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Single reach plans in dorsal premotor cortex during
a two-target task
Brian M. Dekleva1,2, Konrad P. Kording 1,2,3,4,5,6 & Lee E. Miller 1,2,3

In many situations, we are faced with multiple potential actions, but must wait for more

information before knowing which to perform. Movement scientists have long asked whether

in these delayed-response situations the brain plans both potential movements simulta-

neously, or if it simply chooses one and then switches later if necessary. To answer this

question, we used simultaneously recorded activity from populations of neurons in macaque

dorsal premotor cortex to track moment-by-moment deliberation between two potential

reach targets. We found that the neural activity only ever indicated a single-reach plan (with

some targets favored more than others), and that initial plans often predicted the monkeys’

behavior on both Free-Choice trials and incorrect Cued trials. Our results suggest that pre-

motor cortex plans only one option at a time, and that decisions are strongly influenced by

the initial response to the available set of movement options.
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We often prepare for a movement by surveying the
available actions, then waiting for more information
before moving. For example, a tennis player waiting to

receive a serve can anticipate the need to perform a forehand or
backhand return but can observe the trajectory of the ball before
deciding between those two options. Likewise, we can plan to
grasp an object without yet knowing the most useful hand pos-
ture. Similar parallels can be drawn for almost all types of
movements, indicating that deliberation between potential actions
is a ubiquitous aspect of motor control.

Although the initial deliberation between multiple potential
actions is a widespread phenomenon, the neural processes
underlying it are largely unknown. The brain could adopt two
general approaches: (1) simultaneously represent several potential
options; or (2) initially represent only a single plan (perhaps a
compromise), then later switch if necessary. Several behavioral
studies have attempted to disentangle these possibilities, most
notably through the go-before-you-know paradigm in which a
subject is given multiple reach targets and then forced to move
before knowing which is correct. Early movement trajectories are
often directed in between the two options, which some have
interpreted as a spatial averaging of two simultaneous plans1–6.
However, an intermediate movement is not necessarily indicative
of multiple simultaneous plans and might instead reflect a single
plan optimized for the uncertain task7,8. Thus, the neural pro-
cesses that underlie the deliberation between potential move-
ments cannot be readily interpreted from the movements
themselves.

A few studies have used individual neurons recorded in motor
cortex to probe planning-related activity in the face of multiple
discrete movement options, with results that support the “dual
representation” hypothesis9–13. However, these studies relied on
single-electrode recordings, using trial-averaged data to reduce
noise, with the implicit assumption that all trials reflect a single
consistent process. Since delay-period planning activity has no
measurable external signature, it is unclear how well this
assumption actually holds. To examine the wholly internal neural
processes at play during movement deliberation requires analysis
on the timescale of individual trials.

An alternative to trial averaging is to combine the information
obtained from many simultaneously recorded neurons. This
population-based approach has increasingly been adopted in
motor areas, where it provides a reliable estimate of limb
movement14–21. An important, less-exploited advantage of
simultaneous recordings is the ability to probe neural processes
that have no measurable behavioral outcome. Several studies have
used population recordings from cortex to identify changes of
mind on single trials of a multiple-potential-target-reaching
task22,23. This ability to interpret activity on a short timescale in
the absence of behavioral correlates provides a possible means to
investigate deliberation between initial movement options.

Here we used simultaneous recordings from dorsal premotor
cortex (PMd) of the macaque monkey to monitor the develop-
ment of movement plans in the face of two potential movement
options. Using dimensionality reduction methods to extract
underlying low-dimensional latent signals from the population
activity14–21,24 we tracked the moment-by-moment planning in
these areas during single trials. We found that when presented
with two opposing reach options, PMd quickly developed a
movement plan for only one, planning some targets more often
than others. The initial plans were strongly predictive of various
aspects of the monkey’s eventual behavior (including target
choices when the correct target was not specified, reaction times,
and task errors). However, our results showed no any evidence of
simultaneous representation in premotor cortex during the
deliberation between multiple options. Instead they indicate that

ultimate movement decisions are strongly influenced by an initial
reach plan corresponding to one of the potential choices.

Results
Experimental setup and trial-averaged neural responses. We
trained two rhesus macaques on a center-out reaching task in
which they controlled an on-screen cursor using a planar
manipulandum (Fig. 1a). Each session consisted of both 1-Target
and 2-Target trials, randomly interspersed. On 2-Target trials the
monkey first positioned the cursor in the central target, after
which two additional targets appeared located 180° apart with
respect to the center (Fig. 1c, left). These targets remained on
screen for between 750 and 1000 ms (Target On), then dis-
appeared for 250–500ms (Target Blank) before a single target
reappeared for 250–500ms (Cue). Finally, the central target dis-
appeared, the second outer target reappeared, and a tone cued the
monkey to reach to the originally cued target (Go). 1-Target trials
followed the same basic structure, except that the monkey was
only ever shown one outer target (Fig. 1d, left). On roughly 10%
of 2-Target trials (Free-Choice trials) we omitted the Cue epoch,
and instead instructed the monkey to reach immediately after the
Target Blank epoch (Fig. 1c, bottom). In all conditions, the
monkeys made approximately straight reaches to the targets
(Fig. 1c, d, right).

