prominently

produced in mature contractile phenotype SMCs. Pixel intensity measurements showed

HISMCs grown on aligned scaffolds averaged (mean) 14% more MYH11 protein than HISMC

grown on non-aligned scaffolds (Aligned: 54.33 arbitrary units (AU) [32.6 AU]; Non-aligned: 47.6

AU [28.28 AU], median [interquartile range]) (Mann-Whitney test, P<0.0001, n=3) (Figure 1B,

C). Vimentin (VIM) mRNA, a synthetic SMC marker (39), was also less abundant in HISMCs

cultured on aligned compared to non-aligned scaffolds (P=0.0052, n=5) (Figure 1D). In contrast,

mRNA for extracellular matrix related genes (COL1A1, MMP14, FN1) and contractile apparatus

genes (MYH11, ACTG2, ACTA2) were equivalent in HISMCs cultured on aligned versus

non-aligned scaffolds (Figure 1 E-J). Based on these findings, further experiments used

HISMCs cultured on aligned scaffolds.

Dynamic loading (cyclic stretching) of HISMCs leads to marked changes in gene

expression

To identify early gene expression changes in response to pathologic stretch, HISMCs

cultured for 72 hours on aligned PCL scaffolds were subjected to cyclic uniaxial stretch (loaded)

along the long axis of the cell (3% stretch, 1 Hz, 6 hours). Unloaded control scaffolds were

maintained free-floating in fresh culture media for 6 hours (Figure 2A). Scaffolds were then

stained (Figure 2B) or dissolved in Trizol for RNA sequencing. Bulk RNA sequencing

demonstrated clear separation of loaded (stretched) versus unloaded (free-floating) HISMCs

using Principal Component Analysis (PCA) (Figure 2C). Differential expression analysis using

DESeq2 identified 1239 mRNA that were more abundant (log2FC > 0.48) and 1261 mRNA that

were less abundant (log2FC < -0.48) in loaded compared to unloaded HISMCs (adjusted

p-value<0.05, DESeq2). This gene set includes markers of the contractile or synthetic SMC
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phenotypes, inflammatory mediators, TGFβ superfamily genes, axon guidance molecules,

cytoskeletal proteins, cell-cell junctional proteins, and cell-ECM interacting proteins (Figure 2D).

In addition, Gene Set Enrichment Analysis (GSEA) using the Hallmark gene sets from the

Human Molecular Signatures Database (MSigDB) highlighted several cytokine and inflammation

pathways with a normalized enrichment score (NES) greater than 2 (Supplemental Figure 2),

suggesting that cyclic mechanical stress induces gene expression changes associated with

pro-inflammatory states. These pathways included “TNF alpha signaling via NFκB”,

“Inflammatory Response”, “Allograft Rejection”, “IL6-JAK-STAT3 Signaling”, “IL2-STAT5

Signaling”, and “Interferon Gamma Response”.

Consistent with the hypothesis that loading induced a pro-inflammatory state, STRING

classification using KEGG pathways to characterize the 500 most differentially regulated genes

(based on adjusted p-values) identified 13 NFκB pathway genes more abundant in loaded than

in unloaded HISMCs (Figure 3A). To determine if this reflected increased NFκB signaling, we

used immunohistochemistry and discovered more nuclear NFκB in loaded compared to

unloaded HISMCs (Figure 3B,C). Since NFκB (NFKB1, NFKB2) also promotes a synthetic

phenotype in SMCs by repressing myocardin, the master regulator for SMC contractile

phenotype (40), we hypothesized loaded HISMCs might have a more synthetic phenotype than

unloaded HISMCs. Consistent with this hypothesis, loaded HISMCs had higher levels of mRNA

for many synthetic SMC phenotype genes compared to unloaded HISMCs, including EREG

(41), AREG (42), KLF4 (43), PDGFA (44), EPHA2 (45), ETS1, ETS2, ELF1 (46), POU2F2 (47),

and THBS1 (48) (Figure 3D). Loaded HISMCs also had less MKL2 protein in the nucleus

compared to unloaded HISMCs (Figures 3E, F) and less mRNA for MKL2 (log2FC=-0.5, p-val

adj=0.0029). MKL2 is a myocardin transcription factor family gene that promotes the SMC

contractile phenotype (49). Furthermore, loaded HISMCs had less mRNA for CARMN (reported

as MIR143HG in Supplemental Table 3) (log2FC=-2.06, p-val adj=9.68E-05), a long
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noncoding RNA critical for maintaining visceral SMC contractile function (50) (Figure 3G).

Collectively, these data show our cyclic stretching paradigm promotes a synthetic,

pro-inflammatory state in HISMCs, instead of a contractile phenotype.

