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ABSTRACT

Motivation: High-throughput sequencing technologies have recently
made deep interrogation of expressed transcript sequences
practical, both economically and temporally. Identification of
intron/exon boundaries is an essential part of genome annotation,
yet remains a challenge. Here, we present supersplat, a method for
unbiased splice-junction discovery through empirical RNA-seq data.
Results: Using a genomic reference and RNA-seq high-throughput
sequencing datasets, supersplat empirically identifies potential
splice junctions at a rate of ∼11.4 million reads per hour. We further
benchmark the performance of the algorithm by mapping Illumina
RNA-seq reads to identify introns in the genome of the reference
dicot plant Arabidopsis thaliana and we demonstrate the utility of
supersplat for de novo empirical annotation of splice junctions using
the reference monocot plant Brachypodium distachyon.
Availability: Implemented in C++, supersplat source code and
binaries are freely available on the web at http://mocklerlab-
tools.cgrb.oregonstate.edu/
Contact: tmockler@cgrb.oregonstate.edu
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1 INTRODUCTION
Recent advancements in high-throughput sequencing (HTS)
technologies (reviewed in Fox et al., 2009; Shendure and Ji, 2008)
have made deep interrogation of expressed transcript sequences
both economically and temporally practical, resulting in massive
quantities of sequence information using the RNA-seq approach
(Wang et al., 2009). Extracting comprehensible genic models from
this sea of data depends upon the identification of intron/exon
boundaries.

One current method used to identify intron/exon boundaries,
Q-PALMA (De Bona et al., 2008), utilizes a machine learning
algorithm to identify splice junctions, training a large margin
classifier on known splice junctions from the genome of interest.
This method depends upon the availability of previously known
splice junctions on which to train the algorithm, and, when finding
novel potential splice junctions, is biased toward those which are
similar to its training data. In scoring novel potential splice junctions,
the algorithm is biased toward canonical terminal dinucleotides,
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scoring those which conform to these biases higher than ones that
do not. While, in general, these biases may prove to be correct,
many potential splice junctions which do not conform to these rules
threaten to remain unidentified.

A second method, TopHat (Trapnell et al., 2009), works by first
creating exonic coverage islands from short-reads and then, based
on canonical intron terminal dinucleotides (ITDN), which exist in
these islands, identifies possible splices between neighboring exons.
Like QPALMA, TopHat is strongly built around the idea of canonical
ITDN, resulting in similar issues to QPALMA. Further, since TopHat
bases its predictions on coverage islands, a sufficient number of short
RNA-seq reads must be used as input such that reliable exon islands
may be identified.

Here, we present our algorithm implemented in C++, supersplat,
which identifies all locations in a genomic reference sequence that
indicate potential introns supported by empirical transcript evidence
derived from RNA-seq data. Our approach does not include bias
for canonical ITDN, but rather finds every potential splice junction
supported by empirical evidence, doing so in a straightforward,
transparent manner and guided only by user-provided values for
minimum intron size and maximum intron size, and by the minimum
number of matching short-read nucleotides allowed on each flanking
exon. Further, any number of short reads may be used as input,
since supersplat does not need or attempt to generate exon coverage
islands.

2 ALGORITHM

2.1 Definition
Supersplat begins by loading the input reads, and their reverse complements,
into a hash table as key-value pairs, storing the nucleotide sequence of each
read as keys and the number of occurrences of each read as corresponding
values. This limits the amount of system memory required to store the input
reads to a single copy of each unique sequence. Next, the input reference
sequences are read and processed.

For each reference sequence and starting at the reference sequence’s first
base, supersplat builds an index that holds the location of every encountered
k-mer, where k ranges from the minimum read chunk size, c, to an upper
length, i, both of which are specified by the user. This location index is stored
in a hash table as key-value pairs, where the key is the encountered k-mer
and the value is a sorted list of the reference-specific, one-indexed locations
where the k-mer was found, illustrated in Figure 1.

