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18.1 The Need for Bioinformatics

Although bioinformatics is generally perceived to be a modern science, the term

had been put forward over thirty years ago by Paulien Hogeweg and Ben Hesper

for “the study of informatic processes in biotic systems” (Hogeweg, 1978;

Hogeweg and Hesper, 1978). It is necessarily nebulous—bioinformatics spans

many disciplines and can have many shades of meaning. Indeed it can be argued

that it is the collation and analysis of data from different disciplines that has pro-

vided some of the greatest insights. In the field of genomics and transcriptomics,

bioinformatics is an incredibly diverse field. Evolution, epidemiology, ecology, and

the response of an organism to its environment are all fields that require bioinfor-

matics to accurately process and place into context various sources of data. At the

heart of genomics and transcriptomics is the generation and analysis of vast quanti-

ties of sequence data. DNA sequencing took off in the late 1980s when Applied

Biosystems developed the first automated sequencing machine. The subsequent

development of more efficient ways to sequence resulted in the phenomenal growth

of the number of sequences deposited in GenBank (Figure 18.1). Obviously, with

over 100 million sequences deposited in GenBank, it is not feasible to do any seri-

ous manual work with such a large dataset. Data obtained from modern second-

generation sequencers is on the order of 1000 times greater than capillary-based

sequencers. It is now possible to routinely generate many gigabases of sequence

data. Bioinformatics is tasked with making sense of it, mining it, storing it, dissem-

inating it, and ensuring valid biological conclusions can be drawn from it. Many of

the recent high-throughput functional genomics technologies rely on a bioinformat-

ics component, though bioinformatics is just one part of the process. For example,

identification of proteins by mass spectroscopy, quantitative analysis of expression

data, phylogenetics, and so on all make use of bioinformatics tools, methods, and

databases. Bioinformatics plays a key role at several steps in genomics,
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comparative genomics, and functional genomics: sequence alignment, assembly,

identification of single nucleotide polymorphisms (SNP), gene prediction, quantita-

tive analysis of transcription data, etc. In this chapter, we will discuss the current

state of play of bioinformatics related to genomics and transcriptomics and use rel-

evant examples from the field of infectious diseases.

18.2 Metagenomics

The term “metagenomics” was originally used to describe the sequencing of gen-

omes of uncultured microorganisms in order to explore their abilities to produce

natural products (Handelsman et al., 1998, Rondon et al., 2000) and subsequently

resulted in novel insights into the ecology and evolution of microorganisms on a

scale not imagined possible before (see Cardenas and Tiedje, 2008; Hugenholtz

and Tyson, 2008 for an overview). However, metagenomics now finds use in infec-

tious disease research as well as the random sequencing of genomes from a variety

of organisms from, for example, patient material that could lead to the identifica-

tion of the cause of disease.

In a quite straightforward metagenomics approach to identify pathogens in sputa

from cystic fibrosis patients, standard microbiological culture techniques were

compared to molecular methods using 16S rDNA PCR (Bittar et al., 2008). The

well-known disadvantage of the microbiological methods is that they normally

employ “selective” media that are designed to pick up those bacterial pathogens

that are thought to be present. Emerging pathogens will be missed using traditional

culture techniques. Indeed, Bittar et al. identified 33 bacteria using cultivation

while 53 bacterial species were detected using molecular methods (based on

BLAST comparisons; Altschul et al., 1990), interestingly, 30% of the latter were
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Figure 18.1 The growth of sequences submitted to GenBank. For further info, see http://

www.ncbi.nlm.nih.gov/genbank.
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anaerobes, organisms missed in the routine cultivation methods. Many bacteria

identified using the molecular methods are traditionally not thought to be associ-

ated with cystic fibrosis. Whether these novel species are associated with the phys-

iopathology of disease remains to be studied. Bittar et al. (2008) also noted that the

number of bacteria detected increased with increased numbers of clones sequenced,

a well-known phenomenon in environmental sequencing that relates to sample

depth (Huber et al., 2007; Huse et al., 2010). However, with the increased use of

next-generation sequencing methods in infectious disease research, the lessons

learned from environmental studies relating to diversity and relative abundance of

different microbes can be put to effective use.

An example of the use of second-generation sequencing in a metagenomics

approach of patient material is the study by Nakamura et al. (2009) to identify

viruses in nasal and fecal material. In this study, RNA was isolated from patient

material obtained during seasonal influenza infections and norovirus outbreaks.

