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Abstract: Although gene–environment interactions are known to play an important role in the
inheritance of complex traits, it is still unknown how a genotype and the environmental factors result
in an observable phenotype. Understanding this complex interaction in the pathogenesis of diabetic
retinopathy (DR) remains a big challenge as DR appears to be a disease with heterogenous phenotypes
with multifactorial influence. In this review, we examine the natural history and risk factors related to
DR, emphasizing distinct clinical phenotypes and their natural course in retinopathy. Although there
is strong evidence that duration of diabetes and metabolic factors play a key role in the pathogenesis
of DR, accumulating new clinical studies reveal that this disease can develop independently of
duration of diabetes and metabolic dysfunction. More recently, studies have emphasized the role
of genetic factors in DR. However, linkage analyses, candidate gene studies, and genome-wide
association studies (GWAS) have not produced any statistically significant results. Our recently
initiated genomics study, the Diabetic Retinopathy Genomics (DRGen) Study, aims to examine the
contribution of rare and common variants in the development DR, and how they can contribute to
clinical phenotype, rate of progression, and response to available therapies. Our preliminary findings
reveal a novel set of genetic variants associated with proangiogenic and inflammatory pathways that
may contribute to DR pathogenesis. Further investigation of these variants is necessary and may lead
to development of novel biomarkers and new therapeutic targets in DR.
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1. Introduction

In 1996, a group of researchers reported that a cohort of 25 individuals remained uninfected with
human immunodeficiency virus type 1 (HIV-1) in spite of multiple high-risk sexual exposures [1].
How did they get “protected” in spite of the environmental risk factors? This resistance to the virus was
attributed to a protective mutation in the C-C Motif Chemokine Receptor 5 (CCR5) gene, a co-receptor for
HIV-1 [2]. People who carry this gene mutation are thereby protected from the deadly infection because
the mutation results in a 32 base-pair deletion rendering CCR5 undetectable on the cell surface and is
therefore impenetrable by the virus in homozygous individuals. Based on this mechanism, a variety
of novel anti-HIV strategies ranging from oral CCR5 antagonists to the controversial RNA-guided
clustered regularly interspaced short palindromic repeats genome editing (CRISPR/Cas9) of CCR5
have been explored [3]. This kind of genetic mutation that protects one against disease raises the
fundamental question about how genotype, the genetic makeup of an organism, determines its phenotype,
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the observable characteristics, that are to some extent, controlled by environmental variables. It is in
this way that identical genotypes can express different phenotypes as the result of unique interactions
with the environment, much like we see in cases where both twins do not always manifest genetically
determinable disease.

We have come a long way from the days of Gregor Mendel, a monk who did the most
important biology experiments in a monastery garden of pea plants and discovered the laws of
heredity. Since then, we have gone from the discovery of genes, to the discovery of DNA by
Watson and Crick, to the completion of the Human Genome Project. However, it was Theodosius
Dobzhansky, a Ukrainian biologist at Columbia University, who first noted that genotypes were
not the sole determinants of phenotypes, but the environment also contributed to the organism’s
physical attributes [4,5]. This fundamental concept highlights important equation in biology:
Genotype + Environment = Phenotype. Today, it is widely accepted that gene–environment interactions
play a fundamental role in the inheritance of complex traits in both health and disease. However,
precisely how a genotype and the environmental cues lead to an observable phenotype, remains to
be elucidated. Many questions remain: In the presence of a gene mutation, what is the likelihood
that disease will develop? Is the environment sufficient to cause phenotypic changes? Are “external
triggers” on the genotype necessary for phenotype changes to manifest? Thus, this equation can be
further modified into: Genotype + Environment + “External Triggers” = Phenotype. The breast cancer
type 1 gene (BRCA1), first discovered in 1994, demonstrated this phenomenon that genotypes require
environmental cues and external triggers to manifest into an observable phenotype [6,7]. In this case,
a mutant BRCA1 gene is not sufficient to increase the risk of breast cancer and thus not all women
carrying the BRCA1 mutation develop cancer [8]. These genes, having incomplete “penetrance,”
only become expressed when there are “external triggers” present.

2. Role of Genetic Variance in Complex Diseases

In the last decade, the field of genetics has provided new frontiers in investigating mechanisms
of human disease. The identification of novel genetic variants that influence pathogenesis not only
yield promise of efficacious therapeutic targets but also give rise to a path toward disease prevention.
The ophthalmology field in particular has already witnessed milestones leading to direct clinical
translation of genomic discoveries. For instance, genetic variant information has been used to identify
genotype-phenotype links such as the HF1/CFH polymorphism conferring 50% risk in age-related
macular degeneration [9–12]. Moreover, restoration of vision is now achievable via targeted gene
therapy as in cases of Biallelic RPE65 mutation-associated retinal dystrophy [13]. More recently,
gene mapping has been utilized to identify novel genetic variants underlying diabetic retinopathy
(DR) [14–20]. However, only weak associations have resulted. Although DR-associated genes have yet
to be confirmed, these early findings represent the initial groundwork and may be a preview of the
complexity underlying DR genetics.

Understanding the fundamental role of genetic variance in complex diseases has been historically
difficult [21,22]. In the case of DR, the complexity of this disease presents a unique challenge because
it manifests with heterogenous phenotypes, has a myriad of biochemical pathways associated, and
is a complication of another complex disease (diabetes). However, these challenges are not unique
to retinopathy. Importantly, the successful identification of genetic associations in other similarly
complex diseases have been centered around phenotypic variation [23–25]. By carefully identifying
and leveraging heterogenous phenotypes found in a particular disease, key variants conferring risk
have been identified and have furthered our understanding of disease pathogenesis.

