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A B S T R A C T

Coronavirus disease 2019 (COVID-19) may have a metabolic origin given strong links with risk factors such as
lipids and glucose and co-morbidities such as obesity and type 2 diabetes mellitus. The severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike protein mediates viral cellular entry via the ACE2 receptor. The
cytoplasmic tail of this spike protein is heavily palmitoylated. Emerging studies suggest that SARS-CoV-2 alters
lipid metabolism in the lung epithelial cells by modulating peroxisome proliferator-activated receptor alpha
(PPARα), possibly contributing to lipotoxicity, inflammation and untoward respiratory effects. Disruption of this
process may affect palmitoylation of SARS-CoV spike protein and thus infectivity and viral assembly. COVID-19
is also increasingly being recognized as a vascular disease, with several studies noting prominent systemic en-
dothelial dysfunction. The pathogenesis of endothelial dysfunction may also be linked to COVID-19-mediated
metabolic and inflammatory effects. Herein, exercise will be compared to fenofibrate as a possible therapeutic
strategy to bolster resilience against (and help manage recovery from) COVID-19. This paper will explore the
hypothesis that exercise may be a useful adjuvant in a setting of COVID-19 management/rehabilitation due to its
effects on PPARα and vascular endothelial function.

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
currently shows no sign of disappearing on its own. Globally,
Coronavirus disease 2019 (COVID-19) cases have surpassed 21 million,
contributing to over 775,000 deaths. In the United States, the CDC
projects that COVID-19 will be a top 10 leading cause of death for the
year 2020. While we all eagerly await the development of a vaccine,
scientists and clinicians have begun exploring “off-label” use of various
drugs with that hope that strategic repurposing may help manage and
treat COVID-19 [1]. Fenofibrate (a peroxisome proliferator-activated
receptor alpha agonist) is one such medication that holds promise given
its favorable effects on inflammation and endothelial function [1].
Herein, exercise will be compared to fenofibrate as a possible ther-
apeutic strategy to bolster resilience against (and help manage recovery
from) COVID-19. This paper will explore the hypothesis that exercise
may be a useful adjuvant in a setting of COVID-19 management/re-
habilitation due to its effects on PPARα and vascular endothelial
function.

COVID-19 progression has been suggested to have a metabolic

origin given that elevated glucose and lipid levels are risk factors. The
SARS-CoV-2 spike protein mediates viral cellular entry via the ACE2
receptor (please see our previous paper on the possible role of exercise
as a mediator of ACE2) [2]. The cytoplasmic tail of this spike protein is
heavily palmitoylated (i.e. a 16 carbon fatty acid chain is added to
palmitate), a common post-translational modification that increases the
hydrophobic nature of a protein [3]. Emerging studies suggest that
SARS-CoV-2 alters lipid metabolism in the lung epithelial cells by
modulating PPARα, possibly contributing to lipotoxicity and untoward
respiratory effects [4]. PPARα belongs to the nuclear receptor (NR)
family and is considered a key transcriptional factor that regulates lipid
metabolism. PPARα is constitutively expressed in the lung. Not sur-
prisingly, alveolar epithelial cells have been shown to conduct fatty
acid oxidation, a function that serves a critical role in maintaining
optimal lung function [5]. Disruption of this process may affect pal-
mitoylation of SARS-CoV spike protein and thus infectivity and viral
assembly [3,4]. In response to pulmonary inflammation induced by li-
popolysaccharide (LPS) or TNFα, PPARα mRNA in the lung can be
reduced by 50–60% [6]. Subsequently, there may be substantial im-
pairment of fatty acid oxidation in alveolar epithelial cells contributing
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to diminished bioenergetics, epithelial cell apoptosis and acute lung
injury [5]. Moreover, PPARα-deficient mice have an exaggerated pul-
monary inflammatory response to LPS-induced inflammation [7]. Thus
reductions in PPARα from COVID-19 may be an important effector of
pulmonary inflammation and mechanistically involved in the patho-
genesis of acute lung injury [5].

