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Cardiovascular diseases, including cardiomyopathy, myocardial infarction, myocardial
ischemia/reperfusion injury, heart failure, vascular injury, stroke, and arrhythmia, are
correlated with cardiac and vascular cell death. Ferroptosis is a novel form of non-
apoptotic regulated cell death which is characterized by an iron-driven accumulation
of lethal lipid hydroperoxides. The initiation and execution of ferroptosis are under
the control of several mechanisms, including iron metabolism, glutamine metabolism,
and lipid peroxidation. Recently, emerging evidence has demonstrated that ferroptosis
can play an essential role in the development of various cardiovascular diseases.
Recent researches have shown the ferroptosis inhibitors, iron chelators, genetic
manipulations, and antioxidants can alleviate myocardial injury by blocking ferroptosis
pathway. In this review, we systematically described the mechanisms of ferroptosis and
discussed the role of ferroptosis as a novel therapeutic strategy in the treatment of
cardiovascular diseases.

Keywords: ferroptosis, cardiovascular disease, iron metabolism, cardiomyopathy, myocardial infarction,
myocardial ischemia/reperfusion injury, heart failure, lipid peroxidation

INTRODUCTION

Cardiovascular diseases (CVDs) are the main cause of death and disability in developing
and developed countries, including coronary artery disease, heart failure, aortic aneurysm and
dissection, peripheral arterial disease, stroke, arrhythmia, and heart valve disorders (Graham et al.,
2007; Arnett et al., 2019). In 2019, the prevalence of CVDs was up to 523 million, and the number
of CVDs-related deaths reached 18.6 million (Roth et al., 2020). The pathogenesis of CVDs has
been found correlated with the death of cardiac and vascular cells (Whelan et al., 2010; Moe and
Marín-García, 2016; Del Re et al., 2019).

Fundamentally, cell death is divided into two different types: accidental cell death (ACD) and
regulated cell death (RCD) (Tang et al., 2019). ACD can be triggered by unexpected attacks
and injury resulting from any possible control molecular mechanisms (Galluzzi et al., 2015). On
the contrary, RCD, also known as programmed cell death (PCD) in physiological conditions,
involves precise signaling cascades that are executed by genetically defined effector molecules with
unique immunological, functional, and biochemical consequences (Galluzzi et al., 2015). As a
kind of adaptive response to restore cellular homeostasis, RCD can be modulated by inhibiting
the transduction of lethal signals and improving the capacity of cells to adapt to stress (Taylor
et al., 2008; Fuchs and Steller, 2011; Rubinsztein et al., 2012). Apoptosis is a classic form of RCD,
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which can also be defined as programmed necrosis that functions
as a homeostatic mechanism to maintain cell populations in
tissues and a defense mechanism in immune reactions (Norbury
and Hickson, 2001). Nowadays, more and more non-apoptotic
forms of RCD have been shown to exert a significant influence
on the occurrence and progress of diseases, such as necroptosis,
pyroptosis, and autophagy-dependent cell death (Fearnhead
et al., 2017; Tang et al., 2019).

Ferroptosis is an iron-dependent form of non-apoptotic RCD
proposed by Dixon et al. (2012). It has been demonstrated
that ferroptosis is essentially a process of overwhelming, iron-
dependent accumulation of lethal lipid reactive oxygen species
(ROS) (Dixon et al., 2012). Ferroptosis is morphologically
and mechanistically distinguishable from other forms of
RCD (Table 1).

Recently, several studies have indicated that ferroptosis
contributes to the stress-induced deaths of cardiac and vascular
cells (Gao et al., 2015; Fang et al., 2019; Wang and Tang, 2019).
It has been pointed out that targeting ferroptosis can serve as
a feasible approach for preventing cardiomyocyte death and
managing cardiac pathologies (Ravingerová et al., 2020; Wu
et al., 2021). In this review, we will describe the mechanism of
ferroptosis and discuss the role of ferroptosis in the treatment
of CVDs, thereby providing a novel therapeutic strategy for
CVDs in the future.