These findings are reinforced by STRING classification of the top 500 genes (by

adjusted p-value) with absolute value log2FC > 0.48 using the Gene Ontology (GO) Biological

Process pathways (51, 52). In the STRING analysis, 30 of the top 500 genes were involved in

cytokine signaling (cytokine-mediated signaling pathway, GO:0019221) including IL8, CXCL3,

IL11, IL1B, CCL20, PTSG2, CXCL2, IL6, LIF, IL24, CXCL1, CXCL5, and CLCF1 (Figure 4A-B).

Many of these cytokines may impair intestinal motility (53–55). To validate RNA sequencing, we

used qRT-PCR to analyze mRNA abundance for IL6 (Figure 4C), a major proinflammatory

cytokine (56), and IL11 (Figure 4D), which promotes a synthetic phenotype in vascular smooth

muscle (55). The qRT-PCR showed IL6 mRNA was 12-fold more abundant (P<0.001, n=4) in

loaded versus unloaded HISMCs and IL11 mRNA was 55-fold (P=0.004, n=4) more abundant in

loaded HISMCs. This is similar to the 13.4-fold (log2FC=3.74) elevation in IL-6 and 43.1-fold

(log2FC=5.43) elevation in IL11 based on RNA sequencing (Figure 4B). In contrast to mRNA

data, IL11 immunohistochemistry revealed lower protein levels in loaded than in unloaded

HISMCs (Figures 4E, F). In addition, phospho-STAT3, a key IL6 signaling protein, was not

detected in either loaded or unloaded HISMCs by antibody staining (Figure 4G) although our

antibody readily detected phospho-STAT3 in human THP-1 macrophages (Supplemental Figure

3). Collectively, these data show dramatic increases in many proinflammatory signaling

molecules at the mRNA level after only 6 hours of pathologic stretching.

TGFβ superfamily genes are differentially expressed in loaded versus unloaded HISMC

TGFβ signaling has been shown to have roles in smooth muscle embryogenesis and

phenotypic class switching (57). Many TGFβ superfamily genes were differentially regulated by
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6 hours of cyclic HISMC loading based on RNA sequencing. Loaded HISMCs had higher levels

of INHBB, TGFBR1, TGFBR3, SMAD7, TGFB1, BMP2, GREM1, and SMAD1 mRNA, and lower

levels of TMEM100, SMAD6, BAMBI, BMP4, SMAD6, and BAMBI mRNA, compared to

unloaded HISMCs (Figure 5A). qRT-PCR confirmed higher levels of BMP2 (Figure 5B) and

GREM1 (Figure 5C) in loaded HISMCs and reduced BMP4 mRNA (Figure 5D) compared to

unloaded cells. Since TGFβ and BMP can alter SMC phenotype, we evaluated nuclear to

cytoplasmic ratios of signaling proteins that localize to the nucleus after BMP

(phospho-SMAD1/5/8) or TGBβ (phospho-SMAD2/3) receptor activation (Figure 5E).

Quantitative analysis of immunohistochemistry showed equivalent nuclear to cytoplasmic ratios

of phospho-SMAD2/3 and phospho-SMAD1/5/8 in loaded and unloaded HISMCs (Figure 5F, G).

Collectively, these data indicate cyclic stretching rapidly alters mRNA levels for many TGFβ

superfamily genes, but that signaling pathways these genes could activate or inhibit were not

altered in HISMCs, at least at this early time point.

Pathologic loading induces differential expression of guidance molecules and of genes

needed for cell-cell and cell-extracellular matrix (ECM) interactions

Cyclic HISMC loading rapidly altered mRNA levels for many ephrins, semaphorins,

netrins, and slits (Table 1). In addition to central roles in neurobiology, these axon guidance

molecules play key roles in vascular smooth muscle cell migration, cell proliferation, and

inflammation in the context of cardiovascular disease (58). Several mRNAs involved in cell-ECM

or cell-cell interactions, with possible roles in mechanosensation, were differentially expressed

between loaded and unloaded HISMCs. These mRNA included integrins, cadherins, catenins

and catenin antagonists, claudins, a tight junction protein, talins, syndecans, an actinin, an

adherens junction protein, cell adhesion molecules, and focal adhesion genes (Table 2). Finally,

there were differential changes in mRNA levels for many cytoskeletal proteins (Table 3). These
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changes in gene expression suggest that in response to cyclic stretching, HISMCs alter cell-cell

and cell-ECM interactions, possibly consistent with a transition away from the contractile SMC

cell fate.

HISMC loading induced expression of diverse ligands that could signal to nearby cells

Remarkably, many genes differentially regulated in HISMCs in response to cyclic loading

encode secreted or cell surface ligands that could impact the biology of nearby cells by binding

cell surface receptors. To identify possible cellular targets for differentially expressed HISMC

ligands, we used NicheNet (30) and human bowel single nucleus RNAseq data from

Drokhlyansky et al. (32). An overview of the analysis is presented in Supplemental Figure 1.