Throughout each session, we recorded the activity of
discriminated neurons in both PMd and primary motor cortex
(M1) using chronically implanted 96-electrode arrays (Blackrock
microsystems). We calculated firing rates by filtering the spike
trains with a causal, half-Gaussian kernel before downsampling to
40 Hz. Most PMd neurons appeared directionally tuned through-
out the planning phases (i.e., Target On, Target Blank, and Cue
epochs) of the 1-Target task. To summarize the population-wide
responses, we calculated a preferred direction for each neuron
using a standard cosine model25. We then used those preferred
directions to categorize the response of each neuron on every trial
as either pro-PD (target at preferred direction), anti-PD (target
opposite preferred direction), or orthogonal-PD (target orthogo-
nal to preferred direction). The traces in Fig. 2a show the average
of all pro-PD and anti-PD activity across 1-Target trials after
subtracting orthogonal-PD activity to account for changes not
due to reach direction. The resulting plot reveals an increase in
pro-PD activity shortly after target presentation and a decrease in
anti-PD activity, corroborating previous findings of sustained,
planning-related activity in PMd during reaching26–30. We
repeated this procedure for 2-Target trials and found an increase
in both pro-PD and anti-PD activity (Fig. 2b), seeming to indicate
dual representation of both targets, as previously reported9–13.

Single-neuron tests of dual representation. We further tested
the nature of the apparent dual representation effect across 2-
Target trials using the control analysis first described by Cisek
and Kalaska11. Briefly, on each trial we labeled the planning-
related activity as described above (pro-PD, anti-PD, and ortho-
gonal-PD), and calculated the percentage of pro-PD and anti-PD
activity that exceeded the median orthogonal-PD activity. Since
this metric grouped pro-PD and anti-PD activity together, a
dataset consisting only of single-target representations should
have resulted in values around 50% (pro-PD activity would
exceed the orthogonal-PD median threshold but anti-PD activity
would not). Indeed, the black histogram in Fig. 2c—which
represents the activity during 1-Target trials—shows that the
proportion of high pro-PD and anti-PD activity across neurons
was not significantly different from 50% (t-test, p= 0.1).
In contrast, the distribution of high activity on 2-Target
trials (Fig. 2c, blue) was skewed significantly toward 100%
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(t-test, p < 10−9), consistent with activity related to both targets—
the result expected of a dual representation paradigm.

Although the results from Fig. 2a–c seem to provide
convincing evidence of dual representation, we considered the
possibility that they were instead caused by target biases during
the planning phase. The analysis in Fig. 2c implicitly assumes a
null hypothesis of unbiased guessing, in which the subject
randomly selects one of the two displayed targets at the start of
each trial. However, there is another possible guessing-based
approach, which we term biased guessing. Under a biased
guessing paradigm, the subject still only ever creates an initial
plan to one target, but that plan is almost always to the same
target. For example, for every 2-Target trial with a left and right
target, the subject might start by planning a reach to the right
(switching later if cued to the left target). We simulated datasets
for both of these guessing-based approaches (see Methods) to
determine whether the analysis from Fig. 2c could correctly
identify that they contained only single-reach plans. For the
unbiased guessing dataset, the analysis returned a distribution of
high pro-PD and anti-PD activity that was not significantly
different from 50% (Fig. 2d; t-test, p= 0.13), correctly ruling out
the possibility of dual representation. However, for the biased
guessing dataset, the analysis returned a highly right-skewed
distribution (Fig. 2e; t-test, p < 10 −10). This result strongly—but
incorrectly—suggests the presence of dual representation. Thus,
while the analysis from Fig. 2c can discount the possibility of an

unbiased guess-and-switch approach, it cannot rule out the
possibility that the monkeys employed a single-plan strategy with
strong biases in the initial plans.

Population-based approach to single-trial reach plan decoding.
The conflicting interpretations in Fig. 2 indicate that methods
based on the trial-averaged responses of single neurons can lead
to incorrect conclusions about the nature of neural responses on
individual trials. To disambiguate the initial target deliberation
requires that planning-related neural responses be evaluated at
the level of single trials. Array recordings allow the large number
of recorded neurons, rather than a large number of trials, be used
to compensate for the stochastic neural noise. As a first step, we
used principal component analysis (PCA) to reduce the popula-
tion’s activity to a de-noised, 10-dimensional neural
state14,16,22,31–34. Figure 3a shows the evolution of three dimen-
sions of this state for left and right 1-Target trials, superimposed
on the neural states observed across all left and right 1-Target
trials. Even in three dimensions, the reach directions are separ-
able, indicating that a low-dimensionality-based approach can
provide a useful readout of instantaneous reach planning.