This RNA was reverse transcribed into cDNA, which was subsequently subjected

to large-scale parallel pyrosequencing resulting in 25,000 reads on average per

sample. Although the influenza samples were mainly (.90%) human in origin, it

was nonetheless possible to identify the influenza subtypes in each sample

(Nakamura et al., 2009). As the fecal samples were cleared of human and bacterial

cells, yields were much better and the complete norovirus GII.4 subtype genome

was sequenced with an average cover depth of up to 2583. In addition to being

able to identify the influenza and noroviruses, two recently identified human

viruses were also identified: WU polyomavirus and human coronavirus HKU1

(Nakamura et al., 2009). Major bacterial species normally found in the respiratory

tract were also identified. Although Nakamura et al. suggest that the high-through-

put sequencing is more sensitive than standard PCR-based analysis and might result

in the detection of additional possible pathogens, they also warn that the increased

sensitivity might necessitate follow-up work to decide which of the detected patho-

gens is the actual cause of the disease.

Important results are expected from the Human Microbiome Project (http://

www.hmpdacc.org/), which will obtain metagenomic information from various

human microenvironments such as the gastrointestinal, nasooral, and urogenital

cavities as well as the skin. Understanding the human microbiome is thought to

answer questions such as whether changes in the human microbiome are related to

human health. However, large-scale metagenomics projects that include eukaryotic

genomes have thus far been quite costly and laborious due to the generally large

genomes of eukaryotes. The lowering of sequencing costs may alleviate part of the

problem, but sequence data are still accumulating at a faster rate than developments

in computational analysis (Hugenholtz and Tyson, 2008).

18.3 Comparative Genomics

Organisms that have attracted the attention of genome centers are those that cause

disease followed by those from model organisms such as Saccharomyces cerevisiae

(Goffeau et al., 1996) and Caenorhabditis elegans (the C. elegans Sequencing
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Consortium, 1998), for example. Indeed, the first bacterial genomes sequenced

were those from pathogens (Fleischmann et al., 1995; Fraser et al., 1995; Tomb

et al., 1997), and these were preceded by many bacteriophage genomes such as

bacteriophage MS2 (Fiers et al., 1976) and ϕX174 (Sanger et al., 1977) and viral

genomes (Fiers et al., 1978). Currently, pathogen genomes represent at least one

third of all sequenced genomes.

Obviously, for comparative genomics two genomes are required, and indeed,

when the second bacterial pathogen was sequenced (Mycoplasma genitalium by

Fraser et al., 1995), it was immediately compared with the first one (Haemophilus

influenzae by Fleischmann et al., 1995). Interestingly, the H. influenzae genome

was completed using a “bioinformatics” approach. Unlike previous sequencing pro-

jects, the used shotgun approach relied on a computational justification that suffi-

cient random sequencing of small fragments would result in a complete coverage

of the whole genome. Comparing the M. genitalium genome with the Haemophilus

genome suggested that the percentage of the total genome dedicated to genes is

similar albeit that M. genitalium has far fewer genes (Fraser et al., 1995). Although

the genome of M. genitalium is about three times smaller than that of H. influenzae,

its smaller genome has not resulted in an increase in gene density or decrease in

gene size. Detection of several repeats of components of the Mycoplasma adhesin,

which elicits a strong immune response in humans, suggests that recombination

might underlie its ability to evade the human immune response. That this initial

genome study was only the tip of the comparative genomics iceberg was already

clear from Fleischmann et al. (1995) last sentence: “Knowledge of the complete

genomes of pathogenic organisms could lead to new vaccines.” A whole-genome

effort at identifying vaccine candidates appeared some 5 years later when Pizza

et al. (2000) employed bioinformatics to extract putative surface-exposed antigens

by genome analysis. Although effective vaccines against Neisseria meningitidis,

the causative agent of meningococcal meningitis and sepsis, did exist, these vac-

cines did not cover all pathogenic serogroups. Serogroup B had evaded the devel-

opment of a good vaccine as its capsular polysaccharide (against which the

vaccines of the other serogroups were developed) is identical to a human carbohy-

drate. In order to identify putative candidates for vaccine development, Pizza et al.

decided to sequence the whole genome of a serogroup B strain. All potential open

reading frames (ORFs) were analyzed for putative cellular locations using

BLASTX. Those ORFs likely to be cytosolic were excluded from further analysis.