NicheNet evaluates potential ligand-receptor interactions, ranking interactions based on

ligand-target regulatory potential (incorporating intracellular signaling into regulatory potential

scoring). These potential ligand-receptor interactions are represented in Sankey plots (Figures 6

and 7). On the left of each Sankey plot is a ligand whose mRNA is more abundant in loaded

HISMCs than in unloaded HISMCs (Figure 6), or conversely, a ligand more abundant in

unloaded HISMCs than in loaded HISMCs (Figure 7), based on our data. In the middle column

are receptors (from Drokhlyansky et al.’s data (32)) for ligands differentially expressed from our

data. On the right are genes whose activity or expression is regulated by receptor signaling,

according to the NicheNet model. The color of each line indicates the receptor-bearing cell type,

based on Drokhlyansky et al.’s data. Figures 6 and 7 show the top 10 prioritized ligands from

HISMCs (based on log2FC) for each cell type in a re-annotated subset of Drokhlyansky et al.’s

data, with additional data in Supplemental Figure 4 showing genes more abundant in loaded

HISMCs for the next 10 prioritized ligands (Sankey figures show more than 10 ligands because

the top prioritized ligands were not identical for all cell types). For example, BMP4 mRNA is

increased in unloaded compared to loaded HISMCs (as we confirmed in Figure 5A, B). The
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Sankey plot (Figure 7) shows that receptors for BMP4 (i.e., BMPR1A, BMPR1B, and BMPR2)

are expressed in visceral smooth muscle (VisceralSMC_1). However, BMPR1A is also

expressed in enteric neurons, macrophage, Fibroblast_1, and epithelial cells, while BMPR1B is

expressed in neurons, Interstitial cells of Cajal (ICC), and Fibroblast_1. The co-receptor BMPR2

is expressed in VisceralSMC_1, vascular endothelial cells, enteric neurons, ICC, Fibroblast_1,

and epithelial cells, but was not detected in macrophages in the Drokhlyansky et al. dataset.

While some differentially-expressed HISMC ligands could signal to many adjacent cell types

(e.g., FGF18, IL6, IL11, AREG, EREG, BMP2, HBEGF in loaded HISMCs; GDF5, BMP4,

EFNA1, EFNA3, EFNA4 in unloaded HISMCs), other differentially-expressed HISMC ligands

were predicted to signal to only to neurons (TNFSF15, IL16, INHBB in loaded HISMCs; ADM,

APLN in unloaded HISMCs) or to neurons, vascular endothelial cells, and macrophages (CSF3

in loaded HISMCs) (for example). Notably, differentially-expressed HISMC ligands from the

loaded cells have the largest number of targets in neurons, leading to the intriguing hypothesis

that neurons may play an active role in how the bowel responds to pathologic mechanical

stress. For differentially-expressed HISMC ligands in the unloaded cells, there is a lower

number of targets identified across all the examined bowel cell types compared to the number of

targets identified across all of the bowel cells types for differentially-expressed HISMC ligands in

the loaded cells. Nevertheless, neuronal targets again feature most prominently. We note that

some possible interactions indicated in the Sankey plots may not be biologically relevant (e.g.,

smooth muscle ICAM might never contact bowel epithelial cells). Nonetheless, these NicheNet

analyses suggest that altered mechanical stress induces broad changes in HISMC gene

expression, and that many differentially expressed genes are likely to bind to receptors, and

influence function, of other cell types in the bowel wall.
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Discussion

Mechanotransduction describes the ability of cells to actively sense, integrate, and

convert mechanical stimuli into biochemical signals, including changes in transcription (59).

Mechanotransduction is critical for normal bowel physiology, and also impacts disease

pathophysiology in the context of pathologic mechanical stressors. Such pathologic force occurs

in functional bowel obstruction (visceral myopathy, chronic intestinal pseudo-obstruction,

Hirschsprung disease, ileus), mechanical bowel obstruction (volvulus, adhesions, malignancy),

and in the context of transmural inflammatory infiltrates or fibrosis (Inflammatory bowel disease,

scleroderma). Mechanical stress sensing also impacts symptoms in irritable bowel syndrome,

functional dyspepsia, bowel diverticula, functional nausea, centrally mediated abdominal pain

syndrome, dyssynergic defecation, achalasia, functional dysphagia, and visceral

hypersensitivity (5). Although most bowel cell types appear capable of mechanotransduction (5),

the impact of mechanical force on visceral smooth muscle phenotype remains under-explored.

