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Abstract: The clinical monitoring of walking generates enormous amounts of data that contain
extremely valuable information. Therefore, machine learning (ML) has rapidly entered the research
arena to analyze and make predictions from large heterogeneous datasets. Such data-driven ML-based
applications for various domains become increasingly applicable, and thus their software qualities are
taken into focus. This work provides a proof of concept for applying state-of-the-art ML technology to
predict the distance travelled of the 2-min walk test, an important neurological measurement which
is an indicator of walking endurance. A transparent lean approach was emphasized to optimize
the results in an explainable way and simultaneously meet the specified software requirements
for a generic approach. It is a general-purpose strategy as a fractional–factorial design benchmark
combined with standardized quality metrics based on a minimal technology build and a resulting
optimized software prototype. Based on 400 training and 100 validation data, the achieved prediction
yielded a relative error of 6.1% distributed over multiple experiments with an optimized configuration.
The Adadelta algorithm (LR = 0.000814, fModelSpread = 5, nModelDepth = 6, nepoch = 1000)
performed as the best model, with 90% of the predictions with an absolute error of <15 m. Factors
such as gender, age, disease duration, or use of walking aids showed no effect on the relative error.
For multiple sclerosis patients with high walking impairment (EDSS Ambulation Score ≥ 6), the
relative difference was significant (n = 30; 24.0%; p < 0.050). The results show that it is possible
to create a transparently working ML prototype for a given medical use case while meeting certain
software qualities.

Keywords: machine learning; inertial measurement units; multiple sclerosis; deep learning; software
quality; fractional factorial design benchmark

1. Introduction

Machine Learning (ML)-based approaches for medical use cases and questions are
becoming increasingly important and applied in specific medical scenarios. With regard to
the prospective impact of such prediction or decision support systems, the quality of the
results and the software itself, i.e., the systems’ transparency and transferability for domain
experts and admission instances for medical products are import and require reflection
during the design process [1]. Result quality, e.g., prediction accuracy or robustness, and
software quality, e.g., explainability, modularity or reusability, can be contrary design
objectives; hence a trade-off has to be achieved [2,3].

In this work, a Deep Learning (DL) software prototype for a concrete medical use case
from the field of neurology was systematically optimized regarding different, previously
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chosen software qualities and designed for further recoverability and transferability to
similar applications.

1.1. Background

Multiple sclerosis (MS) is a chronic autoinflammatory demyelinating disease of the
central nervous system and the most frequent cause of non-traumatic disability in young
adults [4,5]. During disease progression, disseminated inflammatory lesions that spread
throughout the central nervous system lead to dysfunction in multiple functional systems
responsible for a variety of different neurological deficits [6]. Especially progressive gait
impairment and limitation of mobility are some of the most common pathognomic symp-
toms even in the early stages of the disease and contribute substantially to the loss of
patients’ quality of life [5,7]. Gait impairments in people with Multiple Sclerosis (PwMS)
are characterized by decreased gait speed, gait endurance, step frequency and cadence,
and increased gait variability [8,9]. For early and detailed assessment of increasing mobil-
ity limitations in PwMS, the Dresden Protocol of Multidimensional Walking Assessment
(DMWA) was implemented as part of routine clinical examination, and various motion
analyses using different gait parameters and measurement methods have been performed
to assess gait, stance, and balance [10]. Thereby, spatiotemporal gait analysis is performed
by using a wireless body-worn sensor system, named as Mobility Lab System (MLS) and
the GAITRite system. In this scope, the 2-min walk test (2MWT) is an important ingredient
of a structured gait-testing battery, assessing the distance a patient is able to walk during
two minutes. To date, the distance walked has been measured manually by assistants
using an odometer. The odometer is currently considered the gold standard for measuring
walking distance traveled in the clinical setting [11,12]. However, its use also reveals some
disadvantages. For one, the odometer is always guided by the rater, which means that
the different evasive movements, due to the pathological gait pattern or obstacles in the
course, are not taken into account when the patient walks. In addition, rotation at the end
of a gait is insufficiently detected because the reversal angle of the odometer is different. A
digitized approach with the use of Inertial Measurement Units (IMUs) is increasingly being
considered to avoid high inter-rater reliability and to increase the efficiency and accuracy of
the measurement process [13,14]. We want to take this approach even further and develop
and optimize an automated system for distance measurement by using ML technologies
based on the aggregated multidimensional data of PwMS from the MLS.