The remaining ORFs were analyzed to determine whether they encoded proteins

that contained transmembrane domains, leader peptides, and outer membrane

anchoring motives using a variety of databases such as Pfam (Finn et al., 2010) and

ProDom (Servant et al., 2002). This resulted in 570 ORFs encoding putative

exposed antigens. These 570 putative genes were cloned in Escherichia coli and

Pizza et al. successfully expressed 350 ORFs. These 350 recombinant proteins

were used to generate antisera that were tested in enzyme-linked immunosorbent

assay (ELISA) and fluorescence-activated cell sorter (FACS) analyses to test

whether they detected proteins on the outer surface of serogroup B meningococcus

strains. In addition, the sera were tested for bactericidal activity. Of the 350
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proteins, 85 reacted positively in at least one assay but only 7 were positive in all

three assays. These 7 were subsequently tested on a large variety of strains to ana-

lyze their efficacy. A total of 5 seemed able to provide protection against 31 N.

meningitidis strains and in addition, those 5 proteins are 95�99% similar to the

homologous N. gonorrhoeae proteins, suggesting they might provide successful

protection against that pathogen as well (Pizza et al., 2000). Arguably the most

striking aspect of this study is that in 18 months the authors identified more vaccine

candidates than in the preceding 40 years using a novel genomics/bioinformatics

approach (Seib et al., 2009). This study resulted in a vaccine that is currently in

Phase III clinical trials (Giuliani et al., 2006).

Protozoan infections are a major burden on developing nations; they take 8 of

the 13 diseases targeted by the World Health Organization’s Special Program for

Research and Training in Tropical Diseases (http://www.who.int/tdr). Over the last

5 years or so, more than 10 parasitic genomes have been sequenced in the hope

that their sequences would reveal weak spots to target these pathogens. The trypa-

nosomatids cause serious disease in Africa and South America. Trypanosoma bru-

cei causes sleeping sickness in humans and wasting disease in cattle. Trypanosoma

cruzi is the causative agent of Chagas disease and Leishmania major leads to skin

lesions. The completion of their genomes (Berriman et al., 2005, El-Sayed et al.,

2005a, Ivens et al., 2005) and the comparative analysis of all three genomes (El-

Sayed et al., 2005b) may be able to focus efforts toward obtaining vaccines, as cur-

rent drugs have serious toxicity issues. Although their genomes encode a different

number of protein-encoding genes (around 8100 in T. brucei; 8300 in L. major;

12,000 in T. cruzi), comparative analysis resulted in the identification of about

6200 genes that entail the trypanosomatid core proteome. All protein coding genes

were compared in a three-way manner using BLASTP (El-Sayed et al., 2005b) and

the mutual best hits were grouped as clusters of orthologous genes or COGs

(Figure 18.2).

Trypanosomatid specific proteins from these 6200 might be used in a broad-

scale vaccine. The remainder of the protein-encoding genes from each parasite

(26% of the genes in T. brucei; 12% in L. major; 32% in T. cruzi) consists of

species-specific genes. Interestingly, a large proportion of these genes encode surface

antigens and this might relate to the different mechanisms these parasites employ

to evade the host immune system. In addition, it was noted that many genes

Figure 18.2 Kinetoplastid comparative genomics. A

three-way comparison of all protein coding genes from

Trypanosoma cruzi, Trypanosoma brucei, and Leishmania

major resulted in the discovery of 6200 core proteins that

all three kinetoplastids share and various dually shared

and unique proteins.

Source: Adapted from El-Sayed et al. (2005b).
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encoding surface antigens are found at or near telomeres and that many retroele-

ments seem to be present in these regions as well. This might be related to the

enormous antigenic variation observed in both Trypanosoma species. The presence

of novel genes in these areas might suggest that their products play an unknown

role in antigenic variation as well which warrants further studies into these unchar-

acterized genes (El-Sayed et al., 2005b).

Detailed knowledge of well-studied pathogens might be successfully used to

understand the biology of closely related emerging pathogens. This was the driving

force for the sequencing of six Candida species (Butler et al., 2009). Candida spe-

cies are the most common opportunistic fungal infections in the world and C. albi-

cans is the most common of all Candida species causing infection. However,

C. albicans incidence is declining while other species are emerging. Comparison of

eight Candida species indicated that although genome size was variable, gene con-

tent was nearly identical across all species. As the analysis included pathogenic and

nonpathogenic species, Butler et al. (2009) specifically studied differences between

these two groups. Of the over 9000 gene families analyzed, 21 were significantly

enriched in pathogenic species. Many gene families known to be involved in patho-

genesis were present in these 21 families (e.g., lipases, oligopeptide transporters,

and adhesins). More interestingly, several poorly characterized gene families were

also identified, suggesting these might play an unexpected role in pathogenesis as

well. This comparative study revealed a wealth of new avenues to explore, which,

combined with the large body of work performed on C. albicans, will aid under-

standing the newly emerging pathogenic Candida species (Butler et al., 2009).