Once a reference sequence has been indexed supersplat iterates through
all unique reads identifying those which can, while satisfying user-specified
conditions, be partitioned and matched exactly against the reference, thereby
identifying potential splice junctions. Each m-base long read is partitioned
in all possible two-chunk configurations, with chunk one starting at the
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Fig. 1. Supersplat indexes a reference by starting at the first base in the
reference sequence and stepping through the sequence, one base at a time.
For each such stepping, b, supersplat stores each k-mer which begins at
position b, where k ranges between the minimum read chunk size, c, and the
MICS, i, both of which are specified by the user. In this figure’s example, c
is 6 and i is 11. Supersplat starts building the index by storing the first six
bases of the reference, starting at the beginning of the reference, location
1, as a 6mer in the index, and associates that 6mer with a list of locations,
which presently contains only location 1. Supersplat then stores the first
seven bases of the reference as a 7mer in the index, and associates that 7mer
with a list of locations, containing location 1. This continues until supersplat
stores the first 11 bases of the reference as an 11mer, and associates that
11mer with a list of locations, containing location 1. Now that supersplat has
reached k = i = 11, supersplat steps to the next base of the reference sequence,
location 2. Supersplat now stores the first six bases of the reference, starting
at reference location 2, as a 6mer in the index, and associates that 6mer with
a list of locations, containing location 2. This process repeats until supersplat
has indexed the entire reference sequence in this way.

minimum chunk length, c, growing iteratively by one base until chunk one is
of length m − c, and chunk two starting at length m − c, shrinking iteratively
by one base until chunk two is of length c.

For each such partitioning supersplat retrieves from the location index
location-list one (LL1), corresponding to the exact k-mer represented by
chunk one, and location-list two (LL2), corresponding to the exact k-mer
represented by chunk two. If one of the chunks is longer than the largest k-mer
indexed by supersplat, supersplat retrieves the location-list corresponding to
the first i bases of that chunk.

Once LL1 and LL2 have been retrieved, for each element of LL1, LL10:k ,
supersplat iterates over all elements of LL2, LL20:l , comparing the locations
of each element pair. If it is found that the minimum intron size, n, and the
maximum intron size, x, both of which are user-specified, are satisfied by
any such pair, supersplat ensures an exact match of chunks one and two to
the reference sequence if necessary and, if a match is verified, marks the
bounded genomic sequence as a possible intron.

This process repeats for each possible partitioning of each read and over
each reference sequence. All possible splice junctions are output to a file by
default, with an option to output only canonical ITDN matches if desired.

2.2 Complexity analysis
Let G be the reference sequence length, ELL1 be the number of elements in
location-list one, ELL2 be the number of elements in location-list two, Nreads

be the number of input reads, and suppose all input reads are of length R.
The supersplat algorithm begins by indexing both the reference sequence
and the input reads in the creation of two hash tables, the reference index
and the reads index. These two caching structures are created in time O

(
G

)

and O
(
Nreads

)
, respectively.

Most of supersplat’s processing time is spent performing iterative pairwise
comparisons between location-lists, dwarfing the amount of time spent
generating the indices. This iterative pairwise comparisons algorithm has
overall time complexity of O

(
Nreads ∗R∗ELL1 ∗ELL2

)
. The inner term ELL1 ∗

ELL2 is an upper bound; in reality, all possible pairs of elements in LL1 and
LL2 need not be explored due to two optimizations. First, location-lists are
limited in size by the length of the chunk being queried. If the size of one
chunk is short, which results in a large number of genomic matches and

thus a location-list that contains a large number of entries, its paired chunk
is long, which results in the second location-list containing a relatively few
number of entries. Second, location-lists are always sorted in increasing
order of reference positions as a byproduct of the way in which the reference
index is constructed. As a result of the location-lists being sorted, once a
comparison has been made between elements of LL1 and LL2 where the
distance between these two elements is greater than the maximum allowed
intron size, all remaining elements in LL2 can be skipped for the current
element of LL1.