1.2. Motivation for Transparent Optimization Design

Setting up and optimizing an ML-based software prototype to predict medical mea-
surements, in this case the walking distance of PwMS, based on high-dimensional and
heterogeneous (aggregated sensor) data implies different quality requirements, based on [15].
The selected qualities from the medical and technical point of view are shown in Table 1.

As the impact of technological and design decision remains unknown until imple-
mentation, which is characteristic for experimental data-driven software approaches [3,16],
a lean and fast prototyping approach is recommended as a working metastrategy. The
following challenges for ML systems [1,2] apply for this use case: (i) evolving leading
questions and motivation; (ii) shifting of evaluation strategies and of definitions for result
quality and metrics; (iii) changing selection of data and features, technologies, pre- and
post-processing steps, and the configuration space; (iv) ongoing ML pipeline optimization
strategy to achieve best possible result; and (v) continuous integration of domain expertise.

To cover and track the previously listed qualities and face these challenges, a trans-
parent, and thus recoverable and reusable optimization design approach allows for later
explainable changes and adaptations in contrast to one-fits-all or automated black-box
solutions [17,18]. In summary, the software optimization and design strategy treats the task
as a problem of competitive objectives, i.e., to achieve the best possible proof of concept in
given time, as typically the realization resources are limited. In other words, the experi-
mental data-driven software prototype should be meaningful, flexible, lean, extensible, and
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explainable enough to meet the specified software qualities for the given and prospective
use cases.

Table 1. Aspired software qualities for ML prototype; ML = Machine Learning.

Quality Description

Prediction quality The results should be as good as achievable

Reliability A statement about the results’ steadiness
should be available

Robustness The results should be tolerant w.r.t. new or
other data

Transparency, explainability
The prediction approach should be as

transparent and explainable as possible
w.r.t. the selected ML technologies

Recoverability The setup, as well as the result should be
recoverable

Accessibility The prototype should be usable by physicians

Interoperability, modularity, reusability

The prototype should not be restricted to
specific software technologies and designed in
a way to allow functionality replacement or the

adaption to other (medical) use cases

Leanness
The prototype should base on a small specific
code base to reduce dependencies and achieve

the result as fast as possible

Hence, this paper investigates the impact of the optimization strategy on the software
quality in a quantitative (quality evaluation) and qualitative way (design reflection), and
in this way, the medical potential of ML-based approaches for gait analyses. The leading
research questions are:

• Is it possible to create working ML-based prediction prototypes for specific medical
use cases with only few data of low/medium quality?

• What are the best possible prediction results for these kinds of approaches?
• What are the influencing factors for the quality of medical ML prototypes, especially

for prediction quality?

2. Methods and Materials

In the following section, the technical and medical state of the art is reflected briefly
before the actual ML approach and the according analysis strategy for the result quality are
introduced.

2.1. State of the Art
2.1.1. Data-Based Prediction Approaches

In contrast to the conventional method to measure the patients’ walking distance
manually, i.e., medial staff follows the patient utilizing a distance measurement wheel, the
2MWT distance should be deduced from multi-dimensional sensor data from the MLS. The
prediction of such a value can be modeled as a regression problem. First, a large number of
conventional regression analysis approaches, e.g., linear or logistic regression exists that
influence the result quality as well as the transparency of the model [19]. In particular, for
the multi-input scenarios the optimization algorithms have to tune large sets of coefficients
to minimize a given target function, which is a complex and potentially extensive task [20].

Furthermore, a large number of techniques from the field of supervised ML [21] can
be utilized for prediction tasks, wherein each approach implies different challenges and
potentials. ML technology is already applied for medical use cases, e.g., in [22,23]. Hence,
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and with regard to the complexity of conventional statistical approaches, it is valid to utilize
ML as a large technology group for the 2MWT prediction problem.

2.1.2. Software Technologies

Currently, standard software libraries and frameworks for ML are available, which
provide a large number of researched techniques and are well-maintained and documented,
e.g., TensorFlow [24] or Scikit-learn [25]. The frameworks are mainly based on Python or other
established programming languages and are deployable to standard PCs, i.e., they require
no special hardware or High Performance Computing (HPC) systems. The appropriate
configuration, parametrization as well as the actual pipeline setup for a specific use case
are not trivial tasks and have strong impact on the result quality and performance. There
exist approaches and solutions for this so called hyper-parameter optimization [26] in the
ML frameworks themselves as well as independent solutions, e.g., Optuna [27] or Auto-
WEKA [28].