Alveolar epithelial cells are not the only cell line important for gas
exchange and pulmonary inflammatory status. Pulmonary micro-
vascular endothelial cells also play a role in maintaining homeostasis.
In its quiescent state, the endothelium is anti-inflammatory and anti-
thrombotic. Emerging studies suggest that COVID-19 may be a vascular
disease, causing systemic endothelial activation and dysfunction [8].
Patients presenting with COVID-19 demonstrate elevated levels of von
Willebrand Factor and P-selectin with levels of thrombomodulin cor-
relating with mortality [8]. Endothelial cells express ACE2 receptors.
SARS-CoV-2 may cause endothelial cell infection, endothelialitis (i.e.
inflammation of the endothelium), apoptosis/pyroptosis and ultimately
microvascular dysfunction [9]. Unlike influenza, patients who die from
COVID-19 associated respiratory failure present with a distinct vascular
phenotype. Histologic analysis of pulmonary microvessels reveal diffuse
endothelial injury and disrupted endothelial cell membranes [10].
Thus, endotheliopathy may be a consequence of and contributor to the
pathogenesis of COVID-19 [8,11]. Like alveolar epithelial cells, pul-
monary endothelial cells express PPARα [12] and conduct fatty acid
oxidation which parenthetically is required for endothelial cell pro-
liferation [13]. Indeed, PPARα is considered an endogenous regulator
of endothelial colony-forming cells and circulating endothelial pro-
genitor cell fate [14]. Disruption of this process in the endothelial cell
(as described above) likely leads to inflammation and cytokine pro-
duction (i.e. cytokine storm syndrome), reduction of nitric oxide and
impaired vascular reactivity. Alterations in pulmonary vascular re-
activity may affect gas exchange (i.e. alveolar-capillary barrier dis-
ruption) and be partially responsible for ventilation-perfusion mis-
matches and hypoxemia seen with COVID-19 [11].

As alluded to previously, PPARα-activation has anti-inflammatory
effects mainly achieved via transrepression, a process whereby pro-in-
flammatory genes are downregulated. As such, use of the PPARα ago-
nists may serve a useful therapeutic role by helping to reverse the in-
flammatory and metabolic changes induces by SARS-CoV-2. A recent
study by Ehrlich et al found that the PPARα agonist fenofibrate pre-
vented phospholipid accumulation within SARS-CoV-2 infected cells,
blocking viral replication [4] Authors concluded that disrupting the
SARS-CoV-2 lifecycle with fenofibrate could prove an effective ther-
apeutic target in the ongoing battle against COVID-19. Fenofibrate has
been shown to suppress the downregulation of PPARα activation
caused by inflammation, attenuate cytokine production triggered by
LPS or TNFα [6,7], and improve fatty acid oxidation, preventing acute
lung injury [5]. Indeed, Fenofibrate itself has anti-inflammatory prop-
erties [15]. Fenofibrate may also have a favorable effect on vascular
endothelial function. Fibrates inhibit endothelin-1 production and in-
crease nitric oxide production [16]. Specifically, fenofibrate has been
shown to suppress microvascular inflammation and apoptosis through
inhibition of nuclear factor-κB and activation of adenosine monopho-
sphate (AMP)-activated protein kinase leading to endothelial nitric
oxide synthase phosphorylation and NO production [17–21]. It is in-
teresting to note that although AMPK is not a canonical NR co-reg-
ulator, it interacts with NRs and is highly involved in their regulation of
energy metabolism. Fenofibrate may also increase tetrahydrobiopterin
levels (BH4), an essential cofactor for eNOS and ultimately NO pro-
duction [22,23]. With increases in NO bioavailability, comes improved
vascular reactivity in vivo [24,25]. Although studies examining changes
in endothelial function with fenofibrate in humans have been relegated
to the brachial artery, changes in brachial endothelial-dependent flow-
mediated dilation correlate with changes in coronary [26] and pul-
monary vascular endothelial reactivity [27], suggesting the fenofibrate
may have favorable systemic endothelial effects, particularly in

vascular beds impacted by COVID-19 [28–31].
As can be seen, Fenofibrate holds promise as a therapeutic agent to

mitigate the detrimental cardio-pulmonary damage associated with
COVID-19. And with this revelation comes an important hypothesis
generating question. What else can be done to possibly disrupt SARS-
CoV-2 mediated lipid metabolism derangement and inflammation? In
one word – exercise.