Here, we tested the hypothesis that bowel smooth muscle phenotype might change in

response to abnormal mechanical stress. Using cultured human intestinal smooth muscle, we

show that even modest pathological stretching (3% uniaxial cyclic stretch at 1 Hz) can rapidly

(within 6 hours) alter expression of 4537 genes in HISMCs, of which 2500 met our minimum

cut-offs for fold change. The gene expression changes suggest mechanical loading induces

HISMCs to transition to a synthetic, pro-inflammatory state. Predictive modeling with NicheNet

further suggests that many of the genes induced by pathologic mechanical stress could act on a

wide array of nearby cell types, causing complex and long-lasting changes in bowel physiology.

The gene expression changes induced in HISMCs by low amplitude, high frequency cyclical

stretch are consistent with “phenotypic class switching”, a well-described phenomena in

vascular smooth muscle but also reported in visceral smooth muscle.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.12.617767doi: bioRxiv preprint 

https://paperpile.com/c/gZfPmn/Jnmyv
https://paperpile.com/c/gZfPmn/F9CXu
https://paperpile.com/c/gZfPmn/F9CXu
https://doi.org/10.1101/2024.10.12.617767
http://creativecommons.org/licenses/by-nc-nd/4.0/


Unlike all other muscle types, smooth muscle is not terminally differentiated. SMC

phenotypic class switching is an unusual attribute, describing the ability of SMCs to reversibly

modulate cell fate in response to various mechanical, chemical, and cytoskeletal triggers (8, 60).

There are two recognized phenotypes for smooth muscle (contractile and synthetic) (7, 8, 61,

62), but in vascular SMCs there may be as many as 9 identified SMC cell fates (63). These

changes in SMC fate may be protective (e.g. forming a fibrous cap in damaged vasculature), but

are also implicated in pathophysiology in various gastrointestinal, cardiovascular, and

pulmonary diseases (7, 54, 62, 64, 65). In some cases, prevention or reversal of SMC

phenotypic class switching provides a therapeutic target (e.g., in atherosclerosis) (66–68). While

under-explored, SMC phenotypic class switching may be an important mechanism, and

potential therapeutic target, in some types of bowel disease. Understanding mechanisms that

underlie visceral SMC phenotypic class switching may, therefore, provide new avenues to

prevent progression or reverse damage in human bowel disease.

Mechanical stress induces phenotypic class switching from contractile to synthetic,

proinflammatory HISMC

Contractile SMCs generate the force needed for normal bowel motility. These SMCs may

experience pathologic mechanical stress in many settings, and appear to adapt over extended

time periods. For example, after surgical manipulation, the bowel stops moving, a problem

called “ileus” that typically lasts for many days. In contrast, mechanical obstruction leads to the

early occurrence of high frequency clustered contractions (3-10 regular contractions, occurring 1

contraction per 5 seconds, lasting < 1 minute, repeating every 1-3 minutes) called “minute

rhythm” and “prolonged simultaneous contractions” (> 8 seconds duration) (69, 70). These

patterns also occur in intestinal neuropathy (2). The initial increase in motor activity after bowel

obstruction is followed by suppression of motor activity and then by bowel muscle layer
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hypertrophy (2, 71). These observations reflect complex interactions between many cell types

and provide context for our HISMC data.

One striking observation is that loaded HISMC had 30% less MKL2 and 76% less

CARMN mRNA after only 6 hours of cyclic stretching (Figure 3G, Supplemental Table 3). MKL2

and CARMN are crucial for expression of contractile apparatus genes and are abundant in

contractile phenotype SMCs (50, 72). At the same time, loaded HISMCs had more mRNA

encoding proteins that block contractile apparatus gene expression or that induce the

synthetic/proliferative SMC cell fate (e.g., AREG (increased 49.9-fold), EREG (increased

46.2-fold), and KLF4 (increased 4.3-fold) (Figure 3D, Supplemental Table 3) - identified in

vascular SMC literature) (73–75). Loaded HISMCs had much higher levels of proinflammatory

cytokines, including IL8 (increased 46.9-fold), CXCL3 (increased 44.9-fold), IL11 (increased

43.1-fold), IL1β (increased 40.8-fold), PTGS2 (increased 32.0-fold), IL6 (increased 13.4-fold),

ICAM1 (increased 3.6-fold), and CCL2 (increased 2.1-fold), amongst other genes (Figure 4B,

Supplemental Table 3). Some of these observations fit with known signaling pathways. For

example, IL11 is produced by vascular smooth muscle in response to TGFβ1, and then acts

cell-autonomously to induce phenotypic switching from contractile to synthetic, proinflammatory

SMCs. The IL11-treated vascular SMCs increased expression of ECM genes and increased

mRNA for IL6 and CCL2 (among other inflammatory mediators) (76). Similarly, IL1β activates