To quantify the extent of target-related activity within the
neural state space, we developed a proximity metric based on the
Mahalanobis distance to clusters associated with each reach
direction (see Methods). As an example, take a point in the
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leftward trial trace (red) from Fig. 3a. We can calculate its
proximity to the leftward reach cluster (red point cloud) as well as
its proximity to the rightward reach cluster (blue point cloud).
Plotting these two values against each other for all points along
the example leftward reach neural state trajectory results in the
red trace in Fig. 3b. Repeating for the rightward trial in Fig. 3a
gives rise to the blue trace in Fig. 3b. Excursions along the y- and
x-axes can be interpreted as evolving leftward and rightward
reach plans, respectively. To display the results from multiple
target axes, we arbitrarily chose the x-axis to represent half of the
targets (at 0°, 45°, 90°, and 135°) and the y-axis to the other half.
Over all sessions and reach directions, we successfully classified
the final reach direction from neural data collected during the
Target Blank epoch of 1-Target trials for both monkey C (Fig. 3c,
97%) and monkey M (Fig. 3d, 98%).

Neural state test of dual representation. Since the state space
proximity metric proved capable of accurately describing
population-wide planning on 1-Target trials, we next applied it to
activity on 2-Target trials. To ensure that the method could dif-
ferentiate between different types of planning, we first simulated
three potential models: dual-target; averaged-plan; and stay-or-
switch. The dual-target and averaged-plan models reflect
mechanisms by which PMd could represent two reach directions
simultaneously. Alternatively, the stay-or-switch model repre-
sents the case in which PMd plans only a single reach at a given
time. For all models, we simulated activity only during the Target
Blank epoch.

To model dual-target representation, we first fit cosine tuning
curves to 1-Target data for all neurons. We transformed those
single-target tuning curves into bimodal, dual representation
curves to match the response types reported by Cisek and
Kalaska11. Figure 4a shows a schematic of averaged responses (as
in Fig. 2) and representative 1-Target (unimodal) and 2-Target
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(bimodal) tuning curves. From the bimodal curves, we simulated
activity for the left/right target pair from Fig. 3a; the resulting
neural state was close to both the left- and right-plan clusters
(Fig. 4b). Across all target pairs and sessions, simulated dual-
target neural states tended to lie near both reach direction clusters
(Fig. 4c, points close to diagonal).

The averaged-plan model represented another variant of dual
representation; each neuron’s response reflected the average of its
responses to each target individually. Its simulated activity was
qualitatively similar to the dual-target model (Fig. 4d–f), with
neural states near both clusters.

Neural responses for the third model (stay-or-switch) corre-
sponded to only one reach plan at any given time (Fig. 4g); the
associated neural states (Fig. 4h) and proximity plots (Fig. 4i)
were indistinguishable from the 1-Target condition. The clear
difference in results between simulated dual- and single-
representation models thus demonstrated the ability of our
population-based proximity metric to identify dual representation
in single-trial neural activity.

In Fig. 5a, we show the neural states observed during two
epochs—Target Blank and Go—across all left/right 2-Target trials
from the example session in Fig. 3a. At the time of movement
(Fig. 5a, right plot) the neural states clearly reflected the cued
direction. However, during the earlier Target Blank epoch (Fig. 5a,
left plot), they appeared to indicate a rightward reach plan. The
proximity plots incorporating all 10 dimensions of the neural
state confirm the appearance of the two-dimensional projection:
pre-Cue activity almost always reflected a rightward reach

(Fig. 5b, left—high density along x- and y-axes). Across all
targets and sessions, the neural states during the Go epoch
accurately reflected the cued reach directions (Fig. 5c, d, right
plots). However, during the Target Blank epoch, the proximity
plots suggest a mix of cued and anti-cued reach plans. This is
expected, since the monkeys did not yet know which target was
correct. Of note, the proximity plots reveal excursions mainly
along the axes, as in 1-Target trials. In the scatter plots, this effect
is more apparent for monkey M (Fig. 5d, left), but density plot
insets reveal that both monkeys exhibited what appears to be
largely single-target planning activity.