18.4 Pan-Genomics

Although comparative studies using multiple species can reveal hitherto unknown

features as evidenced from the mentioned trypanosomatid and Candida studies,

they can also reveal something unexpected. Because the definition of a bacterial

species has been debated for a long time, Tettelin et al. (2005) set out to address

this question by sequencing multiple strains from Streptococcus agalactiae, the

most common cause of illness or death among newborns. Unexpectedly, despite

the presence of a “core-genome” shared between all 8 genomes, mathematical

modeling suggested that each additional sequenced genome would add 33 new

genes to the “dispensable genome.” An additional analysis using S. pyogenes also

suggested that sequencing additional genomes would continue to add new genes to

the pool resulting in a pan-genome that can be defined as the global gene repertoire

of a species (Medini et al., 2005). This cannot be extrapolated ad infinitum, as a

similar analysis of Bacillus anthracis indicated that after the fourth genome, no

additional genes were identified (Tettelin et al., 2005) in agreement with its known

limited genetic diversity (Keim and Smith, 2002). Subsequent analyses have con-

firmed the presence of pan-genomes for many bacterial species (Hiller et al., 2007;

Lefébure and Stanhope, 2007; Rasko et al., 2008; Schoen et al., 2008; Lefébure

and Stanhope, 2009) and the ultimate gene repertoire of a bacterial species is much
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larger than generally perceived. Whether this would be the case for eukaryotes

remains to be shown.

Despite the apparently ever-expanding possibilities of the pan-genome, it has

also resulted in a universal vaccine candidate for group B Streptococcus (GBS).

Because various GBS serotypes exist, current vaccines only offer protection against

a limited set of serotypes. Eight genomes from six serotypes were compared result-

ing in the identification of a core-genome of 1811 genes and a dispensable genome

of 765 genes, which were not present in each strain (Maione et al., 2005). Both gen-

omes were analyzed for the presence of putative surface-associated and secreted pro-

teins. Of the 598 identified genes, one third were part of the dispensable genome

(193 genes). The authors subsequently produced recombinant tagged proteins in

E. coli that were used to immunize mice. Ultimately, a combination of four antigens

turned out to be highly effective against all major GBS serotypes. Three of these

antigens were part of the dispensable genome. In addition, this bioinformatics

approach highlights the importance of not dismissing unidentified ORFs on genomes

(generally up to 50% of sequenced genomes) as all four antigens had no assigned

function. Because of their identification using this method, it became obvious they

were part of a pilus-like structure that had never seen before in Group B

Streptococcus (Lauer et al., 2005). The presence of antigens that provide protection

on these pilus-like structures suggest that these might play a role in pathogenicity.

18.5 Transcriptomics

Genomic information is useful as a scaffold. However, in a given environment

pathogens and hosts only express a subset of their genes at any one time. The pres-

ence of pan-genomes only complicates matters even more. To investigate the

response of an organism to an environmental or other stress it is necessary to exam-

ine the expression pattern of proteins. At present, this is not possible to accomplish

directly on a large scale, but a good approximation can be made by sequencing and

counting mRNA molecules. At present the process involves converting the RNA to

cDNA, which can introduce biases but nonetheless sequencing has a great many

advantages over traditional microarrays (Ledford, 2008). These include high speci-

ficity with little or no background noise and one also gains nucleotide level resolu-

tion of expression. Despite such drawbacks, microarrays are still extremely

powerful tools to understand levels of gene expression, and this is obvious from the

study by Toledo-Arana et al., who discovered novel regulatory mechanisms in

Listeria (Toledo-Arana et al., 2009). L. monocytogenes is normally harmless but

can lead to serious food-borne infections. Environmental change, from the soil

through the stomach to the intestinal lumen and ultimately into the bloodstream, is

thought to be responsible for the up- and downregulation of a plethora of genes.

Comparative genomics of the nonpathogenic L. innocua has resulted in the identifi-

cation of a virulence locus (Glaser et al., 2001). Using microarrays, transcripts of

one strain grown at 37�C in rich medium were compared to three different

conditions: stationary phase, hypoxia, and low temperature (30�C). In addition,
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knockout mutants in three known regulators of Listeria virulence gene expression

(PrfA, SigB, and Hfq) were compared to the control strain as well. RNA was also

extracted from the intestine of inoculated mice and from blood from healthy human

donors that were both infected with three different strains (control and PrfA and

sigB knockouts). This analysis resulted in the discovery of massive transcriptional

reshaping under the control of SigB when Listeria enters the intestines. However,

in the bloodstream, gene expression is under control of PrfA. Various noncoding

RNAs were uncovered, which show the same expression patters as virulence genes

suggesting a potential role in virulence (Toledo-Arana et al., 2009).