IL1 receptors (which are expressed in HISMCs, Figure 4B, Supplemental Table 3), triggering

nuclear localization of NFκB (as we show in Figure 3D, E). Nuclear NFκB characteristically

induces transcription of ICAM1, CCL2 (also called MCP1), and IL6. This suggests

cell-autonomous effects of IL1β, produced in response to pathologic mechanical stress, could

trigger many of the loading-induced changes in HISMC gene expression (77). NFkB also

mediates SMC phenotypic switching to a synthetic state (8, 40) by sequestering myocardin and

preventing SRF-dependent expression of SMC contractile genes (78, 79). Consistent with our

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.12.617767doi: bioRxiv preprint 

https://paperpile.com/c/gZfPmn/l1u8X+yQflB
https://paperpile.com/c/gZfPmn/uJJTj+XOdO8
https://paperpile.com/c/gZfPmn/68DPE+ntgd9+RqU2G
https://paperpile.com/c/gZfPmn/ciksi
https://paperpile.com/c/gZfPmn/SwPS4
https://paperpile.com/c/gZfPmn/00RIp+wzgWA
https://paperpile.com/c/gZfPmn/XlmRP+sJqXW
https://doi.org/10.1101/2024.10.12.617767
http://creativecommons.org/licenses/by-nc-nd/4.0/


data, prior studies show static stretch (18%) increases SMC expression of iNOS, IL6, and MCP1

within 3 hours, and that bowel proximal to obstruction markedly elevates PTGS2 (COX-2) after

24-48 hours (4, 11, 55). In addition, colon manipulation in vivo increases IL1β within 24 hours

(11). Collectively, these studies strongly support the hypothesis that “mechano-transcription”

powerfully modulates gene expression in bowel smooth muscle and highlights the complex

self-reinforcing networks that induce SMC phenotypic switching (2). Our data demonstrates

rapid changes in gene expression in human visceral SMCs towards a synthetic phenotype in

response to pathologic mechanical stress, strengthening evidence for the role of

mechanotransduction in bowel function that was previously identified in rodent models. These

observations may have clinical implications for ileus, as well as for mechanical and functional

bowel obstruction.

Mechanical stress alters expression of many TGFβ family members in HISMC

Many differentially expressed genes in loaded HISMCs encode TGFβ superfamily

proteins or components of their signaling pathways (including BMP2, BMP4, BMP6, GREM1,

Noggin, BAMBI, INHBA, TGFB1, TGFBR1, ALK2 (reported as ACVR1 in Supplemental Table 3),

and ALK4 (reported as ACVR1B in Supplemental Table 3)). TGFβ1 mRNA was increased

1.58-fold in loaded HISMCs, and receptors TGFBR1 and TGFBR3 mRNA increased ~1.9 fold in

response to loading. Elevated TGFβ1 signaling also serves as one possible explanation for the

increase in IL11 noted above. However, our analysis showed equivalent levels of SMAD2/3 in

the nucleus of loaded and unloaded HISMCs, indicating no increase in TGF receptor signaling

at this early (6 hour) timepoint.

We were also intrigued by the changes in BMP family mRNA because bowel smooth

muscle patterning depends on the interplay of BMP2, BMP4, and BMP7, as elegantly shown by

Huycke et al (80). Furthermore, BMP2 increases vascular SMC migration and expression of
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synthetic markers (81, 82), and has anti-proliferative effects in pulmonary artery SMC (83). In

addition, BMP2 counteracts many effects of TGFβ1 in SMCs by inducing PPARγ (84). While

these observations are intriguing, our gene expression data (Figure 5A, Supplemental Table 3)

showed increased BMP2 and reduced BAMBI (BMP antagonist) mRNA in loaded HISMC.

Based on prior data, these changes are expected to increase BMP receptor signaling. However,

our analyses also showed reduced BMP4, and elevated GREM1 and NOG (BMP antagonists)

in loaded HISMCs, which would be expected to reduce BMP receptor signaling. To make sense

of these observations, we looked for evidence of BMP signaling in HISMCs and found

equivalent nuclear localization of SMAD1/5/8 in loaded and unloaded cells (Figure 5F),

indicating no change in BMP receptor signaling. Collectively, these data suggest that TGFβ

superfamily signaling changes rapidly in response to mechanical stress in HISMCs, but that

these signaling systems were not (at least at this time point) affecting SMC cell phenotype, or

that there is additional complexity to TGFβ signaling involving other bowel cell types that is not

captured by our simplified system.