2.2. Dataset

The data of 511 PwMS who completed a multidimensional gait analysis as part of
their routine clinical examination between June 2018 and February 2019 at the MS Center
Dresden of the University Hospital Carl Gustav Carus Dresden were used. To record
spatiotemporal gait parameters, all study participants wore six Mobility Lab Opal sensors
(APDM, Portland, OR, USA), located on the patient’s wrists, ankles, sternum, and lower
back. Each sensor unit contained a three-axis accelerometer, a three-axis gyroscope, and
a magnetometer. We used the accelerometer data to estimate the distance walked by the
patient. Data from patients with a confirmed MS diagnosis who were able to walk with
or without assistive devices were included. Data acquisition was performed according to
the guidelines for good clinical practice and was approved by the local ethics committee
(BO-EK-320062021).

2.3. ML-Based Software Approach

The approach is described in Figure 1.

Figure 1. Minimal viable ML-based approach for 2MWT prediction. After aggregating MLS data and
manually measured walking distances from PwMS, the data are transposed to a table-based (columns
P1..max: patients; rows: speed, . . . , 2MW: features and learning objective), thus ML-compatible
representation, prepared, split and fed into a DFFNN based on TensorFlow. The model training
bases on incrementally improved configurations (FFDB) to optimize the prediction quality, expressed
by predefined metrics. [Abbreviations: ML = Machine Learning; 2MWT = 2 minute Walk Test;
MLS = Mobility Lab System; PwMS = People with Multiple Sclerosis; DFFNN = Deep Feed Forward
Neural Network; FFDB = Fractional Factorial Design Benchmark].

2.3.1. Machine-Learning Setup Design

In this section we describe the ML setup design.
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MSEarr =
∑nexp

√
MSE

nexp · distavg
(1)

Formula (1) defines the Average, Relative, Rooted Mean Square Error (MSEarr) as
overall prediction quality metric, with the number of experiments per configuration (nexp)
and distavg as the global scaling factor, enabling better comparability between usa cases
and datasets.

wi
rev =

∑nModelSpread
wi−1

rev

nModelSpread

∣∣∣∣∣
wModelDepth=1

(2)

Formula (2) describes the Reverse Synapse Weight for Input Features (RSWinput) as
weight sum of subsequent synapses within the Deep Feed Forward Neural Network
(DFFNN) to express the influence of different input neurons, i.e., data features. Reflecting
the objective to develop a Minimal Viable Solution (MVS) for the 2MWT with respect to
the aspired quality requirements (see Section 1.2), the following general-purpose ML setup
as shown in Table 2 was defined.

Table 2. ML Software Setup [Abbreviations: ML = Machine Learning; GPU = Graphics Process-
ing Unit; HPC = High-Performance Computing; DFFNN = Deep Feed Forward Neural Network;
SD = Standard Deviation; LR = Learning Rate].

Aspect Description

Technical environment PC with sufficient hardware; no grid of GPU or
HPC system

Data format requirements Table based, e.g., CSV format

Data import Use case specific; manual import; standard
normalization and error handling

ML technology TensorFlow [24]; no hyperparameter
optimization framework

Model DFFNN [29] of different shapes as regressor

Quality metrics MSEarr based on [19], see Formula (1); SD of
MSEarr

Sanity check RSWinput, see Formula (2)

Result optimization objective Minimize MSE, MSEarr respectively
Optimization space LR, fModelSpread, nModelDepth, talg

2.3.2. Setup Optimization

To achieve optimal results, i.e., minimal prediction errors, it is necessary to optimize
the predefined ML pipeline. As stated above, the optimization space is defined by four
parameters. Assuming multiple runs per configuration, Formula (3) describes an estimation
of the optimization space size:

nest
conf = nexp · cLR · cModelSpread · cModelDepth · cAlg

= 1.26 · 105 . (3)