OVERVIEW OF FERROPTOSIS

Dolma et al. (2003) found that erastin, a compound lethal
to cells expressing RASv12, could selectively initiate a cell
death procedure, which displayed no apoptotic features such
as fragmented nuclei, DNA laddering, and activated caspase 3.
Moreover, it was demonstrated by Yang and Stockwell (2008)
that an inhibitor of glutathione peroxidase 4 (GPX4) named
RAS-selective lethal 3 (RSL3), could induce rapid and non-
apoptotic cell death in oncogenic RAS containing tumorigenic
cells. This kind of non-apoptotic cell death could be prevented
by genetic inhibition of cellular iron uptake or pharmacological
iron chelation, which could not be completely reversed by the
suppression of necrosis, apoptosis, autophagy, and necroptosis
(Yagoda et al., 2007; Yang and Stockwell, 2008). Dixon et al.
(2012) discovered that erastin triggered an iron-dependent
accumulation of ROS and led to this novel non-apoptotic cell
death, defined as ferroptosis. It was indicated that ferroptosis was
induced by erastin through the inhibition of cystine uptake by
the cystine/glutamate antiporter, which suppressed antioxidant
defenses due to glutathione reduction (Dixon et al., 2012). This
identified ferroptosis as a novel form of RCD and distinguished it
from the other types of non-apoptotic cell death.

The occurrence of ferroptosis relies on enormous cellular
iron and lipid hydroperoxide, which subsequently induce
overwhelming lipid accumulation in cells and interfere with the
homeostasis of redox reactions, thus promoting cell death (Xie
et al., 2016; Dixon, 2017; Stockwell et al., 2017; Zhai et al.,
2021). Ferroptosis can initiate the Fenton reaction and other
peroxidation with excessive iron, which can convert the product

of mitochondrial oxidative respiration, hydrogen peroxide, into
hydroxyl-free radical under the catalysis of ferrous ion. This
procedure leads to the accumulation of ROS that can destroy
the integrity of cell membrane (Dixon et al., 2012; Qiu et al.,
2020). The representative morphology of ferroptosis is shrunken
mitochondria, which primarily exhibits increased membrane
density, cristae degeneration, and breakdown (Xie et al., 2016).
But few other significant morphological changes can be observed
before the procedure of ferroptosis (Xie et al., 2016).

MECHANISM OF FERROPTOSIS

Ferroptosis is a complex process regulated by various
mechanisms. Peroxidation of phospholipids (PLs) with
polyunsaturated fatty acyl tails is considered as the primary
driving factor for ferroptosis (Dixon et al., 2012). It has been
demonstrated that the occurrence of ferroptosis requires three
critical events: iron accumulation, glutathione (GSH) depletion,
and lipid membrane oxidation (Bertrand, 2017). Based on those
events and other related mechanisms, a large number of reagents
have been discovered to induce or inhibit ferroptosis (Table 2).
These mechanisms and regulators will be discussed below.

Iron Metabolism and Homeostasis
It has been proposed that the free radical generation by iron is
a pivotal event during ferroptosis. A study in 2015 revealed that
under amino acid starvation, ferroptosis occurred by incubating
mouse embryonic fibroblasts in serum containing transferrin (Tf)
(Gao et al., 2015). Moreover, the rate of cell death was reduced
when Tf receptor expression was inhibited with RNA interference
or when embryonic fibroblasts were incubated in the presence of
iron-free Tf (Gao et al., 2015). These results demonstrate that iron
metabolism is relevant to ferroptosis.

Concentrations and homeostasis of iron in vivo are regulated
by various mechanisms, which control the metabolism, transfer,
uptake, and export, as well as intracellular storage of iron (Ward
and Kaplan, 2012; Drakesmith et al., 2015). Circulating iron
exists in the form of ferric iron (Fe3+) by the combination
with Tf (Wang and Pantopoulos, 2011; Xie et al., 2016). The
import of Fe3+ into cells is implemented through the membrane
protein, Tf receptor 1 (TfR1) (Wang and Pantopoulos, 2011;
Xie et al., 2016). After the import, Fe3+ is located in the
endosome and then reduced to ferrous iron (Fe2+) by the
ferrireductase activity of STEAP3 (Hentze and Kühn, 1996; Wang
and Pantopoulos, 2011; Xie et al., 2016). Subsequently, Fe2+

releases from the endosome into a labile iron pool (LIP) in the
cytoplasm, mediated by divalent metal transporter 1 (DMT1)
(Wang and Pantopoulos, 2011; Xie et al., 2016). The rest, excess
iron is stored in ferritin (FT), an iron storage protein complex
consisting of FTL and FTH1 subunits (Wang and Pantopoulos,
2011). The export of iron from cells is mediated by the membrane
protein ferroportin (FPN), which can oxidize Fe2+ to Fe3+ (Xie
et al., 2016). FPN is regulated by hepcidin, a 25-amino acid
protein released mainly in the hepatocytes, which promotes the
internalization and degradation of FPN when iron concentration
is high (Ravingerová et al., 2020).
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TABLE 1 | Characteristics of different types of regulated cell death.