Stress alters expression of axon guidance molecules and genes needed for cell-cell and

cell-extracellular matrix (ECM) interactions

Many differentially expressed genes in loaded HISMCs encode axon guidance

molecules (ephrins, netrins, semaphorins, and slits) that could influence bowel muscle

innervation. Some encoded proteins also directly impact SMC biology, at least in the

vasculature. However, whether they are specifically related to a contractile or synthetic

phenotype is not well-understood. For example, ephrin B2 (EFNB2, increased 2.22-fold in

loaded HISMCs) enhances vascular SMC contraction strength (85), while ephrin A1 (EFNA1,

reduced 2.77-fold in loaded HISMCs) reduces integrin-induced vascular SMC spreading and

inhibits SMC proliferation (86, 87). As another example, SEMA7A (increased 2.31-fold in loaded
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HISMCs) expression in vascular SMC is increased by PDGF (increased 2.04-fold in loaded

HISMCs), and appears to be required for PDGF-induced vascular SMC proliferation and

migration (88). In addition to these guidance molecules, which are not well studied in SMCs,

loading changed expression of many cytoskeletal proteins (or regulators like FMN1), integrins,

cadherins, focal adhesions, potentially altering SMC interactions with nearby cells and with the

ECM.

Pathologic stress-induced changes in HISMC gene expression could broadly affect the

biology of many bowel cell types

Although our studies employed purified human intestinal smooth muscle in culture,

HISMCs in vivo closely interact with many other cell types including enteric neurons, glia,

muscularis macrophages, fibroblasts, and vascular SMCs. HISMCs also interact very closely

with interstitial cells of Cajal (ICC) and PDGFRα+ cells to form the “SIP syncytium”, a network

connected to SMCs by gap junctions (89–91). Recognizing that many differentially expressed

genes induced by loading in HISMCs encode secreted or extracellular ligands, we employed

NicheNet to try to unravel potential SMC-“niche” interactions that might occur in response to

pathologic stretching. The resulting analyses (Figure 6-7) suggest that mechano-transcription

responses to pathologic mechanical stress in HISMCs induce production of many growth factors

(EREG, AREG, HBEGF, FGF5, FGF7, FGF18, NRG1, PDGF, LIF), cytokines (IL6, IL11, CSF3,

CLCF1), and differentiation regulators (WNT5A, BMP2, BMP6, DKK1, TGFB1, JAG1, DLL4,

INHBB, INHBA) that are likely to act on adjacent cells. For simplicity, our presented analyses

include only the “Top 20” differentially expressed ligands in loaded versus unloaded HISMCs,

based on the NicheNet model. Thus, these analyses show only a subset of the

mechanotransduction-induced changes in HISMC gene expression. The interactions emphasize

how physical stress experienced by HISMCs in a variety of disease contexts could remodel not
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only smooth muscle, but influence many other bowel cell types. These complex interactions may

critically underlie some aspects of bowel dysfunction, especially for people with dysmotility or

partial obstruction. In particular, the broad array of cellular changes predicted to occur in

response to HISMC differential gene expression after mechanical stress might explain why

recovery after bowel injury may be gradual (over days or months).

Conclusions

We have presented some of the first and most detailed analyses of gene expression

data in HISMCs showing that pathological mechanical stress, even over a short time scale,

leads to a switch towards a synthetic, pro-inflammatory HISMC phenotype. Our novel NicheNet

analysis has generated new, testable hypotheses regarding the interplay between visceral

smooth muscle and other bowel cell types that may occur in response to pathologic mechanical

stress. These interactions may govern how bowel function is altered over long periods of time in

human bowel diseases in which such stresses are a significant part of disease pathophysiology.
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Figures

Figure 1: Aligned nanofibrous spun scaffolds enhanced abundance of contractile
phenotype mRNA and proteins in HISMC.
(A) Schematic of non-aligned (top) and aligned (bottom) PCL scaffolds (Created with Biorender).
(B) Confocal Z-stack maximum intensity projections of HISMCs stained with antibodies to
smooth muscle myosin (MYH11, magenta) and for F-actin (Phalloidin-Alexa Fluor 488, green)
after culture on non-aligned (top) or aligned (bottom) scaffolds immersed in culture media for 72
hours. (scale bar: 100 μm). (C) MYH11 antibody staining was brighter in HISMCs cultured 72
hours on aligned scaffolds compared to HISMC cultured on non-aligned scaffolds (median
[interquartile range] Aligned: 54.33 AU [32.6 AU], non-aligned: 47.6 AU [28.28 AU],
Mann-Whitney test, P<0.0001, n=3). (D-J) qRT-PCR analyses for mRNA levels of smooth
muscle synthetic genes (VIM, COL1A1, MMP14, FN1) showed increased VIM expression in
HISMCs grown on non-aligned scaffolds (D), with similar expression of the other synthetic
genes. qRT-PCR analyses demonstrated that mRNA levels of smooth muscle contractile genes
(MYH11, ACTG2, ACTA2) were similar for HISMCs grown on non-aligned and aligned scaffolds.
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VIM (mean+/- SEM aligned: 0.01462 +/- 0.002633, mean non-aligned: .025 +/-0.0002020,
P=0.0052, n=5). ACTA2 (mean +/- SEM aligned: 0.3656 +/- 0.07053, mean non-aligned: .4986
+/- 0.04450, P=0.1494, n=5). MYH11 (mean+/- SEM aligned: 0.002982 +/- 0.0006099, mean
non-aligned: 0.003978 +/- 0.0004698, P=0.2322, n=5). COL1A1 (median [interquartile range],
aligned: 10.38 [12.679], non-aligned: 18.95 [4.61], P=0.0952, n=5). FN1 (median [interquartile
range], aligned: 6.985 [6.93], non-aligned: 10.21 [8.483], P=0.4206, n=5). ACTG2 (mean +/-
SEM aligned: 0.7499 +/- 0.06910, mean non-aligned: 1.009 +/ 0.1477, P=0.1249, n=5). MMP14
(median [interquartile range], aligned: 1.16 [1.624], non-aligned: 2.319 [2.898], P=0.2222, n=5).