However, relatively little work has been carried out to delineate phenotypes in the study of DR
genetics. We speculate lack of emphasis on the phenotypic variation as the major obstacle in elucidating
the role of genetic variance in this disease. Thus, in this review, we examine the natural history and
risk factors associated with DR, emphasizing rare and discrete clinical phenotypes that manifest in
retinopathy. Additionally, we propose how a careful delineation of clinical phenotypes in DR can be
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leveraged to answer questions that have yet to be addressed but cannot be explained by our current
understanding of the risk factors associated. Lastly, we introduce our genomics initiative: Diabetic
Retinopathy Genetics (DRGen) Study, a multi-center collaborative effort aimed at the identification of
rare and common genetic variants associated with the distinct clinical phenotypes and pharmacological
responses observed in DR patients.

3. Natural History and Clinical Phenotypes of Diabetic Retinopathy

Diabetic retinopathy (DR) is the most common microvascular complication of diabetes. At present,
nearly 100% of patients with type 1 diabetes and approximately 60% of patients with type 2 diabetes
will develop some form of retinopathy within the first two decades of diabetes onset [26]. Large-scale
epidemiological studies show that duration of diabetes and total glycemic exposure are the strongest
risk factors for DR [27,28]. As a result, there is tremendous emphasis centered around intensive
glucose management. However, while the role of glucose control has been demonstrated in slowing
disease progression, accumulating clinical studies reveal DR can develop independently of metabolic
dysfunction [29–31]. Additionally, emerging data on continuous glucose monitoring systems, indicate
that risk factors not including average glucose value (HbA1c) are involved in chronic macro- and micro-
complications of diabetes, challenging the canonical role of glucose as a major cause to the onset and
progression of retinopathy [32]. Currently, the precise mechanisms underlying pathogenesis are not
well understood. The precedence, complexity, and prognosis of debilitating vision loss emphasize the
need to search for other factors contributing to DR.

When the advent of the ophthalmoscope first enabled visualization of macular anomalies,
the causal relationship between retinal complications and diabetes was speculative [33]. It would take
14 years from the first observation until histopathological proof would emerge, ultimately solidifying
the causal relationship between retinal complications and diabetes [34]. Later, the discovery of insulin
would transform diabetes care, providing the first effective treatment for diabetes management and
consequently increasing the prevalence and phenotypic diversity of DR (and other complications) [35].
Recognizing the need to classify the diverse phenotypes, the Airlie House Symposium (1968) gave rise to
a sophisticated system, which is still used today. Based on fundus photographs, a modified Airlie House
classification, distinguishes clinical features on a scale ranging from no disease to severe retinopathy [36].
Generally, DR is considered to progress from no disease, to nonproliferative diabetic retinopathy
(NPDR), culminating in the more advanced proliferative diabetic retinopathy (PDR) [37,38]. This
classification system additionally includes distinguishing features of diabetic macular edema (DME)
including a subset of mild, moderate, and severe cases that can occur concurrently or independent of
either NPDR or PDR. Once a diagnosis is established, disease progression rates vary widely between
individuals [39–41].

3.1. Nonproliferative Diabetic Retinopathy (NPDR)

Mild nonproliferative diabetic retinopathy (NPDR) is the earliest stage of diabetic retinal disease
(Figure 1A). After a variable period of no retinopathy typically lasting 8–10 years, the first detectible
sign of disease consists of a single microaneurysm with no other visible lesions or abnormalities
(Figure 1B). The selective loss of retinal pericytes in the retinal capillaries, a hallmark of early DR, results
in focal outpouching and possible endothelial cell proliferation [42]. Mild NPDR is left untreated,
with careful annual follow-up examination to monitor disease progression. As the disease progresses
into moderate NPDR, additional microaneurysms will appear along with other vascular changes like
intraretinal hemorrhages and hard exudates (Figure 1C). During the more severe NPDR, more than 20
intraretinal hemorrhages can be observed throughout the entirety of the retina along with other features
like venous beading and intraretinal microvascular anomalies (IRMA) (Figure 1D). Patients with severe
NPDR are at a 52% increased risk to advance to proliferative diabetic retinopathy (PDR) within one
year [43].
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Figure 1. Stages of Progressing Nonproliferative Diabetic Retinopathy (NPDR). (A) Fundus photograph
of a retina with no retinopathy observed during the first 10 years of diabetes. (B) In Mild NPDR, the
first detectible sign of disease consists of a single microaneurysm (arrow, inset). (C) In moderate NPDR,
retinal hemorrhages and hard exudates (circled) may be observed. (D) In severe NPDR, >20 intraretinal
hemorrhages may be observed throughout the retina. Venous beading and intraretinal microvascular
anomalies (IRMA) may be also seen (arrows).