Because microarray data are based on a comparative difference in hybridization,

high-throughput next-generation sequencing is seen as more quantitative as it based

on number of hits for each sequenced transcript (van Vliet, 2010). However, when

making cDNA for next-generation sequencing transcriptomics in prokaryotes, there

are several difficulties not found in eukaryotes, such as high levels of rRNA and

tRNA molecules as well as a lack of poly-A tails, making extraction difficult.

Nontheless, it is possible to overcome these by either reducing the amount of

rRNA and tRNA using commercially available kits or by bioinformatic removal of

such sequences postsequencing (van Vliet, 2010). To date, some 20 RNA-seq style

experiments have been performed on prokaryotes. To give an example of the sort

of novel insights that can be gleaned using such technology, Passalacqua et al.

(2009) sequenced the Bacillus anthracis transcriptome using SOLiD and Illumina

sequencing and clearly showed the polycistronic nature of many transcripts on a

whole genome scale. Although known for individual operons, this had never been

shown on a genome-wide scale. They were also able to test the current genome

annotations and discovered that 36 loci that were removed as nongenes showed sig-

nificant transcriptional activity. In addition, 21 nonannotated regions had clear

levels of transcription and should therefore be considered as genes (Passalacqua

et al., 2009). As internal methionines could have incidentally been identified as

start codons, they also checked whether upstream regions were included in the tran-

scribed region. In 11 cases this proved to be the case suggesting the original start

codons were incorrectly annotated. Reassuringly, when comparing their data with

microarray data, a strong correlation was observed. Interestingly, because of the

very high resolution of sequence-based transcriptomics studies, it is possible to

identify novel regulatory elements. For example, when comparing expression levels

under O2- and CO2-rich conditions, the first gene of an eight-gene operon did not

show a marked difference in expression level while all the others were significantly

upregulated under CO2 (Passalacqua et al., 2009). Indeed, a bioinformatics

approach had suggested the presence of a T-box riboswitch between genes 1 and 2

of this operon (Griffiths-Jones et al., 2005).

A similar approach to study how Burkholderia cenocepacia, an opportunistic cystic

fibrosis pathogen, responds to environmental changes revealed several new potential

virulence factors (Yoder-Himes et al., 2009). As B. cenocepacia is routinely isolated

from soil, two strains (one isolated from a cystic fibrosis patient and one from soil)

were analyzed in their response to changes from growth at synthetic human sputum

medium and soil medium. Although their overall nucleotide identity is 99.8%, 179
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and 120 homologous genes showed a significant difference in expression between the

two strains when grown in synthetic sputum medium and soil medium, respectively.

This suggests that despite the high level of relatedness, differential gene expression

plays a large role in adaptation to their ecological niche (Yoder-Himes et al., 2009).

Interestingly, similar to Passalacqua et al. (2009), several expressed noncoding RNAs

were uncovered with different expression levels depending on environmental condi-

tion. The significance of this needs to be investigated but highlights the ability of sec-

ond-generation sequencing to unearth novel findings.

18.6 Proteomics

Despite the fact that a species’ genome could well be larger than the actual genome

content of one member of that species due to the pan-genome concept, an organ-

ism’s proteome is by far much more complex. As discussed earlier, transcriptomics

will reveal which subset of the genome is expressed under a given condition.

However, posttranslational modifications of proteins make the actual proteome far

more complex than the transcriptome. This is also the strength of proteomics, as

can be seen in a study of the obligate intracellular parasite Chlamydia pneumonia.

C. pneumonia is the third-most-common cause of respiratory infections in the

world, which, in part, is made possible due to the unique bi-phasic life cycle of this

bacterial pathogen. Chlamydia spread via a metabolically inert infectious particle

called the elementary body. These elementary bodies enter the host cell where they

differentiate into reticulate bodies. As the elementary body is the infectious phase,

proteins presented on the outer membrane would be ideal candidates for vaccine

development, especially as effective vaccines are lacking and treatment is via anti-

biotic therapy. A large-scale genomics-proteomics study by Montigiani et al.