Much of the research to date on PPARs and exercise has focused on
modulation of other isoforms (namely PPARγ but also PPARδ/β) or key
co-regulator/co-activators (e.g. peroxisome proliferator-activated re-
ceptor γ 1α, PGC-1α) in skeletal muscle. PPARα is expressed in cardiac
myocytes, hepatocytes, enterocytes, lymphocytes, monocytes, adipo-
cytes, smooth muscle cells, and as alluded to previously endothelial
cells and epithelial cells. As such, PPARα plays an important role for
systemic metabolic processes (heart, kidney, central nervous system,
bone, intestines, pancreas, liver, lung). While PPARγ is responsible for
synthesis and storage (adipogenesis and lipid synthesis), PPARα is in-
volved with catabolism and oxidation. Along these lines, Iemitsu et al.
demonstrated that exercise training was able to improve the age-asso-
ciated decrease in PPARα mRNA and protein expression in the heart
while also enhancing PPARα DNA binding to PPRE (response element).
In turn, there were commensurate and favorable changes in PPARα
target genes related to fatty acid metabolism (β-oxidation) such as
carnitine palmitoyl transferase-I (CAT) and acyl-CoA synthase, 3-hy-
droxyacyl CoA dehydrogenase (HAD). Similarly, Zhang et al. reported
that exercise training increased PPARα mRNA expression in liver with
subsequent favorable changes in target genes related to fatty acid me-
tabolism including carnitine palmitoyl transferase 1 (CPT-1), catalase
(CAT) and ATP binding cassette transporter A1 (ABCA1). Horowitz
et al. studied the effect of 12 weeks of endurance exercise training on
PPARα skeletal muscle protein content in the vastus lateralis of young
women [32]. Results revealed that exercise training doubled levels of
muscle PPARα as well as PPARα target proteins (medium-chain and
very long chain acyl-CoA dehydrogenase). Schmitt et al. examined
PPARα mRNA expression in the tibialis anterior of habitually en-
durance exercise trained and untrained young men [33]. There was a
trend (p = 0.1) for PPARαmRNA concentration to be higher in exercise
trained compared to sedentary muscle. There were strong correlations
noted between PPARαmRNA concentration and the expression of other
genes involved in oxidative metabolism (hormone sensitive lipase, fatty
acid binding protein and cytochrome c oxidase I). Taken together there
is a limited but provocative literature supporting a role for exercise as a
modulator of PPARα in various organs/tissues.

Exercise is also well established to have ubiquitous effects on sys-
temic endothelial function [34,35] and inflammation [36]. For an ex-
cellent review on the anti-inflammatory effects of exercise as they relate
to immunovigilance against COVID-19, please see da Silveira et al.
[37]. Regular/habitual exercise increases eNOS expression/activation
and BH4 bioactivity while reducing expression and/or activity of ET-1,
nuclear factor-κB, and NADHP oxidase resulting in increased NO
bioavailability and increased vascular reactivity [38,39]. Exercise also
increases the number of circulating endothelial progenitor cells, sug-
gesting a milieu that favors regeneration and re-endothelialization of
injured endothelium [40]. Such an environment would prove valuable
in a setting of COVID-19 mediated endothelial apoptosis and en-
dothelial cell membrane disruption. Interestingly, PPARs may be re-
quired for exercise to attenuate endothelial dysfunction [41]. Research
will be needed to explicitly explore PPARα as a mediator of exercise-
induced improvements in endothelial function in specific vascular beds
including the pulmonary circuit.