3.2. Proliferative Diabetic Retinopathy (PDR)

The proliferation of new vessels, termed neovascularization, is the major structural change
evident in proliferative diabetic retinopathy (PDR; Figure 2A). Newly formed vessels growing on
the surface of the retina, can easily bleed into the vitreous cavity, causing preretinal and vitreous
hemorrhage and further heightening the risk for vision loss (Figure 2B) [44,45]. In more severe cases,
the fibro-vascular tissue can grow along with vessels, and contract causing traction retinal detachment
(TRD; Figure 2C). Vision loss in PDR patients can be halted by one of the several available treatment
options (anti-vascular endothelial growth factor (VEGF) injections, panretinal photocoagulation laser,
or pars plana vitrectomy) [46–49]. PDR occurs in about 50% of patients with type 1 diabetes, and about
10% patients with type 2 diabetes after 15 years of duration of diabetes [26,27]. It has been observed
that even in spite of longer duration of diabetes (up to 50 years), the prevalence of PDR in diabetics
remains at 50% in type 1 diabetics. Why the other 50% patients do not develop PDR in their lifetime
remains unknown.
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Figure 2. Progressive Stages of Proliferative Diabetic Retinopathy (PDR). (A) The proliferative stage of
diabetic retinopathy is marked by neovascularization, visible on the optic nervehead (black arrow).
Additionally, preretinal hemorrhage on the superior aspect of the nerve can also be seen (white arrow).
(B) A subhyaloid hemorrhage (white arrows) manifests with boat-shaped configuration as it is trapped
in the potential space between the posterior hyaloid and the internal limiting membrane. Preretinal
hemorrhages can also be observed (black arrows). (C) Another complication occurring in this stage is
the formation of a fibrovascular band along the superotemporal arcade, which can contract, causing
tractional retinal detachment (white arrows).
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3.3. Diabetic Macular Edema (DME)

Diabetic macular edema (DME) is the leading cause of vision loss among diabetics [50–52].
Characterized by the breakdown of the blood–retinal barrier (BRB) resulting from pericyte loss,
basement membrane thickening, and breakdown of endothelial cell junctions, DME can develop
independently at any stage of DR (nonproliferative and proliferative) [53,54]. The severity (mild,
moderate, or severe) is based on a combination of observable factors. In the mild and moderate
stages, hard exudates (deposition of lipids from plasma), and capillary lesions resulting in leakage
from plasma, form distant from the macula (non-center-involving DME), as confirmed by optical
coherence tomography (OCT; Figure 3A,B) [55]. As severity progresses through the moderate stage,
increased retinal thickening and hard exudates begin to encroach the macula (center-involving DME),
causing vision loss (Figure 3C,D). Severe DME results when capillary leakage and increasing number
of center-involving hard exudates lead to extensive destruction of the BRB [55]. In patients with
non-center involving DME, because there is no vision loss, the treatment is often observation though
focal/grid laser photocoagulation may be offered. In patients with center-involving DME, the treatment
option depends on the visual acuity as currently recommended by the Diabetic Retinopathy Clinical
Research Network (DRCR.net) protocol V [56]. With visual acuity of 20/20–20/25, the recommendation is
observation, whereas if it reaches or exceeds 20/30, the first line of treatment is intravitreal anti-vascular
endothelial growth factor (anti-VEGF) injections. The incidence of DME after 10 years of diabetes is
20.1% in type 1 diabetics, 25.4% in type 2 diabetics requiring insulin, and 13.9% in type 2 diabetics
not requiring insulin, as reported by the Wisconsin Epidemiologic Study of Diabetic Retinopathy
(WESDR) [57].
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Figure 3. Non-center and Center Involving Macular Edema. (A) Optical coherence tomography (OCT)
image of the macular region of the retina showing non-center involving macular edema (Central
retinal thickness, 244 µm). (B) Corresponding fundus photograph of (A) showing characteristic
exudates formed outside of the macular region (marked by dashed circle). (C) OCT image of center
involving macular edema with cystic changes within the retina (Central retinal thickness, 453 µm).
(D) Corresponding fundus photograph of C showing characteristic hard exudates and edema formed
inside the macula (marked by dashed circle).

4. Heterogeneity of DR Phenotypes

The classic view of DR suggests that this disease manifests slowly from no DR for a period of
8-10 years, to mild NPDR, to moderate NPDR, and culminates in PDR. However, DR has variable
phenotypes with different progression rates. Not all diabetics develop vision threatening complications
such as in the case of PDR or DME. Similarly, not all diabetics develop DR even in spite of the long
duration of diabetes. What are the other factors which may influence the rate of progression or severity
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of the DR phenotypes? In this section, we discuss the variation of the natural course of the disease
which cannot be solely be explained by the control of systemic factors, or duration of diabetes.

4.1. Are PDR and DME Two Distinct Diseases?

This question of “phenotypic heterogeneity” in DR remains a mystery. Vascular endothelial
growth factor (VEGF), a potent proangiogenic and vasopermeability factor, plays a key role in
neovascularization (PDR) and hyperpermeability (plasma leakage in DME) [53,54,58]. Yet, cases of
PDR patients with extensive new vessels who have no macular edema in spite of high VEGF levels
have been reported (Figure 4A,B). If VEGF causes increased leakage, why do not all PDR patients
present with DME at the same time? Conversely, cases of DME patients with hard exudates and
leakage, but no sign of neovascularization in spite of high levels of VEGF have also been reported.
If VEGF causes neovascularization, why do not all DME patients develop neovascularization or PDR
at the same time? This unique phenotypic heterogeneity in DR raises many questions.
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Figure 4. Coexistence of PDR and DME. (A) Fundus photograph of a PDR patient one day after
vitrectomy with endolaser showing the macula without any exudates or edema, (B) Fundus photograph
of another PDR patient with laser marks showing absence of any macular edema, (C) Pie chart showing
co-existence of proliferative diabetic retinopathy (PDR) and diabetic macular edema (DME). In PDR
patients, concurrent DME features were seen in only 15.7% of patients, the remaining 84.3% of PDR
patients did not have any concurrent DME. (D) In DME patients, 79.7% of patients did not have any
concurrent neovascularization. The remaining 20.3% of DME patients did not exhibit features of PDR.
CI; Confidence Interval.