Hence, even a small nexp with nexp = 10 and a deliberately small optimization
setup (cLR = 50, cModelSpread = cModelDepth = 6, cAlg = 7) lead to a large number of
training runs to tune and evaluate the approach, which exceeds the capacity of a normal PC.
Because the application of (hyper-) optimization frameworks is a complex and also error-
prone process [27,30] and an automated-tuned configuration may reduce the explainability
and recoverability of the approach, a Fractional Factorial Design Benchmark (FFDB) as
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described in Table 3 was designed. First, the number of training iterations (nepoch) is set
to a sufficiently large value as it intersects with the LR. Subsequently, a mid-size DFFNN
model is chosen ( fModelSpread = nModelDepth = 3) and the optimal LR is determined
for each TensorFlow training algorithm (|talg| = 7) with regard to the defined quality
metric (see Formula (1)). fModelSpread is a factor to describe the size of the hidden layers
in dependence of the size of the input vector and nModelDepth describes the number of
hidden layers. Defined by these spread and depth parameters, models of different sizes
are optimized by the training algorithm, utilizing the former detected optimal LR. Finally,
each set of model and algorithm is compared to detect the optimal configuration for the
2MWT and the chosen technology.

Table 3. Fractional Factorial Design Benchmark. Order and context of tuned parameters to optimize
the prediction quality in explainable and recoverable manner [Abbreviations: LR = Learning Rate;
ML = Machine Learning].

Factor Actions

nepoch = 1000
Small initial LR (<default)

test all ML optimization algorithms
fixed: LR, fModelSpread, nModelDepth

LR = 10−6..10−1

(exp. step size)

Increase LR step-wisely
test all ML optimization algorithms with different LR

fixed: nepoch, fModelSpread, nModelDepth

fModelSpread = 1..6
nModelDepth = 1..6

Increase fModelSpread and fModelSpread step-wisely
test all ML optimization algorithms for different model sizes

fixed: nepoch, LR

talg
Test all ML optimization algorithms

fixed: nepoch, LR, fModelSpread, nModelDepth

2.4. Analysis Strategy for the Prediction Quality

To analyze the defined prediction quality and its dependencies, MSEarr (1), as well as
its SD are evaluated repeatedly (nexp) after each step of the FFDB. Furthermore, a moving
average (sizewindows = 3) is utilized to highlight the overall course of the charts. For each
input feature of each trained model, the RSWinput (2) is calculated to illustrate the features’
impact on the overall prediction. The runtime of the model training as well as of the
execution is considered as not relevant for the experimental character of the approach,
and thus, not evaluated. The dependencies are shown in Section 3.2, including line charts
for the LR dependency per algorithm, heat maps for model size dependencies, bar charts
for the final algorithm comparison, aggregated histograms and scatter plots for the best
models’ prediction and a table of the top-5 features with large positive and negative overall
impact for the sanity check.

2.5. Reliability and Validity of the Optimized Algorithm

To further determine the reliability and the validity of the optimized algorithm, we
estimated the Intraclass correlation coefficient (ICC) [31] between the initially measured
and the predicted values and searched for factors that may be associated with differences
in the algorithm’s precision. Therefore, we compared relative differences in relation to
gender, age, disease duration, overall and specific disabilities (via Expanded Disability
Status Scale (EDSS)) [32] and the use of walking aids (fixed effects) by applying a linear
mixed model analysis that also included the assessing staff member as random factor. A
p-value of <0.05 is considered to indicate significant differences. Estimates are reported as
mean ± SD. Absolute and relative differences are calculated as absolute values.
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3. Results

The algorithms were evaluated with 511 measurements of PwMS. For a more detailed
analysis comparing results of the best performing algorithm to the directly measured
walking distance between subgroups, measurements of 455 PwMS were available. Overall,
67% were female, enrolled at an age of 43.17± 11.57 and with a median EDSS score of 2.5.
Walking aids were used by 7.7% of PwMS. The average performance in the timed 25-foot
walk was 6.26± 3.37 s [31]. In the following, the ML/DL software setup as well as the
results of the generic FFDB for the concrete medical use case are presented.

3.1. Software Execution

The accumulated sensor data of each patient (n = 511) was collected manually,
imported and prepared as CSV file as described in Section 2.3.1, i.e., the features were
selected, formatted, and normalized, as well as missing items or outliers were treated.
Finally, for each experiment (training run), the data was randomly split up into a training
(80%) and a validation set (20%), and transposed to a technologically appropriate input
format. Utilizing the ML software technology TensorFlow, a DFFNN as a regressor of
variable sizes was designed, which takes 92 transposed MLS features as input and were
trained against the manually measured walking distance utilizing different ML algorithms.
The measured average walking distance was distavb = 137.42 m, serving as a scaling factor
for the MSEarr (see Formula (1)).