(2002) systematically assessed putative exposed antigens for possible use in vac-

cine development. Of the 1073 C. pneumonia genes, 636 have assigned functions,

72 of the latter are predicted to be peripherally located and were therefore selected

for follow-up studies. In addition, the remaining 437 ORFs were subjected to a

series of search algorithms aimed at identifying putative surface-exposed antigens.

In total, 141 ORFs were identified as being possibly located on the cell surface.

These 141 were subsequently used to produce recombinant proteins in E. coli.

Because both His-tagged as well as GST-tagged versions were made, a total of 173

recombinant proteins were produced and used for immunizations of mice. All anti-

sera were used in FACS analysis to test if they could bind to the C. pneumonia cell

surface. This resulted in the identification of 53 putative surface-exposed antigens.

Interestingly, apart from well-known antigens, 14 antigens from unidentified ORFs

were part of this group of potential vaccine candidates. All 53 candidates were

tested on Western blots whether they generated a clean band of the expected size

or whether they cross-reacted with other proteins; 33 of the 53 were specific.

Finally, Montigiani et al. conducted a proteomic analysis of total protein from the

elementary body phase identifying spots using mass spectrometry. Protein sequenc-

ing using MALDI-TOF identified 28 putative surface-exposed antigens on the
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C. pneumonia 2D gels (Montigiani et al., 2002). A follow-up study by Thorpe et al.

(2007) clearly showed that one of the identified candidates, LcrE, induced, amongst

others, CD41 and CD81 T cell activation and completely cleared infection in a

murine model. Interestingly, LcrE is homologous to a protein that is thought be

part of the Type III secretion system of Yersinia. The exposed nature of LcrE on

the C. pneumonia cell surface suggests that a Type III secretion system plays a role

in Chlamydia infection (Montigiani et al., 2002).

The importance of exposed outer membrane proteins as potential vaccine candi-

dates has prompted Berlanda Scorza et al. to assess the complement of outer mem-

brane proteins from an extraintestinal pathogenic E. coli strain (Berlanda Scorza et al.,

2008). Extraintestinal pathogenic E. coli is the leading cause of severe sepsis and cur-

rent increases in drug resistance warrant the search for novel vaccine targets. In addi-

tion, current whole-cell vaccines suffer from undesired cross-reactions to commensal

E. coli as well. The novel approach by Berland Scorza et al. is based on the observa-

tion that some Gram-negative bacteria release outer membrane vesicles (OMV) in the

culture media, albeit in minute quantities. A TolR mutant appeared to release much

more OMVs than wild-type cells and subsequent large-scale mass spectroscopic anal-

ysis of its protein content resulted in the identification of 100 proteins. The majority

of these were outer membrane and periplasmic proteins. Intriguingly, three subunits

from the cytolethal distending toxin (CDT) were included. This toxin is unusual in

that one of its subunits is targeted to the eukaryotic host cell, where it breaks double-

stranded DNA resulting in cell death (De Rycke and Oswald, 2001). To check whether

the presence of CDT in the OMV was due to the TolR knockout, wild-type extraintest-

inal pathogenic E. coli was tested using Western blotting. Indeed, CDT was detected

in wild-type OMV as well (Berlanda Scorza et al., 2008). This suggests that toxin

delivery via vesicles might well be the key event in pathogenesis. Interestingly, 18 of

the 100 identified proteins were not predicted to be targeted to the periplasm or outer

membrane by PSORTb (Gardy et al., 2005). We see here excellent opportunities to

train protein targeting algorithms with new wetbench data as these algorithms gener-

ally have been trained on a limited set of model organisms that do not reflect the

diversity encountered in real life.

18.7 Structural Genomics/Proteomics

Despite the enormous progress in genomics of infectious diseases, the discovery of

new drugs has not kept equal pace. For example, no candidate drugs have been

identified after 70 high-throughput screens using validated bacterial drug targets

(Payne et al., 2007). Although broad-spectrum drugs might be more desirable, there

has been a recent trend in targeting specific proteins from specific pathogens using

structural biology. Several structural genomics initiatives have been set up to target

specific groups of pathogens. For example, the Seattle Structural Genomics Center

for Infectious Diseases (http://ssgcid.org) and the Center for Structural Genomics

of Infectious Diseases (http://www.csgid.org) work on category A to C agents listed

by the National Institute for Allergy and Infectious Diseases (NIAID). Other
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centers focus on specific organisms such as Mycobacterium tuberculosis. Examples

are the Mycobacterium Tuberculosis Structural Proteomics Project (http://xmtb.