PDR and DME have unique characteristics (neovascularization and retinal thickening, respectively)
that clearly demarcate each phenotype. While DME and PDR can and do occur together, they mostly
progress independently of each other, if they manifest at all. Our own retrospective cross-sectional
study of 165 eyes with a new diagnosis of PDR (active neovascularization) shows that only 15.7% of
eyes of patients with PDR had concurrent DME (95% CI 9.5%–21.8%) (Figure 4C) [59]. The confidence
interval (CI) gives an estimated range of values which is likely to include an unknown population
parameter. Similarly, only 20.3% of eyes of 166 eyes with new diagnosis of DME had concurrent
retinal neovascularization, or PDR (95% CI 13.5%–27.1%) (Figure 4D). Stratified risk factor assessment
demonstrated that neither gender, age, type of diabetes, HbA1C, mean arterial pressure nor LDL
control were statistically significant in the development of DME in the PDR patients, or PDR in DME
patients. While the genetic evidence that PDR and DME are indeed two distinct diseases has yet to
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emerge, our findings reveal that the clinical phenotype of DME can manifest independent of PDR
development. At this point, it remains unclear why DME can appear in any stage of DR, but this
phenomenon indicates that each disease phenotype has independent, perhaps genetic, risk factors.
Indeed, studies already indicate that there may be genetic risk factor for DME. Recently, Gao et al.
found that non-Hispanic blacks were three times as likely to develop DME compared to non-Hispanic
whites [60].

4.2. Variable Drug Response to Treatment

The efficacy, as evaluated by many clinical trials, has made intravitreal anti-VEGF therapy a
valuable treatment for DR in treating both PDR and center-involving DME [61–63]. However, despite
the success of anti-VEGF therapy in restoring visual acuity in PDR, success has been limited in
treatment for DME, with results from the DRCR Protocol I trial showing persistent macular thickening
in 50% of patients [62]. A key feature of DME is the disruption of the blood-retinal barrier, whereas
neovascularization is the hallmark of PDR. While VEGF has been shown to play a central role in
both DME and PDR development, the variable treatment response of DME to anti-VEGF therapies
indicate that these phenotypes may be two distinct diseases, each driven by distinct molecular
mechanisms [64,65].

The response to anti-VEGF therapy is distinct in PDR as compared to DME (Figure 5). Nearly all
PDR patients respond well with complete regression of new vessels with one or two anti-VEGF
injections, whereas such a robust effect is rarely seen in DME patients [66]. The response of anti-VEGF
drugs in DME is variable with only 30–40% patients responding well to treatment [56,62]. The variability
in treatment responsiveness or differential efficacy of anti-VEGF drugs in PDR and DME suggests that
there may be separate molecular pathways involved in the development of each phenotype.
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Panretinal Photocoagulation VH, Vitreous hemorrhage; TRD, Tractional Retinal Detachment.
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All three major trials (DRCR, RIDE/RISE, VISTA) with anti-VEGF drugs have shown that only
33-40% of DME patients show 3-line visual acuity improvement [67–69]. A post hoc analysis of
the DRCR Protocol I data reveals that 30–40% of patients with DME do not completely respond to
anti-VEGF therapy [56,62]. Inter-individual variation in responsiveness (‘good’ vs. ‘poor’ responders)
to anti-VEGF therapy in DME may be attributable in part to genetic variants. Interestingly, in a recent
small study, the presence of the VEGF polymorphism C634G predicted a ‘good response’ outcome to
anti-VEGF therapy [70]. However, these findings have yet to be confirmed in follow-up studies.

5. Clinical Evidence of Genetic Factors in DR Phenotypes

Multiethnic cohort studies have estimated a higher prevalence (two-fold) of diabetes and
retinopathy in Natives (American Indians/Alaskan) and Hispanics as compared to non-Hispanic
Whites [71–73]. These ethnic differences can be further seen within the same ethnic group where
the Pima Indians in Arizona have the highest prevalence of diabetes along with Navajo and Sioux
Natives [74–76]. These observations were independent of glycemic control and measured environmental
factors. Additionally, In the Los Angeles Latino Eye Study (LALES), Native American ancestry in
Latinos with type 2 diabetes was found to be significantly associated with severe NPDR or PDR [60].
The reason for disparities in rates and severity of DR in these ethnic groups remains unknown.

Ethnic Differences in Disease Manifestation

In our own study of ethnic differences in DR, we studied a series of 1458 fundus photographs of
American Indian and Alaska Native populations served by the Indian Health Service. Our analysis
determined that the majority (90%) of DME cases in American Indian/Alaska Natives had mild, “focal”
type, non-center-involving DME with few hard exudates and no central retinal thickening (Horton
and Das, unpublished observations, 2017). The remaining 10% of patients had the “diffuse”, center
involving DME, which is more prevalent among Hispanics. These differences in the type of DME
(focal or diffuse) play an important role in treatment response. Focal DME treatment with focal/grid
photocoagulation is needed in the majority of these patients and rarely requires anti-VEGF therapy.
However, those with diffuse center-involving DME are typically treated with anti-VEGF injections.