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.12.617767doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.12.617767
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Dynamic loading for 6 hours led to many changes in gene expression.
(A) Schematic of experimental design with primary outputs. (B) Sum-of-slices Z-projection of
20x confocal image of HISMCs on aligned scaffolds stained for F-actin (Phalloidin, magenta)
with nuclei labeled with Sytox Green. Scale bar = 100 μm. (C) PCA plot (based on the top 500
most variable genes) showing that loaded versus unloaded HISMCs differ significantly in gene
expression. Orange dots = loaded samples, blue dots = unloaded samples. (D) Volcano plot of
differentially expressed genes between loaded vs unloaded HISMCs, from DESeq2 analysis.
Log2fold change (log2FC) cutoff > 0.48 or < -0.48 (vertical dotted lines). False Discovery Rate
(FDR) cutoff = 0.05 (horizontal dotted line). Orange dots indicate differentially expressed genes
(FDR<0.05) with log2FC>0.48 (1239 genes up in loaded), and blue dots indicate differential
expressed genes (FDR<0.05) with log2FC<-0.48 (1261 genes up in unloaded).
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Figure 3: Loaded HISMCs have increased synthetic gene expression and activation of
NFκB signaling.
(A) STRING diagram of KEGG NFκB pathway analysis. Input included mRNA more abundant in
loaded HISMCs with Log2 fold change (log2FC) >0.48 based on bulk RNA sequencing. (B)
Representative sum-of-slices Z-projections of confocal images (63X oil objective) showing NFκB
antibody staining (red) and Sytox green nuclear staining. Top: Unloaded HISMCs grown on an
aligned scaffold. Bottom: Loaded HISMCs grown on an aligned scaffold. Scale bar = 20 μm. (C)
Quantitative analysis of antibody staining demonstrated increased NFκB nuclear to cytoplasmic
ratio in loaded compared to unloaded HISMCs (median [Interquartile range] unloaded 1.152
[0.4651], loaded 1.336 [0.8271] (P=.0081, Mann Whitney), n=79 cells for both groups. (D)
Smooth muscle synthetic genes differentially expressed in loaded versus unloaded HISMC
based on bulk RNA sequencing. (E) Representative sum-of-slices Z-projections of confocal
images (63X oil objective) of MKL2 stained HISMCs (red) and Sytox green nuclear staining.
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Top: Unloaded HISMCs grown on an aligned scaffold. Bottom: Loaded HISMCs grown on an
aligned scaffold. (F) Quantitative analysis of antibody staining demonstrated an increased MKL2
nuclear to cytoplasmic ratio in unloaded compared to loaded HISMCs. (median [Interquartile
range] unloaded 2.435 [1.066], loaded 1.820 [0.731] (P<.0001, Mann Whitney), n=65 cells for
unloaded and n=70 cells for loaded HISMCs. (G) Smooth muscle contractile genes differentially
expressed in loaded versus unloaded HISMCs based on bulk RNA sequencing.
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Figure 4: Supraphysiologic cyclical stretching stimulates production of cytokines,
cytokine receptors, and chemokines (A) STRING diagram of 32 genes (from the top 500
differentially expressed genes with padj <10^-6 genes and absolute value log2FC > 0.48, out of
1113 genes meeting this criteria) from bulk RNA sequencing that were annotated as genes in
the GO Biological Process cytokine-mediated signaling pathway (GO:0019221) in the STRING
analysis. (B) Genes for cytokines, cytokine receptors, and chemokines significantly differentially
expressed from bulk RNA sequencing (P<0.05). All were significantly upregulated in loaded
HISMCs. (C) qRT-PCR shows 12-fold more IL-6 mRNA in loaded compared to unloaded
HISMCs. (mean +/- SEM unloaded: 0.009601 +/- 0,001695, loaded: 0.1195 +/- 0.01191, [
0.01203], P<.0001, n=4). (D) qRT-PCR shows 55-fold more IL11 mRNA in loaded compared to
unloaded HISMCs. (mean +/- SEM unloaded: 0.02060 +/- 0.002797, loaded: 1.136 +/- 0.1585, [
0.1585], P=0.0004, n=4). (E) Representative sum-of-slices Z-projections of confocal images of