To quantify the extent to which the observed neural states
represented single or dual reach plans, we developed a new metric
from the calculated proximities, called the dual representation
index (DRI; see Methods). Figure 6a shows the 1-Target
proximity plot from Fig. 3c overlaid with a contour plot of the
DRI metric. The DRI is bounded by zero (along either axis) and
one (upper right corner), with highest values nearest the diagonal
(indicative of dual representation; Fig. 4c, f). We first calculated
the DRI for neural states observed during the Target Blank epoch
on 1-Target trials. The resulting histogram for monkey C is
shown in Fig. 6b. DRI < 0.2 captured all but 3% of 1-Target
planning for monkey C, and all but 1% for monkey M. We then
calculated DRI for both actual (Fig. 6e, f; black) and simulated 2-
Target neural states (Fig. 6e, f; gray). While DRI for the two
simulated models largely exceeded 0.2 (84%, monkey C; 87%,
monkey M), the percentage of actual 2-Target activity above the
threshold was very low (6%, monkey C; 3%, monkey M). Thus,
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although the trial-averaged results from Fig. 2 suggested the
presence of dual representation on 2-Target trials, we found no
such evidence in single-trial population activity. This result held
even if we restricted our analysis to only the subpopulation of
neurons with trial-averaged responses most strongly indicative of
dual representation (see Supplementary Note 2 and Supplemen-
tary Figure 2).

Target preferences during 2-Target planning. The results from
the above analyses suggest that even on 2-Target trials, the
monkeys planned for only one reach at a time. To track the
evolution of these plans, we calculated the difference over time
between the proximities to the pair of relevant reach direction
clusters. The resulting difference (ΔProximity) provided an esti-
mate of the direction and strength of the instantaneous reach
plan. This metric was more conservative than a probability-based
classifier in that it was less likely to report spurious reach plans
having low strength (see Supplementary Figures 3 and 4). Fig-
ure 7a shows example single-trial target decodes using this metric
for left/right, 2-Target trials. At the time of movement execution
(Go epoch) reaches to the left were clearly distinguishable from
those to the right. However, activity early in the trials over-
whelmingly (88%) resembled rightward reach plans. Both mon-
keys had similarly skewed preferences (Fig. 7b). However, these
preferences were inconsistent across sessions and did not always
follow a clear hemispatial bias. On the first session, monkey M
had an up/right preference. Over the next two sessions, those
preferences appeared to rotate to the downward and leftward
directions (Fig. 7c, bottom row). Monkey C had similar pre-
ferences during the first two sessions, but completely opposite
preferences for two of the four target pairs on the third session
(Fig. 7c, top row). The inconsistency of the planning preferences,
both within and across subjects, suggests that they arose as part of
conscious task strategies rather than from an ingrained pre-
dilection for minimizing exertion or some other physiological
cost function35–37.

We considered the possibility that the decoded biases during
early planning periods resulted from anisometries in the proximity
metric across reach directions, and thus did not accurately reflect
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the instantaneous plan. To address this, we compared each
monkey’s decoded target preferences on cued 2-Target trials to
their actual choice biases on Free-Choice trials. Over all 16 left/
right Free-Choice trials from the session in Fig. 7, monkey C
reached to the right target 11 times (69%, Fig. 8a). This rightward
choice bias mirrored the preference observed in the initial
planning activity on cued 2-Target trials (88%, Fig. 7a). Across
monkeys, we found a strong correspondence between the target
preferences decoded from cued 2-Target neural activity and the
actual reach direction on Free-Choice trials (Fig. 8b). Additionally,
reach plans decoded from primary motor cortex (M1) matched
those from PMd (see Supplementary Note 1 and Supplementary
Figure 1) further indicating that the neural state decoding
accurately reflected the monkeys’ instantaneous reach plans.

On average, the monkeys had a 75:25% target preference during
planning (Fig. 7b). Thus, at times, they began planning to move to
a target they did not generally favor. While the results from Fig. 8b
show that preferences in early planning activity were largely
predictive of Free-Choice movement preferences, it was unclear
how well the planning activity on a single Free-Choice trial might
correlate with the eventual movement decision. Were initial plans
made to favored targets more likely to be carried through to
execution than those made to non-favored targets? To answer this
question, we identified the favored targets during the Target Blank
epoch on 2-Target trials. We then compared the direction decoded
during Target Blank on each Free-Choice trial with the eventual
reach direction. We found no difference between trials with initial
plans to favored targets compared to non-favored targets;
neural activity for both was equally predictive (Fig. 8c). Thus,
while the monkeys did exhibit clear session-wide target prefer-
ences, it was the initial plan on any given Free-Choice trial that
best predicted the chosen reach direction.