Type Morphological features Biochemistry Activation approach Regulated genes

Ferroptosis Smaller mitochondria with condensed
mitochondrial membrane densities;
reduction or vanishing of mitochondria
crista, outer mitochondrial membrane
rupture; normal nucleus

Iron-dependent lipid
peroxidation, accumulation of
iron and ROS

Iron overload, decreased cystine
uptake, GSH depletion

Positive: VDAC2/3, RAS, NOX, TfR1, p53,
CARS, ACSL4, NCOA4, GLS2s Negative:
GPX4, NRF2, HSPB1/5, SLC7A11

Apoptosis Plasma membrane blebbing without
rupture; retraction of pseudopods;
chromatin condensation and nuclear
fragmentation; formation of apoptotic
bodies

Caspase activation;
Oligonucleosomal DNA
fragment; phosphatidylserine
exposure

Activated death receptor Positive: initiator caspase (CASP2/8/9/10),
effector caspase (CASP3/6/7), BCL2 family
(BAX, BOK, BAK1, BBC3, BID, PMAIP1,
and BCL2L11) and TP53, p53 Negative:
Bcl-2 family

Necroptosis Rupture of plasma membrane; cell
swelling; moderate chromatin
condensation; release of cell contents

Drop in ATP levels; RIPK1,
RIPK3 and MLKL
phosphorylation; ROS
production; DAMPs release

TNF-α plus pan-Caspase inhibitor
co-treatment; HSV-1 infection

Positive: RIPK1/3, MLKL

Autophagy Accumulation of double-membraned
autophagic vesicle

LC3-I to LC3-II conversion, p62
degradation

Nutritional deficiencies, oxidative
stress

Positive: ATG5/7, Beclin 1, AMPK Negative:
mTOR

Pyroptosis Plasma membrane rupture, release of
cell contents, unaffected mitochondrial
integrity

Activation of caspase-1 and
GSDMD, GSDMDN–induced
pore formation, IL-1β release

Activation of inflammasomes Positive: CASP1/11, GSDMD Negative:
PKA, ESCRTIII, GPX4

Iron homeostasis is regulated by a post-transcriptional
mechanism by the interaction of iron regulatory proteins (IRP)
1 and 2 with iron-responsive elements (IRE) on mRNA of
respective genes, which modulate the synthesis of essential iron
metabolism proteins that participate in iron uptake, storage,
and release (Hentze and Kühn, 1996). Under conditions of low
cellular iron concentration, IRP stabilizes the mRNA of TfR1
and DMT-1 to promote iron influx (Haddad et al., 2017; Paterek
et al., 2019). Meanwhile, IRP prevents mRNA of FPN 1 and
FT from translating to inhibit iron efflux and storage (Haddad
et al., 2017; Paterek et al., 2019). This procedure results in a
stable LIP, which is a crossroad of cellular iron metabolism. As
a pool of chelatable and redox-active iron complexes, LIP is an
intermediate or transitory pool between extracellular iron and
cellular iron associated with proteins (Kakhlon and Cabantchik,
2002). When the concentration of the LIP increases to the
homeostatic limits, severe oxidative damage occurs by initiating
the Fenton reaction and other peroxidation, which will produce
ROS and induce lipid peroxidation (Kakhlon and Cabantchik,
2002; Doll and Conrad, 2017; Qiu et al., 2020). The procedure
of iron metabolism is presented in Figure 1.