The parameter optimization was performed by an FFDB as described in Section 2.3.2.
The experiments were executed on a Lenovo Working Station P52 several times, while
collecting quality measurement data and ollowing the defined analysis strategy (see
Section 2.4). Finally, after completing the FFDB, an optimized ML pipeline was avail-
able to predict the walking distances of PwMS based on aggregated sensor data.

3.2. Fractional Factorial Benchmark Results

In the following, the quality of the intermediate and final quality measurements during
the FFDB (see Table 3), are shown.

3.2.1. Definition of the Number of Epochs

To ensure an appropriate training time and decouple to dependent LR, the FFDB starts
by defining nepoch = 1000, as the error-reduction plots of different training algorithms
shows (not presented here), that even for comparatively small LRs this number is sufficient.
Runtime is not an issue by definition.

3.2.2. Learning Rate Optimization

Figure 2 shows the prediction qualities’ dependency of the LRs for different training
algorithms. It is clearly visible that the algorithms behave differently, SGD, Adagrad,
and Adadelta expose high error rates (MSEarr = 100 corresponds to 100% total error (see
Formula (1)) for high LRs, RMSProp, Adam, and Nadam for low LRs, only Adamax is stable
in dependence of the LR. All expose significant noise, despite of multiple experiments
per configuration. Hence, it is crucial to determine appropriate LRs individually for each
algorithm, which is done based on the moving average.

3.2.3. Model Optimization

Figure 3 shows the prediction qualities’ dependency of the model shape, i.e., fModelSpread
and nModelDepth of the DFFNN for the Adadelta algorithm. The heat maps show different
prediction qualities and again a significant noise between the experiments, similar to the
LR dependencies, but a minimum for the model shape (5, 6), which can be considered as
optimal model for this algorithm with optimized LR. The Figure 3 shows the same for
the RMSProp algorithm as the worst-performing algorithm. The evaluation was executed
for every ML optimization algorithm, but only two results are shown here exemplarily.
To summarize, the model shape dependency expose a volatile picture for the prediction
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quality, with many insufficient model configurations and individual optimal model shapes
for each algorithm.

(a) (b)

Figure 2. LR Optimization. MSEarr as prediction quality ((a) normal, (b) moving average and marked
minima) in dependence of LRs for 7 ML training algorithms, optimizing DFFNNs of fixed shape [Abbrevi-
ations: LR = Learning Rate, ML = Machine Learning, DFFNN = Deep Feed Forward Neural Network].

(a) (b)

(c) (d)

Figure 3. Model Shape Optimization. (a) Optimizer = Adadelta; Average, Relative RMSE for Model
Spread and Depth (%); (b) Optimizer = Adadelta; Average, Relative SD for Model Spread and
Depth (%); (c) Optimizer = RMSProp; Average, Relative RMSE for Model Spread and Depth (%); (d)
Optimizer = RMSProp; Average, Relative SD for Model Spread and Depth (%) MSEarr as prediction
quality (c) and its SD (d) in dependence of fModelSpread and nModelDepth for the Adadelta (best case)
and the RMSProp algorithm (worst case); values are scaled for better readability [Abbreviations:
RMSE = Rooted Mean Square Error; SD = Standard Deviation].
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3.2.4. Optimization Algorithm Comparison

Finally, the quality performance of each algorithm with an optimized configuration
can be compared as shown in Figure 4a. On the one hand, it illustrates the Adadelta
algorithm is best candidate, yielding an MSEarr of 0.061 (an average relative error of 6.1%),
which corresponds to a total average error of 8.37 m. On the other hand, despite multiple
experiments per configuration, all algorithms show a significant SD between 0.009 and
0.016, i.e., single predictions of individual models are volatile and thus, difficult to compare.

(a)

(b) (c)

Figure 4. (a) Optimization algorithm comparison. MSEarr as prediction quality and its SD for each
algorithm; (b,c) Prediction distribution; individual results of the best regressor model after completing
the FFDB as total error [Abbreviations: SD = Standard Deviation; FFDB = Fractional Factorial Design
Benchmark; LR = Learning Rate].