6. Are Systemic Factors Always Related to Severity of DR?

In 1984, the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, III) revealed that
the severity of retinopathy was related to longer duration of diabetes, younger age at diagnosis,
higher glycosylated hemoglobin levels, higher systolic blood pressure, use of insulin, presence of
proteinuria, and small body mass [26,27]. Years later, in 1993, the Diabetes Control and Complications
Trial (DCCT), showed that intensive glycemic control could prevent development as well as slow down
the progression of microvascular complications, establishing glycemic control as a key risk factor for
DR progression in type 1 diabetes [28]. Shortly after in 1996, the Early Treatment Diabetic Retinopathy
Study (ETDRS, Report 22) demonstrated that elevated serum lipid levels were associated with the
presence of retinal hard exudates in persons with retinopathy, and suggest that regulating lipid levels
may decrease the risk of hard exudate formation and associated vision loss in patients with DR [77].
Then in 1998, the UK Prospective Diabetes Study (UKPDS) Group showed that tight control of blood
pressure reduced the risk of DR progression and deterioration in visual acuity, confirming original
findings of the link between hypertension and DR [78].

Together, these landmark epidemiological studies, and numerous confirmatory studies thereafter,
helped solidify duration of diabetes, hyperglycemia, hypertension, and hyperlipidemia as the major
risk factors associated with DR, establishing metabolic dysfunction as a key determinant of this
disease. However, while these systemic factors correlate with slowed progression, emergent studies
are consistently showing progression of DR independent of metabolic dysfunction. In fact, a closer
statistical analysis at the original findings from the DCCT, by the DCCT group, reveal that the total
glycemic exposure (HbA1C and duration of diabetes) accounts for only 11% of conferred variation
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in risk for retinopathy, and “other factors” may be responsible for the rest 89% of the risk variation
among subjects independent of HbA1C levels [79]. These “other factors” have been attributed to
genetic and environmental factors that may determine the overall risk of developing complications.
Thus, the proceeding studies have been selected to invite readers to challenge the current understanding
of the metabolic risk factors associated with DR, and point to other factors as determinants of DR.

6.1. Duration of Diabetes

The duration of diabetes is the most consistently cited risk factor associated with the development
of DR. The WESDR study revealed that prevalence of any DR was ~97.5% in type 1 diabetics and
80% in type 2 diabetics in persons with diabetes with duration of diabetes of 15 years or more [26,27].
Despite large-scale studies from the WESDR, the Joslin 50 Year Medalist Study, in which type 1 diabetes
patients who have survived more than 50 years of diabetes (Medalists) are followed, reports that
about 40.2% of patients did not develop any retinopathy, or developed mild NPDR and only 48.5% of
patients in this cohort advanced to PDR in their lifetime [31]. A high proportion of the Medalists also
remained free from other diabetic complications such as nephropathy (86.9%), neuropathy (39.4%) or
cardiovascular disease (51.5%). Further, there was no significant relationship between the longitudinal
HbA1C levels or blood pressure levels and the complications. These studies not only challenge
duration of diabetes as a strong predictor for retinopathy, but also indicate that “protective factors”,
perhaps genetic or environmental, which may exist and could possibly contribute to the slowing or
prevention of retinopathy. Interestingly, proteomic analysis of retinas and vitreous in this same cohort
has already identified photoreceptor-secreted retinol binding protein 3 (RBP3) as a protective factor
from advanced DR [80].

6.2. Hyperglycemia

Since the initial findings by DCCT, numerous studies reveal that the effect of intensive glucose
control on the progression of retinopathy is not understood [29–31]. The Action to Control
Cardiovascular Risk in Diabetes (ACCORD) Eye Study, in particular, was forced to discontinue
their glycemia trial after 3.7 years because of higher mortality rates in the tight glucose control
cohort (HbA1c < 6.0%), indicating that although tight control is beneficial in slowing progression of
retinopathy, too rigid of a control may be detrimental and have severe cardiovascular consequences [81].
The inconsistency of the hyperglycemia as a determinant of progression to the vision threatening DR
phenotype was reported in the LALES Study in which the HbA1C level was not found to confer any
additional risk in progression to the PDR phenotype in a cohort of 1115 Latino diabetic patients [30].
In another prospective study of a group of 380 African Americans, the association between HbA1C
level and PDR did not reach statistical significance [82]. Interestingly, both these studies found the
duration of diabetes was consistently the strongest risk factor in progression to PDR. Similarly, several
studies of DME patients have shown that there is no statistically significant difference in average HbA1c
levels in patients with and without DME [83–85]. If higher HbA1c levels were strongly correlated
with DME severity, one would be inclined to think higher HbA1c should lead to increased macular
thickness. However, these studies refute this idea and further question the role of hyperglycemia in
disease progression.

6.3. Hypertension

Blood pressure has been shown to be a strong risk factor for DR. The UK Prospective Diabetes
Study Group (UKPDS) of type 2 diabetic patients showed that tight blood pressure control (achieved
with use of angiotensin converting enzyme inhibitor or β blocker), compared with less tight control
(no treatment), demonstrated reduced risk for progression of DR by 34% [78]. However, the benefit of
controlling blood pressure has not been confirmed in other large studies [83,86,87]. In the ACCORD
Eye Study, if patients were normotensive at the onset of DR, there was little benefit noted in reduction
of retinopathy in decreasing systolic blood pressure (<120 mmHg) [81]. Additionally, the Action
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in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation
(ADVANCE) study determined that there was no evidence of a beneficial effect of intensive blood
pressure control on the progression of diabetic retinopathy [88]. In several studies, the blood pressure
level was not significantly associated with the development of DME [83,86].