loaded or unloaded HISMCs stained with antibodies to IL11 (63X oil objective, confocal Z-stack).
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(F) Quantification of IL11 immunohistochemistry showed a small, but statistically significant
increase in pixel intensity in unloaded compared to loaded HISMCs (median [interquartile
range], unloaded: 1184 [762.6], n=122; loaded: 1012 [631.2], n=99; P=0.0469, Mann-Whitney).
(G) Representative sum-of-slices Z-projections of confocal images of loaded or unloaded
HISMCs stained with antibodies to phosphorylated STAT3 (PSTAT3) (63X oil objective, confocal
Z-stack). PSTAT3 was not detected in HISMCs under either condition, but PSTAT3 was readily
detectable in the human monocyte cell line THP-1 (Supplemental Figure 3).
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Figure 5: TGF-β superfamily genes are differentially expressed as a result of HISMC
loading. (A) TGFβ superfamily genes differentially expressed between loaded and unloaded
HISMCs identified by DESq2. (B) BMP2 RTPCR results confirming 5.36x increased BMP2
expression in loaded HISMCs (mean +/- SEM unloaded: 0.02222 +/- 0.004256, loaded: 0.1191
+/- 0.01708, [ 0.01761], P=0.0015, n=4). (C) GREM1 RTPCR results 3.16x increased
expression in loaded HISMCs. (mean +/- SEM unloaded: 0.0007025 +/- 0.0001186, loaded:
0.00289 +/- 0.0004599, [ 0.0004749], P=0.0156, n=4). (D) BMP4 RTPCR results confirming
8.63x increased BMP4 expression in unloaded HISMCs. (mean+/-SEM unloaded: 0.2358 +/-
0.07209, loaded: 0.02733 +/- 0.008379, [ 0.07260], P=0.0284, n=4). (E) Representative images
taken with confocal microscope 63X oil objective of PSMAD 1/5/8 (left) and PSMAD 2/3 (right) in
unloaded and loaded HISMCs. (F) IHC quantification of PSMAD 1/5/8 showed no differences in
nuclear to cytoplasmic staining between loaded and unloaded HISMCs (median [interquartile
range], unloaded: 4.549 [2.937], n=150; loaded: 4.391 [2.584], n=88; P=0.5339, Mann-Whitney).
(G) IHC quantification of PSMAD 2/3 showed no differences in nuclear to cytoplasmic ratio
between loaded and unloaded HISMCs (median [interquartile range], unloaded: 1.547 [0.471],
n= 150; loaded: 1.598 [0.344], n=88; P=0.5099, Mann-Whitney).
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Figure 6. Sankey plot showing the potential ligand-receptor-target links based on NicheNet’s
inferred signaling paths from “top 10” ligands upregulated in the loaded HISMC to Drokhlyansky
et al. receiver cell targets. The NicheNet prioritized ligand analysis between secreted ligands
that are more abundant in loaded compared to unloaded HISMCs (left column) and receptors
(middle column) and target genes (right column) in re-annotated Drokhlyansky et al. receiver
cell types was used to infer signaling paths from each ligand to target. Potential
ligand-receptor-target links were determined based on the inferred signaling paths from
NicheNet. See Methods and Supplemental Figure 1 for additional details on the NicheNet
analysis and process for inferring ligand-receptor-targets paths.
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Figure 7. Sankey plot showing the potential ligand-receptor-target links based on NicheNet’s
inferred signaling paths from “top 10” ligands upregulated in the unloaded HISMC to
Drokhlyansky et al. receiver cell targets. The NicheNet prioritized ligand analysis between
secreted ligands that are more abundant in unloaded compared to loaded HISMCs (left column)
and receptors (middle column) and target genes (right column) in re-annotated Drokhlyansky et
al. receiver cell types was used to infer signaling paths from each ligand to target. Potential
ligand-receptor-target links were determined based on the inferred signaling paths from
NicheNet. See Methods and Supplemental Figure 1 for additional details on the NicheNet
analysis and process for inferring ligand-receptor-targets paths.
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