The space complexity of the supersplat algorithm is linear in the number
of reads, the reference size and the maximum index chunk size (MICS)
parameter, resulting in the space complexity O

(
Nreads ∗G∗MICS

)
.

3 RESULTS

3.1 Performance
Real-world performance of supersplat was tested with a set of
3 690 882 unique Arabidopsis thaliana Illumina RNA-seq reads
(short read archive accession: SRA009031) (Filichkin et al., 2010),
each of which was known to map to an annotated (TAIR8)
splice junction location on the Arabidopsis reference genome.
To benchmark supersplat, the algorithm’s primary performance
parameter, MICS, was incremented iteratively by one from 9 to 18.
For each such iteration, the total run time from reference indexing
to final output, as well as maximum memory (RAM) usage, was
recorded. Benchmarking was performed on a 3.0 GHz Intel Xeon
processor with 32 GB memory. For all tests, the minimum intron
size, n, was set to 40; the maximum intron size, x, was set to 5000;
and the minimum chunk size, c, was set to 6, while the MICS,
i, was varied. Performance results are shown in Figure 2. From
these results, we see that as the MICS increases, runtimes decrease
and RAM usage increases. Between MICS values of 9 and 15 each
stepping decreases runtime by about a factor of 4, after which yields
diminishing returns. For runtimes on these data, a MICS value of 15
was optimal, resulting in a runtime of 19.4 CPU minutes and with
maximum RAM usage of ∼18.8 GB. This indicates an average of
∼190 252 reads mapped per CPU minute, or ∼11.4 million reads
mapped per CPU hour.

3.2 Empirical annotation of splice junctions in
Brachypodium distachyon

To demonstrate the utility of supersplat for de novo discovery
of splice junctions, we mapped Illumina RNA-seq reads (short
read archive accession: SRA010177) to the genome of the model
grass B.distachyon. For this analysis we used ∼10.2 Gb (∼289
million 32mer reads) of Illumina transcript sequence generated
using the RNA-seq approach (Fox et al., 2009; The International
Brachypodium Initiative, 2010). We used ELAND (A.J.Cox,
unpublished data) to identify all 32mer Illumina reads that aligned
anywhere in the Brachypodium genome with up to two mismatches.
This step eliminated ∼79 million reads from further analysis. The
remaining ∼210 million reads were filtered using DUST (Morgulis
et al., 2006) to remove reads containing low-complexity stretches,
leaving ∼150 million reads that were aligned to the Brachypodium
genome assemblies using supersplat.

Potential novel splice junctions predicted by supersplat were
filtered to retain only those supported by at least two distinct
independent RNA-seq reads with different overlap lengths on each
side of the predicted intron (i.e. the portions of the reads aligning
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Fig. 2. By increasing the maximum index size, the exhaustive genome-
to-reads comparisons are reduced resulting in shorter runtimes. This same
increase correlates with an increase in peak RAM usage as a result of larger
lookup tables.

to the predicted exons), reads mapping to only a single genomic
location, a minimum overlap length of 6 bases on one exon,
additional support of at least one microread matching each of the
predicted flanking exonic sequences, a minimum predicted intron
length of 20 and a maximum predicted intron length of 4000. This
analysis, using ad hoc filters designed to reduce false discoveries,
identified a total of 1.55 million RNA-seq reads supporting 67 025
introns containing canonical GT-AG terminal dinucleotides. These
intron predictions are publicly available and presented in the
Brachypodium community genome database and viewer found
at http://www.brachybase.org. Among all 67 025 GT-AG introns
predicted by supersplat in this experiment, 63 866 (95.3%) were
independently validated (Fig. 3) by BradiV1.0 annotated introns
verified by Brachypodium ESTs.

An example is presented in Figure 4, which depicts an empirically
annotated Brachypodium gene encoding a protein similar to an
annotated hypothetical protein in rice. In this example, the filtered
supersplat results predicted 14 out of 15 introns depicted in the
empirical TAU (H.D.Priest et al., unpublished data) models. The
one intron of this gene not predicted by supersplat was inferred
from other Sanger and 454 EST data (data not shown).