6.4. Hyperlipidemia

Lipid levels and their association with DR have been studied extensively. Observations from
the ETDRS evaluating the relationship between serum lipid levels, retinal hard exudates, and visual
acuity in patients with retinopathy demonstrated that patients with either elevated serum cholesterol
or serum low-density lipoprotein cholesterol levels, were twice as likely to have retinal hard exudates
as compared to patients with normal levels [77]. Additionally, the ETDRS reported that these patients
were also at higher risk of developing hard exudates during the course of the study. These findings
solidified elevated serum lipid levels as a risk factor for DR. However, more recent studies propose
that there is no relation of lipid levels to DR [83,86,87,89]. A meta-analysis of 21 randomized controlled
trials investigating the correlation between DME and dyslipidemia, could not affirm an association
between lipid levels and DME [90]. This study additionally revealed that serum lipid control had no
effect on DME progression as demonstrated by similar degree of severity in DME patients given lipid
lowering treatment compared to those given placebos.

In summary, all the preceding studies challenge the widely accepted risk factors and their
association to DR. Conversely, they also point to the possibility of other factors, perhaps genetic,
involved in the incidence, severity, and progression of the DR phenotypes. Furthermore, just as genetic
factors may be involved in ‘protecting’ some diabetics from developing the disease, they may also
dictate at what stage DME or PDR will appear, if at all.

7. Early Studies Point to the Role of Genetics in DR

The first indication of the role of genetics in DR came from early familial clustering studies,
published well before the 1984 WESDR study implicating metabolic factors as key determinants of
DR [91]. In this study of concordant (both diabetic) and discordant identical twins (only one diabetic)
with at least 15 years duration of diabetes, findings indicated that genetics was a heritable trait for
retinopathy. This was determined after observations of severe retinopathy with strikingly similar
progression were seen among 12 of 13 concordant twin pairs compared to milder retinopathy in 5 of
10 discordant twins [91]. Additionally, the underlying role of genetics has been studies in Mexican
American and non-Hispanic white populations, demonstrating higher prevalence of severe diabetic
retinopathy among Mexican Americans compared to non-Hispanic whites, even after logistic regression
control for duration of disease, hyperglycemia, age, and blood pressure [72,92]. Additional evidence of
the underlying role of genetics in DR was further seen in the incidence of severity, where only 50% of
type 1 diabetic patients progress to the more advanced proliferative stage of retinopathy (PDR) in their
lifetime [27]. In the remaining 50% of these patients, the disease did not progress further in spite of the
long duration of diabetes.

8. Leveraging Gene Mapping and Previous Genetic Studies

Advancements in technology have yielded an unprecedented boom in the study of the role
of genetics in human disease [93]. Prior to single nucleotide polymorphism (SNP) genotyping,
genetic studies of DR were rooted in linkage analysis and candidate gene associations [74,94–98].
Today, microarray/biochips are used to identify single nucleotide changes in a DNA sequence (SNPs),
and attributing them to increased susceptibility for disease [99,100]. Here, we have chosen to highlight
the findings of the largest, to our knowledge, DR genome-wide association study (GWAS) to date.
In this recent study, eight European (n = 3,246) and seven African American cohorts (n = 2,611)
including European, Asian, and Hispanic subjects were meta-analyzed, with and without liability
threshold modeling for glycemic control and duration of diabetes [101]. Using the threshold for
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genome-wide significance (p < 5 × 10−8), several SNPs where identified among PDR and no DR cohorts
(rs115523882, rs139205645, rs17791488, rs184340784, rs142293996, rs17706958, rs80117617). The SNP
rs115523882, seen in the African American PDR group, was found to be the most significant of the
cohorts studied (p = 5.37 × 10−9). The authors highlight its location near the GOLIM4 gene, which is
implicated in changes in the Nlx3 binding motif, a known blood transcription factor and thereby
infer its relevance to DR. However, these findings could not be reproduced in replication cohorts.
Additional variants identified were further examined for enriched protein networks among the loci
with highest statistical evidence for association with DR, finding only one variant in the European
discovery cohorts. However, the intronic variant in the nuclear VCP-like (NVL) gene identified also
failed to reach genome-wide significance after meta-analysis in the replication cohorts.

In the last decade, genetic mapping has been used to identify over 75 DR-associated gene
variants [102–104]. However, replicative studies in independent cohorts and confirmatory studies
demonstrating the effect of these variants are still pending. Of the variants identified thus far,
most have resulted in weak associations often attributed to the variability in case definitions of the
various phenotypes analyzed, not distinguishing phenotypes within and between studies (NPDR vs.
PDR, and/or DME), inconsistently defined controls, cohort heterogeneity (e.g., discovery and replication
samples coming from different ethnic populations), and sample size. An additional limitation of these
early studies is in the duration of diabetes of the cohorts studied, often limited to ~10 years in most.
Based on studies by the WESDR group, nearly 100% of with type 1 diabetes and approximately 60%
of patients with type 2 diabetes will develop retinopathy within the first 20 years of diabetes onset,
indicating that disease development or progression after 20 years of diabetes is highly unlikely [105].
Thus, studies should be limited to include only patients who had a minimum of 20 years diabetes as
controls, ensuring that a ‘null’ retinopathy diagnosis at the time studies are conducted is not a false
negative. This limitation is often acknowledged and attributed to lack of availability of patients who
meet these criteria.

Importantly, these studies provide a foundation for future approaches in the study of DR
genetics. By addressing these limitations, genetic mapping has the potential to unveil previously
unsuspected mechanisms underlying this disease which could be leveraged as novel therapeutic
targets. The following questions and concepts represent a series of observations that are of interest to
us. These questions, yet to be addressed in the field, illustrate how the role of genetics can be used to
strengthen our understanding of DR pathogenesis.