3.2.5. Best Prediction Result

Examining the results of the best model (Adadelta algorithm, LR = 0.000814,
fModelSpread = 5, nModelDepth = 6, nepoch = 1000), a histogram and a scatter plot reveals
the aggregated predictions’ distribution for validation data for nexp = 10 experiments as
shown in Figure 4b,c. The distribution indicates that 90% of the predictions expose an
absolute error of <15 m; only 3% should be regarded as outliers (absolute error > 25 m).
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3.2.6. Sanity Check

To increase the transparency and the explainability of the approach, the RSWinput was
calculated for each input feature of the original data, utilizing the best-performing model
(see also Formula (2)). Table 4 shows the top-5 and last-5 feature names in combination
with the average, unscaled reverse weight. Features with positive reverse weights imply a
large impact of the predicted walking distance, negative value imply a low impact. With
respect to the meaning of the feature names, i.e., Cadence, Gait Speed, Stride Length,
and Arm Motion, Step Duration, Swing, and Terminal Double Support, respectively, the
model appears to act meaningfully and can be considered as a supporting tool for medical
treatment.

Table 4. Sanity check. RSWinput as impact indicator for top-5 and last-5 features [Abbreviations:
R = right, L = left, GCT = Gait Cycle Time].

Feature Reverse Weight

Lower Limb - Cadence R (steps/min) 0.148015271
Lower Limb - Gait Speed R (m/s) 0.130966869
Lower Limb - Gait Speed L (m/s) 0.103930242
Lower Limb - Stride Length L (m) 0.096930698

Lower Limb - Cadence L (steps/min) 0.092576412
. . . . . .

Upper Limb - Arm Range of Motion L (degrees) −0.059278792
Lower Limb - Step Duration L (s) −0.067239581
Lower Limb - Swing L (%GCT) −0.067780426

Lower Limb - Terminal Double Support L −0.069253672
Lower Limb - Double Support L (%GCT) −0.083872649

3.3. Reliability Check

In 455 PwMS, the initially measured distance was 138.06± 33.37 m, and the average
predicted distance was 137.85± 32.28 m. This leads to a mean individual difference of
7.40 ± 8.77 m and a respective relative difference of 6.8 ± 16.7%. An excellent overall
reliability was achieved (ICC = 0.942, 0.930–0.951 95% confidence interval). No influence
in relative differences could be detected for gender (p = 0.569), age (p = 0.122), disease
duration (p = 0.086), the use of walking aids (p = 0.278), overall disability (p = 0.610), or
most specific disabilities (visual: p = 0.445; brainstem: p = 0.491; pyramidal: p = 0.930;
cerebellar: p = 0.115; sensory: p = 0.095; bowel & bladder: p = 0.332; cerebral: p = 0.071).
Only in cases of increased impairment in ambulation (EDSS ambulation score ≥ 6) the
relative difference was increased (n = 30; 24.0%; p < 0.050 in all pairwise comparisons).