Although studies have yet to explore the effect of exercise on PPARα
in the lung, it is reasonable to speculate that mechanisms responsible
for transcriptional changes in the heart and skeletal muscle would be
similar in the lung. That is, the lung as a target organ is essential for
mounting an optimal exercise response and delivering oxygen rich
blood to the working skeletal muscle (i.e. cardio-respiratory fitness).
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The classic Karlman Wasserman “gear wheel model” describes the in-
tegrated exercise response as linking mitochondria, skeletal muscle,
heart-blood (circulatory system) and lungs as inter-connected cogs.
Increases in mechanical and metabolic factors that govern changes in
PPARα in the heart and skeletal muscle may spill over to the respiratory
system to ensure a concerted effort to match metabolic demand with
cardio-respiratory supply. That habitual exercise training can modulate
PPARα in the lung remains, at this time, a hypothesis. Conversely, there
may be some redundancy between PPARα and PPARδ/β such that
PPARδ/β can compensate for reductions PPARα and this may be target
organ specific and differentially affected by exercise [42]. Empirical
data will be needed to support (or refute) our hypothesis. Given the
known effect of COVID-19 on the heart as an incendiary for cardiac
damage [43,44], aforementioned findings of changes in cardiac PPARα
with exercise training may still have important implications for overall
cardiovascular function and cardiovascular disease risk [45].

As alluded to previously, the cytokine storm associated with COVID-
19 may lead to reductions in PPARα. These reductions may have im-
portant implications for exercise capacity. Emerging studies suggest a
role for PPARα in glucose and amino acid metabolism [46]. Genes in-
volved in gluconeogenesis have been identified as targets of PPARα and
these include phosphoenolpyruvate carboxykinase (Pck1), pyruvate
carboxylase (Pcx), and lactate dehydrogenase A [42]. PPARα-knock out
mice exhibit hypoglycemia and lower serum lactate levels, suggesting
increased reliance on anaerobic metabolic pathways to generate glu-
coneogenic precursors [42]. Synthesis of glycogen is also affected in
PPARα-knock out mice. Not surprisingly, these PPARα knock out mice
demonstrate very low aerobic exercise tolerance compared to wild-type
mice [42]. It is interesting to note that survivors of SARS and MERS
present with reduced exercise capacity [47]. PPARα-knock out mice
also gain more weight and adipose mass compared to wild-type ani-
mals, thus reductions in PPARα α- also have implications for obesity
[48]. In PPARα-knock out mice chronically fed a high-fat diet, ex-
pression of inflammatory genes in adipose tissue is more pronounced
compared to wild-type mice [49]. Parenthetically, an anti-obesity role
for PPARα is supported by studies in which obese rodents were ad-
ministered synthetic PPARα agonists such as fenofibrate and demon-
strated marked weight loss [50]. Overall, reductions in PPARα from
COVID-19 may cause a downward spiral whereby altered metabolism
and inflammation contributes to diminished exercise capacity, which
further begets unfavorable changes in metabolism and inflammation
[51]. Changes in PPARα from COVID-19 may prime the body for fa-
tigue, inactivity and obesity. Exercise and increases in cardiorespiratory

fitness may thus be needed for secondary prevention to mitigate the
possibility of further disuse, chronic disease and disability [52].

Studies are beginning to emerge suggesting that COVID-19 survivors
may have reduced cardiopulmonary function, with even non-hospita-
lized patients presenting with notable dysfunction [53,54]. Cardio-
pulmonary rehabilitation may be needed to help individuals regain
functional quality of life [55]. Thus, exercise may be a useful adjuvant
for the management and treatment of COVID-19 survivors. Compared
to emerging drugs that are being repurposed for the possible treatment
of COVID-19 and its related cardiopulmonary and metabolic sequela,
exercise may be on PPAR.
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