9. Nonsequential Progression of DR

The classic view of DR suggests that this disease manifests at different rates and in discrete stages
of increasing severity (no DR, NPDR, to PDR) [37,38]. Based on our clinical observations and large
epidemiological studies, we can infer that not every DR patient goes through the same sequence of
progression to different DR phenotypes (Figure 6). After a period of no DR for about 8–10 years,
one develops mild NPDR followed by moderate NPDR, out of which only 50% of type 1 diabetics
and 20% of type 2 diabetics develop PDR [26]. It is unclear as to why not all NPDR patients develop
PDR, despite longer duration of diabetes. Once PDR develops, ~15% of PDR patients may develop
concurrent DME, while the remaining 85% of PDR patients never develop any macular edema [59].
Similarly, not all moderate NPDR patients develop DME. As the hemoglobin A1C level is not always
significantly associated with development of PDR or DME, it is possible that further progression from
mild-moderate NPDR to predominantly exudative changes (DME) or predominantly neovascular
changes (PDR) are regulated by genetic determinants. Based on our results and other published
work, we hypothesize, as previously noted, that a small subset of diabetic patients are protected, and
further progression, if occurring, is slow and only advances to mild NPDR in spite of 20 years or
longer duration of diabetes (Das, unpublished observations, 2017) [31]. These protected individuals
are known as “extreme phenotype” cases of no DR.
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Figure 6. Proposed Course of Progression of Diabetic Retinopathy. Based on our clinical observations
and large epidemiological studies, we propose that not every DR patient progresses through disease
in the same sequence of events. After a period of no diabetes for 10 years, mild NPDR develops
and over time advances to moderate NPDR. In some cases, there is no further disease progression.
However, 30% of cases develop concurrent DME. About 50% of type 1 diabetics and 20% of type 2
diabetics develop PDR. In PDR patients, 15% develop concurrent macular edema while 85% never
develop macular edema. Additionally, about 1–5% diabetic patients never develop retinopathy despite
>20 years of diabetes (“Extreme” phenotype). Red question marks indicate divergence points which
may be influenced by genetic factors.

10. Diabetic Nephropathy and Retinopathy

Many similarities between kidney disease, including diabetic nephropathy (DN) and chronic
kidney disease, and DR exist. Often occurring in conjunction, DN and DR are both microvascular
complications of diabetes, multifactorial diseases, and both have heterogenous phenotypes.
Additionally, both are classically thought to progress in sequential stages of increased severity,
and sometimes exhibit ‘rare’ cases of non-sequential disease progression [106].

In DN, the disease typically progresses through five discrete stages with clearly demarcated
phenotypes ranging from renal hyperfunction with normoalbuminuria (stage 1), to microalbuminuria
(stage 2), to macroalbuminuria (stage 3), to renal failure (stage 4), culminating in end-stage renal
failure with fibrosis (stage 5) (Figure 7) [107]. As stage 1 of DN progresses to stage 2 microalbuminuria,
60% patients revert to stage 1. Further, only 30% of stage 2 patients progress to the next severe
stage 3 macroalbuminuria, which eventually progresses to stages 4 and 5. However, reports show
that some patients can directly progress from stage 1 directly to stage 5 without going through the
albuminuria stage. This rapid advancement in disease progression was shown to be genetically
determined [106]. In DR, a similar phenomenon can be observed where a patient develops mild NPDR,
progresses to moderate NPDR, and advances to PDR without ever going through the DME stage.
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Moreover, the features of DME can occur at any stage of the disease, independent of PDR, and point to
the possibility of DME and PDR being two distinct diseases.
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Figure 7. Diabetic Nephropathy has a Progressive and Continuous Heterogenous Phenotype. As Stage
1 (normoalbuminuria) of nephropathy progresses to Stage 2 (microalbuminuria), 60% of Stage 2 patients
may revert to Stage 1 while 30% of Stage 2 patients progress to Stage 3 macroalbuminuria. The disease
further progresses to Stage 4 (renal failure), culminating in Stage 5 (end Stage renal disease with fibrosis).
A small number of Stage 1 patients may advance directly to Stage 5 without any signs of albuminuria.
This progression may be genetically determined. In diabetic retinopathy, a similar phenomenon may
occur where genetic determinates may influence whether patients will advance to PDR and/or DME.

11. Diabetic Retinopathy Genomics (DRGen) Study

Recognizing the value of gene mapping as a tool to understand the underlying architecture of
disease, we have recently initiated the Diabetic Retinopathy Genomics (DRGen) Study, a collaborative
effort between University of New Mexico (UNM) School of Medicine and Harvard’s Joslin Diabetes
Center [108,109]. Using a well-defined, clinically supported phenotypic strategy, we seek to better
understand the role of rare variants in DR progression, protection, and variable response outcome of
anti-VEGF treatment in DME. Using whole exome sequencing (WES) technology, the coding region
of all genes will be screened for associations with the clinical phenotypes of DR. Our interest lies in
genes known to be involved in inflammatory and angiogenesis pathways, both of which are known to
play a role in DR pathogenesis but have previously shown weak associations. A key feature of the
DRGen study is our stringent classification of phenotypes used for the comparison among the groups
of interest (1) no DR despite 25 or more years of diabetes, (2) severe PDR without concurrent or prior
DME history, and (3) DME without concurrent or prior history of PDR.