4 DISCUSSION
Supersplat aligns RNA-seq data to a reference genome as a gapped
alignment in order to empirically define locations representing

Fig. 3. A Venn diagram showing the comparison of supersplat predicted
Brachypodium GT-AG introns against BradiV1.0 annotated GT-AG introns
verified by Brachypodium ESTs. The 67 025 Brachypodium GT-AG introns
(set SS) predicted by supersplat were supported by 1.55 million RNA-seq
reads. The 74 786 BradiV1.0 annotated GT-AG introns (set ESTs) were
verified by alignment of 2.29 million 454 reads and 128 000 Sanger reads.
The 3695 introns in set HM are supersplat false negative introns that were
missed by supersplat due to the minimum chunk size of 6 used in this analysis
but verified as being supported by the RNA-seq data using HashMatch
(Filichkin et al., 2010).

potential introns. Unlike the other comparable tools, Q-PALMA and
TopHat, supersplat is not inherently biased in favor of canonical
ITDN, but instead by default exhaustively identifies every potential
splice junction supported by the input data. In another study
(Filichkin et al., 2010), we found that following conservative
filtering of supersplat output we were able to independently
validate ∼91% and ∼86%, respectively, of canonical and non-
canonical predicted introns that were tested by RT-PCR and Sanger
sequencing. Supersplat does provide a canonical ITDN option,
which has been incorporated because, as in our Brachypodium
example, in some cases users may prefer to only mine their RNA-
seq data for introns containing the most common ITDNs rather than
the far less-common non-canonical ITDNs. Other user-provided
parameters that limit the supersplat alignment algorithm are the
minimum and maximum allowable intron sizes and the minimum
overlap of a read on a flanking exon.

Supersplat’s exhaustive and unbiased approach comes at the
cost of large unwieldy output files, which can reach the size of
tens of gigabytes for large sets of RNA-seq data. In particular,
reads matching repetitive sequences or reads containing low-
complexity stretches can match in numerous places in a reference
genome as false spliced alignments. Users should, therefore,
carefully determine appropriate criteria for prefiltering potentially
problematic data prior to running supersplat. For example, as
described for our empirical annotation of splice junctions in
B.distachyon, reads that are likely to represent exonic data by virtue
of their alignment to the target genome over their entire length
should be removed prior to running supersplat. In addition, it is
a wise precaution to filter out low-quality reads, low-complexity
reads and highly repeated reads likely to result in numerous
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Fig. 4. An example of filtered supersplat output displayed in GBrowse v1.69 at BrachyBase (http://www.brachybase.org). The ‘Illumina 32mer perfect match’
track represents the distribution of perfectly matching 32 nt Illumina HTS RNA-seq reads over the region. ‘HTS SuperSplat Splice Junctions’ are Illumina
reads aligned using supersplat specifically to identify putative introns. The ‘TAU v1.1’ track depicts empirical transcription unit models derived from transcript
data, including the splice junctions predicted by supersplat.

spurious alignments. In the event that an annotation exists for the
genome of interest, reads matching annotated splice junctions can be
filtered out of the input in order to focus the supersplat analysis only
on the identification of potential novel introns. Sensible selection of
runtime options and post-processing steps are good precautions to
control false discoveries. For example, users may want to choose
reasonable limits for minimum and maximum intron lengths guided
by prior data. In addition, as described in our examples, supersplat
output can be filtered to retain only those intron predictions
supported by some minimum chunk size, multiple independent
overlapping RNA-seq reads, introns supported by reads mapping
to only a single genomic location, validation by RNA-seq data from
independent biological replicates, multiple different overlap lengths
for the read fragments on the flanking exons and additional transcript

evidence supporting the predicted exons. Despite these precautions
factors such as read lengths, sequencing error rates, target genome
complexity and gene duplications contribute to the likelihood of
false discoveries with supersplat. Some of these issues will no doubt
be resolved by improvements to HTS technologies such as increased
read lengths, reduced error rates and routine use of paired-end reads.