org) and the Mycobacterium Tuberculosis Structural Proteomics Consortium

(http://www.doe-mbi.ucla.edu/TB). The field of structural genomics aims to solve

as many protein structures as possible from human pathogens with the aim to come

up with new drug targets or vaccines (Van Voorhis et al., 2009). Obviously, correct

selection of candidates for structural genomics projects is paramount and various

criteria have been put forward (Anderson, 2009; Van Voorhis et al., 2009). If a pro-

tein is already a validated drug target obviously aids in selection. The proteins need

to be essential for the pathogen and ideally, absent in humans. Proteins involved in

the uptake of essential nutrients are another target. Classically, drug design has

been focusing on substrate binding sites. More recently, small molecules interfering

with subunit binding have started to attract attention. As eukaryotic and prokaryotic

inorganic pyrophosphatases differ in composition (the former are homodimers,

while the latter are homohexamers), efforts are aimed at compounds that interfere

with the oligomeric state of the enzyme. In contrast, the highly conserved active

site of inorganic pyrophosphatase would not have been a good target (Van Voorhis

et al., 2009). The 2003 SARS outbreak that caught the infectious diseases commu-

nity (if not the whole world) by surprise is one example where structural genomics

has made enormous progress. Despite knowing that coronaviruses caused serious

diseases in animals, the fact that they only caused mild disease in humans meant

that there was very little knowledge about coronavirus biology. The subsequent

effort to understand viral assembly and replication/transcription, for example, has

resulted in the elucidation of 12 SARS-CoV solved protein structures. Interestingly,

the novel fold-discovery rate was nearly 50%, while it would normally be more

close to 6% (Bartlam et al., 2007). In addition, one key protein, the SARS-CoV

main protease, has since been at the center of structure-based drug discovery.

Because of the nature of the discipline, structural genomics is dependent on various

other disciplines such as biochemistry, microbiology, structural biology, computa-

tional biology, and bioinformatics and can only foster in a truly interdisciplinary

environment (Anderson, 2009).

18.8 A “How-To” of Second-Generation Sequencing

It is now possible to sequence the entire genome of a bacterial pathogen, assemble

the raw sequence reads, perform automated annotation, and visualize the results

within 3 weeks. At the same time (indeed even on the same sequencer) it is also

possible to selectively sequence the transcriptome (RNA-seq) regions of DNA

bound to protein (ChIP-Seq) or for relevant species methylated DNA to study epi-

genetic effects as well as small RNA molecules. It is also possible to perform the

very same sequencing on the host organism at the same time.

Bioinformatic algorithms and tools are a crucial tool in analyzing such unprece-

dented volumes of data. These data volumes have emerged as a result of second-

generation sequencers such as the Roche/454, Illumina, and ABI/SoLID systems.
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Although useful information can be extracted by single researchers by targeted

analysis of the sequencer output, to gain the most information out of such data, it is

becoming increasingly common for multiple researchers or research groups with

widely differing areas of expertise to collaborate. This collaboration is absolutely

crucial if relevant insights are to be gained from large-scale datasets. As a result a

vast array of data is generated, which is required to be annotated and curated as

well as analyzed for information relevant to any particular experiment. In addition

this information needs to be stored, shared, and distributed in a manner that enables

reanalysis if and when new hypotheses are generated.

Platforms as produced by the GMOD consortium (http://gmod.org), such as

Gbrowse, and underlying databases are excellent web-based tools for visualizing

and comparing datasets. However, they currently offer limited scope for collabora-

tive annotation or curation of datasets where relevant expertise can be brought to

bear from a variety of different research groups. This problem is magnified with the

advent of second-generation sequencers since much smaller groups of researchers

tend to be involved, meaning that the expertise that large collaborations can muster

(such as the Influenza Research Database [FluDB], http://www.fludb.org/) is much

smaller. Thus there is a need for integrated annotation and visualization pipelines to

enable individual researchers to perform comparative genomics and transcriptomics.

The Broad Institute offers a number of useful visualization tools to the individ-

ual researcher such as ARGO (http://www.broadinstitute.org/annotation/argo/) and

the Integrated Genome Viewer (IGV) (http://www.broadinstitute.org/igv/). ARGO

offers the ability to manually annotate and visualize a genome as well as provide a

good graphical overview for comparative genomics and transcriptomics.

Currently, there is no one standard for bioinformatics pipeline development for

next-generation sequencing. Several efforts are underway or can be adapted from

Sanger sequencing pipelines. These include the prokaryote annotation pipeline

XBase and the ISGA server (Hemmerich et al., 2010). These enable de novo

sequenced prokaryote genomes to be annotated automatically and corrected manu-

ally at a later date. Alternative Sanger adaptations such as Maker can also be used

once an assembly has been generated.