Using the aforementioned study design, two cohorts were selected from the DRGen study
population established at the UNM School of Medicine. Briefly, as a proof of principle, we analyzed an
‘extreme’ phenotype (no DR despite > 25 years of diabetes; n = 6) and an ‘advanced’ PDR phenotype
(PDR case with history of vitreous hemorrhage within 15 years of diabetes; n = 6). All subjects
were matched for gender and age. After obtaining informed consent, DNA was isolated from white
blood cells. WES was conducted using the SureSelect All Human XT v5 exome kit, analyzed on the
Illumina NovaSeq platform, followed by in-house downstream analysis pipeline to align the sequence
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reads. The variant list was custom filtered with minor allele frequency (MAF) < 5.0, and VCFtools
(v0.1.13) was used to calculate fixation index (FST) statistics. FST analyses captured the population
genetic distance between these two phenotypes and identified 114 genes, which showed at least one
variant that had FST values of greater than 0.8 (FST > 0.8) for the two phenotype comparison which
demonstrates that these genes may play an important role in the pathogenesis of DR [110,111].

The enrichment of “risk” alleles in cases with MAF < 0.05% was tested, identifying four
heterozygous missense variants and a frame shift mutation in the PDR group. Our preliminary
findings revealed novel genetic variants Kruppel Like Factor 17 (KLF17), Zinc Finger Protein 395
(ZNF395), Myeloid cell surface antigen (CD33), Pleckstrin Homology Domain-Containing Family G
Member 5 (PLEKHG5), and Collagen Type XVIII Alpha 1 Chain (COL18A1) in the ‘advanced’ PDR
cohort (Figure 8A). These genes have been previously shown to be involved in the angiogenesis
and inflammatory pathways, both implicated in DR progression [112–116]. Our analysis of the
rare coding variants in our ‘extreme’ cohort (no DR) revealed variance in the NK2 Homeobox 3
(NKX2.3) gene (Figure 8B). NKX2.3 is a member of the NKX transcription factor family that has
been shown to regulate genes involved in immune and inflammatory response, cell proliferation
and angiogenesis [117]. These variants have not been studied well in the context of DR. However,
our preliminary analysis of mRNA isolated from human retinal endothelial cells treated with high
glucose, show increased expression of COL18A, ZNF395, and PLEKHG5 (p < 0.0001), providing a clue
of the effect of hyperglycemia and inflammatory cytokines present in DR (Figure 9). Additionally,
our overexpression studies of NKX2.3 show that NKX2.3 plays a role in regulating cell-cell junctional
proteins, proangiogenic growth factors, and inflammatory markers involved in DR pathogenesis
(Figure 10). Further validation of these variants is necessary to confirm our findings in larger number
of patients with different DR phenotypes. Currently, the DRGen study is actively enrolling patients
with the defined phenotypes (“extreme” phenotype with no DR, DME and PDR).
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Figure 8. Newly Identified Genetic Variants Associated with Specific Phenotypes of Diabetic Retinopathy.
(A) Enrichment of the ‘risk’ allele in five candidate genes in cases of advanced PDR patients revealed a
disruptive in-frame deletion and four heterozygous missense variants. (B) A variant in the NKX2.3
gene was shared in the “extreme” DR phenotype (No DR) group.
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Figure 9. Functional Validation of genes associated with Proliferative Diabetic Retinopathy. Human
retinal endothelial cells treated with advanced glycation end product-BSA (AGE, 500 µg, 3 days;
Sigma Aldrich, St. Louis, MO), macrophage conditioned medium (MCM, 1:1 ratio, 24 h), or high
glucose medium (HG, 30 mM, 7 days) revealed increased mRNA expression of COL18A1, ZNF395,
and PLEKHG5 in AGE and HG-treated cells. * p < 0.05. Bars indicate average ± standard deviation.
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Figure 10. NKX2.3 gene associated with ‘extreme’ phenotype leads to mRNA expression changes in
angiogenic and inflammatory markers. (A) mRNA expression of NKX2.3 was increased in human
retinal endothelial cells (HREC) using varying concentrations of PCDNA plasmid (lo: 5 µg + 3.75 µL,
hi: 5 µg + 7.5 µL; 24 h). (B) Overexpression of NKX2.3 in HRECs revealed increased mRNA expression
of cell-cell junctional proteins N-cadherin (N-cad) and occludin (OCLN). (C) Changes in pro-angiogenic
vascular endothelial growth factor (VEGF), angiopoietin 1 (Ang1) and angiopoietin 2 (Ang2) mRNA
expression were also observed. (D) Overexpression of NKX2.3 in HRECs also revealed increased
expression of inflammatory markers intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion
molecule-1 (VCAM-1), and cathepsin D (CTS D). * p < 0.05. Bars indicate average ± standard deviation.

12. Future Perspectives

The last ten years have represented a period of intensified molecular genetic research in the field of
DR. Warranted by the precedence, complexity, and potentially debilitating vision loss, many studies have
attempted to understand the underlying role of genetics in this disease. While clinical evidence indicates
that genetic factors are implicated in retinopathy, their precise role remains elusive. Nevertheless,
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continuous efforts remain focused on the identification of DR-associated novel genetic variants. For
some complex human traits, we are now reaching the point where we can make accurate predictions.
For example, based on the genomic sequence alone, complex traits such as height can be accurately
predicted within a centimeter [118]. Similarly, the risk for few diseases such as Crohn’s disease and
Parkinson’s disease may also be predicted. We are hopeful that similar level of accuracy may one
day be available to assess the risk of DR, the type of DR, the severity, and the response to available
therapies. These possibilities represent the “tip of the iceberg” for future care. However, arriving at a
place where precision medicine is commonplace will require evolving our approach in the way we
understand this disease.
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