Plan strength and reaction time. Our findings suggest the
existence of only single-reach plans, but the strengths of those
plans varied widely across trials. Consider the left/right responses
in Fig. 7a. Most early trial activity clearly indicated rightward
reach plans. However, some activity suggested leftward (negative
ΔProximity) or weak-to-nonexistent plans (ΔProximity near
zero). Due to the conservative nature of the ΔProximity metric
(see Supplementary Note 3 and Supplementary Figures 3 and 4),
large magnitudes—either positive or negative—could only arise
from neural states close to a given reach direction cluster. Due to
the lack of evidence for dual representation in our data (Fig. 6),
low magnitudes could only arise from neural states unassociated
with any specific reach plan. We predicted that the magnitudes of
the decoded reach plans on individual trials would correlate with
some aspect of the kinematics of the executed movement. To test
this, we compared the average magnitude of ΔProximity in a
100 ms window preceding the Go epoch on each cued, 2-Target
trial to the subsequent movement reaction time. Figure 9a shows
this relationship for left-cued reaches on an example session.
Reaction times were markedly shorter when ΔProximity indicated
a strong leftward plan at the time of the Go cue, and longer when
it indicated a rightward plan. This negative correlation between
decoded plan strength to the cued target and reaction time
occurred for both monkeys (Fig. 9b; linear mixed effects mod-
el accounting for differences across reach directions and
sessions; monkey C: coeff= –127, F-test p= 0.0036; monkey M:
coeff= –159, F-test p ≈ 0) and is similar to observations in
previous studies12,31,38. We found a similar negative correlation
between ΔProximity directly preceding the Go cue and
reaction time on Free-Choice trials (Fig. 9c, d; monkey C: coeff
= –241, F-test p= 0.0017; monkey M: coeff= –108, F-test
p= 0.0266).
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Reach planning on error trials. Although both monkeys
understood the 2-Target task, at times they chose the incorrect—
i.e., non-cued—target (monkey C: 16%, monkey M: 27%). We
examined the progression of reach plans during these error trials
to reveal potential sources of incorrect movement choices. Using
the reach plans decoded early (Target Blank) and late (Cue) in the
trial, we characterized three types of errors, which together
described over 97% of all errors. During type 1 errors, the
monkey maintained a consistent reach plan throughout, not
deviating even after receiving a cue to the opposite target
(Fig. 10a, heavy trace). During type 2 errors, the monkey switched
to the correct plan after cue presentation, but then later reverted
to his initial incorrect plan upon receiving the Go cue (Fig. 10b,
heavy trace). During type 3 errors, the monkey switched to the
incorrect reach plan at the last second, despite having planned
correctly throughout the trial (Fig. 10c, heavy trace). Despite
different error rates between monkeys, the high incidence of type
1 and 2 errors suggests that both monkeys had an aversion to
switching away from their initial reach plans. This was true
whether that initial plan was to a favored target or to a non-
favored target (Fig. 10d; filled vs. open bars).

Discussion
We found that when faced with two potential reach targets,
activity in PMd represented only a single movement plan despite
several previous studies supporting a dual representation
mechanism3,4,10–13,39–41. We cannot discount the possibility the
monkeys in our study adopted a different strategy than those in
previous studies. Our task, unlike others, did not require any
memorization and enforced only lax time constraints. This

simplicity in design may have led to a similarly simplistic (i.e.,
single-target) planning approach. However, it may be that pre-
motor cortex is incapable of planning multiple movements
simultaneously, and that the trial averaging used in previous
studies blurred the distinction between dual representations and
biased single-target representations (see Supplementary Discus-
sion). When we replicated the trial-averaged analysis from Cisek
and Kalaska meant to control for a guess-and-switch strategy11,
our results also appeared to support multiple encoding (Fig. 2c).
However, additional simulations showed that this finding most
likely resulted from strong preferences for specific targets (Figs. 2e
and 7).

It could be that dual representations develop in PMd only after
extensive training on a two-target task. Work in the field of brain-
computer interfaces has shown that motor cortex can generate
novel patterns of activity after learning21,42–46. We therefore
cannot claim that PMd is incapable of responses more complex
than those we observed. However, if dual reach representation in
PMd arises only as a result of overlearning, it might not be a
typical or natural component of decision-making. Additional
studies of PMd throughout long-term learning might clarify this
possibility.

By its very nature, the concept of dual reach representation
invokes a representational view of cortex. That is, it assumes that
firing rates reflect the explicit encoding of particular movement
features (e.g., reach direction). Recent work has challenged this
assumption, suggesting instead that motor and premotor cortices
operate as a dynamical system, with much of its activity reflecting
these dynamical properties14,33,47. This view proposes that PMd
activity defines the initial goal-related state from which activity
evolves upon movement initiation. In this framework, perhaps
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PMd could achieve an intermediary neural state when faced with
multiple movement options. However, it is not clear that this new
neural state could be considered dual representation in the tra-
ditional sense. Instead, it may simply reflect a movement plan
that can be easily switched to either of the presented targets, an
interpretation supported by recent behavioral results7,8. Addi-
tional work is needed to interpret the neural responses occurring
during complex decision-making tasks and to test the repre-
sentational and dynamical systems hypotheses more directly.