Using our test set of reads matching known A.thaliana splice
junctions, we performed an analysis of supersplat’s precision while
focusing on two of these standard filters independently, including
minimum chunk size and number of overlapping reads. Precision,
also known as positive predicted value (PPV), is defined as true
positives (TP) divided by the sum of TP and false positives (FP),
PPV = TP/(TP + FP). It is worth noting that an algorithm’s PPV can
be skewed by generating only a small number of very cautiously
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Fig. 5. PPV versus minimum chunk size. As minimum chunk size is varied
from 6 to 15 the precision of supersplat rapidly approaches and exceeds 90%.
Here, the PPV denominator, TP + FP, ranges over 360 237 (minimum chunk
size of 6) to 260 495 (minimum chunk size of 15).

declared positives, resulting in a very small but highly confident
output set. Supersplat, in contrast, generates exhaustive output that
is not filtered according to confidence.As a result the PPVs presented
here are computed using large denominators ensuring that this metric
is an accurate reflection of supersplat’s performance.

In our analysis, a true positive prediction is one that correctly
identifies a location in the genome at which there exists
The Arabidopsis Information Resource (TAIR)-annotated splice
junction. A FP prediction is one that incorrectly identifies a location
in the genome at which there is no such TAIR annotated splice
junction. PPV was calculated as minimum chunk size was varied
from 6 to 15 with results shown in Figure 5, filtering in this
case for intron predictions in the supersplat output which had the
minimum chunk size shown. From these results, we see that even at
a minimum chunk size of six, the precision of supersplat is nearly
70%. As minimum chunk size increases this precision value rapidly
approaches and exceeds 90%.

PPV was then calculated as the number of reads overlapping
each splice junction was varied from 1 to 21 with results shown
in Figure 6. In this case, we filtered for intron predictions in the
supersplat output that had the respective number of intron overlaps
shown. From these results, we see with six overlapping reads a PPV
of 90%, with PPV reaching 97% at 21 overlapping reads.

Runtime performance of supersplat is closely tied to how deeply
the genomic reference is indexed, dictated by the MICS value.
Supersplat repeatedly queries its index for the genomic locations of
various sized k-mers, which represent potential short read fragment
alignments. Since the probability of any specific k-mer existing at
a particular genomic location, under the assumption that all bases
occur with equal probability, is 0.25k , as k increases the probability
of any specific k-mer occurring decreases. Thus we expect, on
average, that the list of all locations in a genomic reference sequence
of a specific k-mer to be longer by a factor of four than a similar
list of a specific (k + 1)-mer. As supersplat processes short reads
from its input, it repeatedly iterates over these location lists. As the
MICS value increases the lengths of these lists decrease, reducing
runtimes by about a factor of four for each increase in the MICS
value. When the MICS value becomes sufficiently large, which for
these data was around 15, any particular MICS-sized k-mer occurs

Fig. 6. PPV versus number of reads overlapping each splice junction. As the
number of overlapping reads is varied from 1 to 21, the precision of supersplat
rapidly approaches and exceeds 90%, reaching 97% with 21 overlapping
reads. Here, the PPV denominator, TP + FP, ranges over 244 782 (single read)
to 124 219 (21 overlapping reads).

so rarely in the genomic reference sequence that further increases in
the MICS value will yield little to no decrease in runtime.

Identification of reads spanning splice junctions is essential for
RNA-seq-based studies of alternative splicing (Filichkin et al., 2010;
Sultan et al., 2008) and for assembly of empirical transcription
unit models from RNA-seq datasets using tools such as G-Mo.R-
Se (Denoeud et al., 2008), Cufflinks http://cufflinks.cbcb.umd.edu/
or TAU (H.D.Priest et al., unpublished data). As demonstrated,
supersplat is an effective algorithm for mining potential splice
junction reads from RNA-seq data and its exhaustive search
of the potential splice junction sequence space can uncover
many previously unknown splice junctions given sufficiently deep
transcriptome data.
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