18.9 Alignment or Assembly of Second-generation
Sequences

A large array of programs is now available to either align reads to a reference

genome or to assemble them de novo (Miller et al., 2010; Paszkiewicz and

Studholme, 2010). They will not be listed in detail here as there are many consid-

erations, including sequencing platform used, the read length in use, the expected

genome size, length of longest repetitive elements, GC content, and whether

paired-end reads are in use.

The proprietary Newbler software from Roche is the most popular method

of de novo assembly of 454 reads (typically 400�500bp). Popular assemblers

for short reads (i.e., mostly from Illumina or SoLID platforms) are Velvet
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(http://www.ebi.ac.uk/Bzerbino/velvet) for the assembly of genomic DNA or

Oases from the same group dealing with assembly of reads from transcriptomic

cDNA (http://www.ebi.ac.uk/Bzerbino/oases) (Zerbino and Birney, 2008). Other

assemblers such as AbYSS (Simpson et al., 2009), ALLPATHS (Butler et al.,

2008) or SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html) are also

popular. AbYSS enables assembly to be parallelized, thus speeding up assembly.

ALLPATHS has been shown to offer superior performance when multiple paired-

end libraries are used. Independent of read length, it is crucial that paired-end

libraries are used when constructing de novo assemblies of any genome. Note

that the use of short-read sequences only can lead to significant gaps being left in

the final assembly due to repetitive elements. However, for many analyses (espe-

cially for prokaryotic organisms) these gaps are generally not considered to be

significant. In cases where closure of these gaps is more desirable than the addi-

tion of 454, Sanger or long-range PCR data can often help.

Where significant quantities of long- and short-read data are available, then a

joint assembly can be attempted. A recommended protocol is to assemble the

short and long reads separately using their respective packages and to then

merge the two assemblers using programs such as Minimus (Sommer et al.,

2007). Another option is to use a template sequence from a related organism to

help guide the assembly (note—this is distinct from remapping as described).

The amosCMP package is useful for this purpose (Pop et al., 2004). Finally,

whatever assembly method is used, it is important to remember that a longer

assembly is not necessarily a better one. Examining the reads making up a con-

tig (e.g., using the AMOS package (http://amos.sourceforge.net) or the Tablet

viewer (http://bioinf.scri.ac.uk/tablet) and alignment to a core-conserved group of

genes should be standard practice to ensure that blatant errors are corrected.

Remapping of short reads to a reference genome is also a valid method of com-

parison. Although software such as BLAT (Kent, 2002) can be used with longer

454 reads, it is not an ideal tool for shorter read technologies where data

volumes are much greater. Where such a genome is available, software such as

MAQ, its successor, BWA, Bowtie, SOAP, and others offer a wealth of tools to

identify indels, SNPs, and other variants which may be of interest. Crucially in

these cases it is important to have sufficient depth of coverage to ensure SNP

calls are valid. Paired-end data is also valuable to have to highlight the presence

of indels. After remapping it is also common practice to assemble unmapped

reads using the de novo assembly software to reveal any novel sequence var-

iants, which may be absent in the reference. In the case where pathogens and

hosts are sequenced together, if the sequence of at least one is known, then it is

relatively straightforward to separate the two using bioinformatic techniques. To

deal with transcriptomic data where a reference sequence is available, softwares,

such as ERANGE (http://woldlab.caltech.edu/rnaseq/), Tophat (Trapnell et al.,

2009), and Cufflinks (http://cufflinks.cbcb.umd.edu/), are extremely useful. The

Cufflinks module in particular offers the ability to predict the most likely exon

isoform expression pattern using a combination of Bayesian statistics and graph-

based algorithms.
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18.10 Concluding Remarks

We are aware that our treatment of the use of “omics” and bioinformatics in infectious

disease research is not exhaustive. As mentioned in the introduction, what constitutes

bioinformatics is not entirely clear and arguably varies depending on who tries to

define it. However, we have attempted to show the considerable progress in infectious

diseases research that has been made in recent years using various “omics” case stud-

ies. In addition, the last section is an attempt to provide a brief overview of the pro-

blems and (bioinformatics) solutions that current-day scientists face who embark on

second-generation sequencing strategies. This is a fast-moving field, but the provided

references and websites should be a good first approach for those who wish to make

further strides toward eradicating infectious diseases from our planet.
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