4. Discussion

The distance achieved during gait endurance tests serves as an important indicator of
walking ability and physical performance [32]. To date, there is no general automatic mea-
surement approach to determine the actual distance walked after completion of the 2MWT,
although numerous spatial and temporal gait parameters can be extracted. Digitization
in this area through the use of IMUs is increasingly being used to determine gait distur-
bances [33–35] and supports more sensitive patient monitoring. Following this approach,
we provide a proof of concept in this study for the application of state-of-the-art ML tech-
nology for comparatively little data to predict an important neurological measurement for
a specific use case. With regard to the research questions in Section 1.2, this concept reflects
the previously specified software qualities and thus, contributes to a general purpose and
lean approach for similar use cases, utilizing standardized quality metrics. The solution
shows that it is possible to achieve good result qualities (here prediction accuracy) even
for small datasets, which are typical for medical use cases. Hence, it is not necessary, and
often not possible, to build on big data solutions, but very specific optimization is required.
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In this case, this issue was solved by a FFDB to fine tune the optimization parameters in
a transparent and recoverable manner. The achieved prediction yielded a relative error
of 6.1% and a fraction of 3% for outliers basing on 400 training and 100 validation data
items (patients), distributed over multiple experiments with an optimized configuration.
With regard to the number and the quality of the data items, this is a viable result, enabling
the approach for practical use. Referring to the high SD across multiple experiments, it is
recommended to set up multiple DFFNN in parallel and calculate the average prediction
for productive usage. In detail, the prediction quality could be improved significantly by
changing the training (model optimization) algorithm and the according LR, as well as
the model structure itself ( fModelSpread, nModelDepth). This means that the default selection
and parameters were not optimal and even for small ML/optimization problems of this
kind a strategic setup was necessary to tackle the large configuration space in an efficient
manner. The chosen FFDB can be regarded as a compromise between global optimiza-
tion, time efficiency, and transparency, as extensive grid searches would have consumed
much more computation time or required another hardware setup, and hyper optimization
frameworks like Keras Tuner or Optuna are extensive to adapt to the use case and their
results are harder to explain to the domain stakeholders. To provide qualities like reliability
and robustness, average standard variation metrics were evaluated for each configuration,
which was tested during multiple experiments with different random seeds, influencing
the training and validation data split and the starting configuration of the models. It turned
out, that for optimized LRs the average, relative SD stayed below 2% for multiple model
instances, which stands for a good reliability and also allows deducing robust behavior for
new data. The algorithm achieved an excellent overall reliability and only provided less
accurate results in cases of PwMS with severe limitations in ambulation. This limitation
may be overcome with further datasets that include a larger portion of more severely
impaired PwMS. The decision against automated hyper-optimization techniques, but for
a FFDB and a final sanity check also contributed to explainability and transparency, as
this explicit white-box approach clarifies the decision path toward the optimized software
prototype. In this way, the optimization strategy is descriptive in a step-wise manner and
allows dedicated subsequent changes to adapt the solution to new data or other questions.
Furthermore, the descriptive strategy enables the experiments’ repetition at arbitrary points
within the FFDB decision path, i.e., it ensures recoverability and points out the factors’
influence on the result. As the prototype was for experimental use for domain experts,
in this case medical staff, the accessibility was provided by a single configuration access
point, describing the ML pipeline steps as well as its configuration, or the search space,
respectively. In this way, the use case specific configuration is separated from the prototype
itself, which allows its reusability, i.e., its application and adaptation to new, similar use
case. Finally, the interoperability was ensured by the selection of platform independent
software technology, i.e., no special hardware setup is required to execute the prototype.
As the ML pipeline structure followed technological standards, the functional modules
were established, enabling modularity. With regard to the ease of use for medical experts,
leanness was focused during the software design and achieved by simple structures and
minimal functional coverage. On the other side, the evaluated data was small in compar-
ison to other studies. If more data become available, the study should be repeated with
the same optimization strategy to make the results even more reliable and to evaluate the
influence of the data size on the results. The data was provided in an aggregated form,
i.e., the raw data could improve the prediction quality even further, but would imply a
much larger data size, and thus, a different data handling and potentially other ML models.
With regard to data complexity, i.e., the large dimensionality, the selection and weighting
of the data feature were not finally investigated, i.e., feature redundancies or optimized
weighting remain not reflected. Furthermore, other ML models or libraries could yield
other or better results (quality, reliability), but were not investigated with respect to the
other desired, but contrary software qualities (e.g., explainability, accessibility, leanness).
The same applies for in-depth parameter optimization for the chosen training algorithms.
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5. Conclusions

From a medical point of view, this study shows how technological advances present
the opportunity to complete preexisting technique and clinical assessments. Thus, further
clinical usage and more objective results support more sensitive progression monitoring
and clinical decision making. The results show that it is possible to create a transparent and
working ML prototype for a given medical use case while simultaneously meeting specific
software qualities. The selected optimization design yielded good and reliable prediction
results, while the other software qualities ensured the transferability to similar problems
and transparency for the domain stakeholders. It was shown that the strategy of previously
selected and tracked software qualities for the specific domain in combination with a FFDB
to gradually approach a result optimum and a minimal set of ML/DL technology leads
to a lean and well-explained software prototype with low technical requirements and
minimal access restrictions for the domain experts. In this way, an optimization design
for potentially more ML software systems for similar application fields was contributed.
Consequently, data-driven monitoring of disability progression reaches a new landmark
with the chance to determine objective insights into personalized patient gait performances
more precisely and faster in the field of neurology [36].
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