The results from this study highlight the potential influence of
preferences and biases on trial-averaged analyses of planning-
phase activity. This concern cannot be summarily dismissed, as
directional biases appear to be quite common in two-target
tasks10,22,48. Some studies have attempted to minimize the effect
of preferences by explicitly adjusting reward values10 or other
aspects of the task22 to encourage reaches to non-favored targets.
Carefully executed, these approaches can successfully equalize the
number of movements to each target. However, eliminating
biases in the distribution of final reach directions does not
necessarily eliminate biases during planning phases. We found
that while early planning activity largely predicted Free-Choice
decisions, it was not without exception. There were some trials for
which PMd activity suggested one reach direction throughout the
entire trial, only to switch moments before movement execution
(Fig. 10c). This last-second switching was infrequent, but a task

designed to balance choices across all directions may encourage it.
If so, analysis based on the assumption that a subject has con-
sidered all targets equally throughout the entirety of the trial may
not be valid. Trial-averaging methods simply cannot provide the
temporal resolution necessary for determining instantaneous,
potentially transient states of mind.

Although the monkeys in our study displayed quite strong
preferences, the source of those preferences is not obvious. It
seems that they reflected the monkeys’ attempts at strategies that
they believed might increase the likelihood of reward. Since the
reward structure on Free-Choice trials was completely random,
no such successful strategy was possible. The apparent random-
ness of the target preferences may therefore reflect the monkeys’
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guesses and over-interpretation of brief patterns in the target
presentations. Determining the source of target preferences and
their effect on planning would require further experiments with
different reward structures.

The degree to which the initial reach plan predicted Free-
Choice behavior suggests that early responses in PMd strongly
influence the eventual movement decision. Supporting this idea is
the observation that early reach plans on error trials almost
always matched the movement direction (type 1 and type 2 errors
accounted for over 90% of all errors; Fig. 10d). That is, the
monkeys made errors either because they unwaveringly stuck
with their initial plan or switched back to it after briefly con-
sidering the other (correct) option. Changes of mind have been
observed before in cortex22,23,44–51, but not in direct contra-
diction to an explicit visual cue. In these cases, it appears that the
monkey’s first reaction to the pair of targets carried more weight
than the subsequent—and completely informative—visual cue.
This might indicate influence from another brain area overriding
sensory inputs, or biases within PMd that resist changes away
from an initial plan.

Recording from a large neural population allowed us to observe
planning-related activity on a short timescale. This revealed a
strong relationship between the instantaneous neural state at the
time of the Go cue and the reaction time of the subsequent
movement. Trials with strong plans to the correct target often had
very short reaction times (Fig. 9a), with some reaches even
beginning in anticipation of the Go cue52,53. Alternatively, trials
with incorrect plans—even strongly so—at the time of the Go cue
often displayed long reaction times, indicating a time cost asso-
ciated with switching the plan. The ability to hasten or delay
movement initiation upon evaluation of the current movement
plan (and determining whether a change must be made) suggests
that properties of the plan alone cannot predict reaction time.
Instead, our results argue for a more complex mechanism gov-
erning the transition from movement preparation to movement
execution, and support the view that movement planning and
initiation may well involve separate neural processes54.

Trial-averaged analysis methods have contributed a great deal
to our understanding of movement planning and decision-
making. However, at times they may lead to an oversimplified
view of neural processes. The ability to interpret a quickly
changing neural state with high temporal resolution is essential
when studying high-order brain functions like decision-making.
The heterogeneity in single-trial responses observed in this study
and others suggests that decision-making cannot be fully
explained by models that assume highly predictable neural
responses to a given task condition. Large-scale recordings
(including multiple brain areas within the frontoparietal net-
work55–61) will almost certainly be necessary to fully characterize
the processes leading to movement decisions.

Methods
Subjects. We trained two male rhesus macaque monkeys (Macaca mulatta) to
make reaches using a planar robotic manipulandum for water or juice reward. All
procedures were approved by the Northwestern University Institutional Animal
Care and Use Committee (Protocol number #IS00000367) and were consistent
with the Guide for the Care and Use of Laboratory Animals.

Behavioral task. The monkeys sat in a chair facing a vertical monitor and used a
planar robotic manipulandum to control an on-screen cursor. Each 2-Target trial
(40%) began once the monkey held the cursor within a central target (1.5 cm
radius) for 500 ms, after which two outer targets appeared (Target On; 750–1000
ms), always 180° apart. The target locations were restricted to eight different
locations, equally spaced at a radius of 7 cm. After the Target On period, the outer
targets briefly disappeared (Target Blank; 250–500 ms). After the Target Blank
period, one of the targets reappeared (Cue; 250–500 ms), providing the monkey
with complete information of the correct target. The missing—i.e., incorrect—
target then reappeared, returning to the initial 2-Target presentation. The center

target was extinguished, and a tone signaled the monkey to move (Go; <5 s). The
trial ended when the cursor reached one of the outer targets. If the target was
correct (as indicated by the target presented during the Cue period), the monkey
received a success tone coincident with delivery of a liquid reward. If incorrect, the
monkey received a failure tone and the screen displayed the location of the correct
target.

1-Target trials (40%) followed the same structure as above, except only the
correct target was ever shown. Thus, the monkey had complete information about
the correct target from the beginning of the trial. On 20% of all trials, we omitted
the Cue period altogether. On these Free-Choice trials (10%), the monkey was
forced to choose one of the two targets without any information as to which was
correct. We maintained the same reward structure during these trials, so there was
always a 50% chance of reward. 1-Target trials without a Cue period were not used
in any analyses.

Neural recordings and preprocessing. Both monkeys were implanted with two
chronic, 96-electrode arrays (Blackrock Microsystems, Salt Lake City, UT) posi-
tioned over the arm area of primary motor cortex (M1; 1.5 mm electrode length)
and straddling the rostral/caudal division of PMd (1.0 mm electrode length). We
discriminated single neurons offline by isolating clusters within a principal com-
ponent space calculated from the waveform shapes of putative neurons (Plexon
Inc., Dallas, TX). For monkey C this yielded unit counts of 143, 143, and 108. For
monkey M: 154, 132, and 114.

We used the spiking events from each recorded unit to calculate a continuous
estimate of firing rate by first convolving with a half-Gaussian kernel (s.d. 150 ms)
and then downsampling to 40 Hz. We chose a half-Gaussian kernel to ensure a
purely causal relationship between spiking events and the estimated firing rate. We
then applied a square root transform to all firing rate estimates.

Trial-averaged activity traces. The trial-averaged activity traces from Fig. 2a, b
included all correct trials for both monkeys. We first identified the preferred
direction for each neuron by fitting a simple cosine model on 1-Target planning
activity (500 ms post-Target On to the end of Target Blank). Then for each trial, we
separated neurons into pro-PD (preferred direction within 22.5° of reach direc-
tion), anti-PD, and orthogonal-PD. We then performed a 1000-fold bootstrap on
the difference between pro-PD and orthogonal-PD (and between anti-PD and
orthogonal-PD) to obtain 95% confidence bounds.

Dual representation vs. single representation: single-neuron control analysis.
We based the control analysis performed in Fig. 2c, d, e on an analysis described by
Cisek and Kalaska11. We first calculated the preferred direction for each neuron
using planning activity on 1-Target trials and a simple cosine model. To allow for
the possibility of dual representation, we then fit a cosine model with doubled
frequency to 2-Target activity. This resulted in bimodal curves—corresponding to
equal responses for each target pair—with the two peaks defining the preferred axis
of each neuron. For very model fit, we determined significance through a bootstrap
procedure. We first fit the appropriate cosine or doubled-cosine model and
recorded the amplitude term (i.e., modulation depth). Then, for each of 1000
bootstrap samples, we scrambled the firing rates with respect to reach direction and
repeated the fit. Only neurons for which the amplitude exceeded 99% of the
scrambled fit amplitudes were considered significantly tuned and included in the
analysis. Additionally, we discarded neurons for which the preferred direction
(single cosine) and preferred axis (doubled cosine) differed by more than 30°.

For each neuron deemed significantly tuned, we compiled all planning activity
(500 ms post-Target On to the end of Target Blank) on pro-PD, anti-PD, and
orthogonal-PD trials. We then calculated the average number of time bins for
which pro-PD and anti-PD activity exceeded the median orthogonal-PD activity.

Dual representation vs. single representation: guessing simulation. The
simulations of the unbiased guessing and biased guessing results in Fig. 2d, e
involved only relabeling reach directions on 1-Target trials. For unbiased guessing,
we relabeled half of the trials for each reach direction as corresponding to the
opposite direction. This resulting dataset simulated the case in which the monkey
might initially create a plan to one of the two targets on each trial, chosen ran-
domly. To simulate the biased guessing paradigm, we performed a similar rela-
beling procedure as before, but first discarded 1-Target trials in four of the eight
directions (counterclockwise, starting with the left target). We then randomly
relabeled half of the remaining trials as corresponding to the opposite direction.
The resulting dataset simulated the case in which the monkey might begin each
trial by planning to a specific target of the pair (either the right, upper-right, upper,
or upper-left target).

Dimensionality reduction and reach plan decoding. On each session, we
grouped all 1-Target firing rates into the matrix M 2 R

N ´T , where N was the
number of neurons and T was the total number of time points after concatenating
all 1-Target trials. We then performed PCA on the matrix M and projected all
firing rates (from 1-Target, 2-Target, and Free-Choice) onto the top 10 principal
axes, defining a 10-dimensional neural state.
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We then calculated, at every time point, a proximity of the neural state S to the
reach planning/execution states for each direction. For each 1-Target reach
direction i, we assembled all neural states (from 500 ms after Target On until trial
completion, all trials) into the set {Ci}. For every time point, we calculated the
proximity of S to the neural states corresponding to activity for a given reach
direction i as follows:

Proximity S; Cif gð Þ ¼ P DM S; Cif gð Þjið Þ
P8

j¼1 P DM S; Cif gð Þjjð Þ

where DM(S,{Ci}) represents the Mahalanobis distance between the point S and
cluster {Ci}. The metric uses probabilities based on empirical distributions of
Mahalanobis distances within (numerator) and across (denominator, j ≠ i) reach
directions, which acts as a normalization. While the range of the raw Mahalanobis
distances calculated for each reach direction could vary considerably, the proximity
metric is limited to the range [0, 1], allowing for a fairer comparison of proximities
to different target clusters. Although Proximity as defined is technically a
probability, it is conditioned only on distances to a single-reach planning/execution
state. Thus, the Proximities calculated for all directions do not sum to one and
cannot not be interpreted as probabilities in a meaningful way.

We chose to use the difference in Proximities (ΔProximity) rather than the
output of a full classifier to track time-varying reach plans. This decision ensured
that decoded plan “strength” depended on absolute distance of the instantaneous
neural state S to the assembled reach-related planning/execution states, and not
relative distance. For example, consider a neural state very far away from all
training sets {C}. Unless that state was almost perfectly equidistant between all sets,
its relative (and entirely coincidental) nearness to one could cause a probabilistic
classifier to return a highly confident classification. However, since the state was
not actually close to any cluster within the training set, the ΔProximity metric
would return a value very close to zero (see Supplementary Figure 3). Thus, the
ΔProximity metric is more conservative than the output of a classifier and returns
large magnitudes only when a neural state can be confidently assigned to a specific
reach state within the training set. For 2-Target trials, we calculated ΔProximity
with respect to the two presented targets. On 1-Target trials, we calculated with
respect to the presented target and the opposite target.

Neural state simulations. To simulate activity according to the dual-target model,
we began by fitting a cosine with 1-Target reach directions θ and average Target
Blank firing rates (F) for each neuron:

FðθÞ ¼ aþ b � cosðθ � φÞ

We then constructed an artificial bimodal tuning curve Fbi(θ) for each neuron
using the previously obtained values of a, b, and φ:

Fbi θð Þ ¼ 0:7 � aþ b � cos 2ðθ � φÞð Þ½ �

We used these bimodal tuning curves to simulate the expected activity of every
neuron on a given trial. Note that we included a 0.7 scaling factor to match the
average difference in firing rates between 1- and 2-Target trials as reported by Cisek
and Kalaska11. However, changing this factor had no qualitative effect on the
neural state analyses.

To simulate the averaged-plan model, we first calculated nonparametric 1-
Target tuning curves Fnonpar by averaging the Target Blank activity for each reach
direction. We then simulated responses for each direction θi:

Faverage θið Þ ¼ 1
2

Fnonpar θið Þ þ Fnonpar θi þ πð Þ
� �

We simulated stay-or-switch responses simply using Fnonpar. For all simulations,
we omitted additional noise to avoid introducing additional factors that might
affect the neural state analyses. As a result, for each model we could only simulate
one population response for each target pair (or for each target in the case of the
stay-or-switch model).

Dual representation index. Here we aimed to construct a single-valued metric on
the Proximity space (as seen in Figs. 3–5) to distinguish between dual repre-
sentations and single representations. We defined the DRI on two Proximities Prox
(S,a) and Prox(S,b) as:

DRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ProxðS; aÞ½ �2þ ProxðS; bÞ½ �2
2

s

� Prox S; að Þ þ Prox S; bð Þ
max Prox S; að Þ;Prox S; bð Þð Þ � 1

� �

The formula for DRI involves the multiplication of two terms. The first term
returns higher values for points farther from the origin, and the second for points
close to the diagonal. The final DRI metric is approximately equal to min(Prox(S,
a), Prox(S,b)) but the second term skews it to higher values for points close to the

diagonal. This property makes it better able to differentiate between dual-target or
averaged-plan representations (points close to unity; Fig. 4c, f) and single-target
representation states (points close to the axes; Fig. 4i).

Reaction time correlation. We defined reaction time as the time elapsed from the
Go cue to the time at which the hand speed exceeded 5 cm s−1. The average peak
speed was 23.9 cm s−1, with 95% falling between 12.7 and 43.9 cm s−1.

We used a linear mixed effects model to test for a general correlation between
reaction time and ΔProximity across all reach directions and sessions. We used the
fitlme function in Matlab (Mathworks) with reaction time as the response variable,
ΔProximity as the predictor variable, and reach direction (separated by session) as
the grouping variable, with uncorrelated random effects for intercept and
ΔProximity.

Code availability. Custom Matlab code used in the manuscript can be provided
upon reasonable request.

Data availability
Relevant data will be made available for further analysis upon request.
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