Besides the iron homeostasis, it has been proposed that
ferritinophagy, a process in which FT is selectively sequestered
into autophagosomes and delivered to lysosomes for degradation,
can trigger ferroptosis by promoting the accumulation of iron
and ROS (Gao et al., 2015; Hou et al., 2016; Tang et al., 2018).
Ferritinophagy can control iron availability and influence other
proteins involving in ferroptosis to enhance the sensitivity of
ferroptosis (Mancias et al., 2014; Sun et al., 2015; Hou et al., 2016;
Tang et al., 2018). Therefore, iron metabolism and ferritinophagy
can serve as the potential regulated targets for ferroptosis.

Abnormal Glutaminolysis
Amino acid metabolism is related to the regulation of ferroptosis
(Angeli et al., 2017). Glutamine naturally exists at high

TABLE 2 | Common inducers and inhibitors of ferroptosis and their
functioning mechanisms.

Reagents Mechanisms References

Inducer Erastin,
Sulfasalazine

Inhibit system xc
− and cause

GSH depletion
Dixon et al., 2012

Sorafenib Dixon et al., 2014

Glutamate Zhang et al., 2019

INF-γ Downregulate expression of
system xc

−

Zitvogel and
Kroemer, 2019

RSL3, ML162 Inhibit GPX4 and lipid
peroxidation

Yang et al., 2014

FIN56 Deplete CoQ10 and degrade
GPX4

Gaschler et al.,
2018

FINO2 Deactivate GPX4 and oxidate
iron

Statins Inhibit mevalonate pathway to
prevent CoQ10 synthesis

Viswanathan et al.,
2017

Inhibitor Ferrostatin-1 Block lipid peroxidation Dixon et al., 2012

Liproxstatins Friedmann Angeli
et al., 2014

Glutathione Schreiber et al.,
2019

CoQ10

Vitamin E,
α-Tocopherol

Suppress LOXs Kagan et al., 2017

Iron chelator Deplete iron Li N. et al., 2020

Troglitazone,
Rosiglitazone,
Pioglitazone

Inhibit ACSL4 Doll et al., 2016

GSH, glutathione; GPX4, glutathione peroxidase 4; RSL3, RAS-selective lethal 3;
LOX, lipoxygenase; ACSL4, acyl-CoA synthetase long-chain family member 4.

concentrations in human tissues and plasma, and its degradation
through glutaminolysis provides materials for the tricarboxylic
acid cycle and essential biosynthetic processes such as lipid
biosynthesis. This indicates that glutaminolysis is capable of
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FIGURE 1 | Iron metabolism and homeostasis in organism. Fe3+ is imported into cells through Tf recognized by TfR1 while the uptake of Fe2+ is implemented
through DMT1. Then Fe3+ is converted to Fe2+ in endosome, which is released from endosome by DMT1. In cell, iron is stored by binding FT, with a small amount
staying at LIP. When the amount of iron in LIP increases to the homeostatic limits, ROS will be produced. The transport of iron to mitochondria is via MFRN and
MCU. In mitochondria, iron can be synthesized to heme, or Fe–S under the participation of Fxn. The export of iron from mitochondria is through ABCB8 transporter
and from cells is mediated through FPN. FPN can oxidize Fe2+ to Fe3+, which is regulated by hepcidin. Iron homeostasis is controlled by IRP1/2, which can bind to
IRE sites of mRNA of DMT-1, TfR1, FT, and FPN to regulate the influx and efflux of iron depending on the iron availability. When the intracellular iron level is low, IRPs
bind to the 3′ UTR site of the mRNA of DMT1 and TfR1 to stabilize their transcript, whereas the 5′ UTR site mRNA of FT and FPN is also bound by IRPs to inhibit
translation. Fe3+, ferric; Tf, transferrin; TfR1, transferrin receptor 1; Fe2+, ferrous; DMT1, divalent metal transporter 1; FT, ferritin; LIP, labile iron pool; ROS, reactive
oxygen species; MRFN, mitoferrin; MCU, mitochondrial calcium uniporter; Fe–S: iron–sulfur cluster; Fxn, frataxin; FPN, ferroportin; ABCB8, adenosine triphosphate
(ATP)-binding cassette subfamily B member 8; IRP1/2, iron regulatory protein 1/2; IRE, iron responsive elements.

reducing the accumulation of ROS and thus the occurrence
of ferroptosis. It has been reported that ferroptosis can be
initiated both by direct inhibition of GPX4, and an essential
intracellular antioxidant, GSH, which are the crucial proteins in
glutaminolysis (Wu et al., 2021).

When ferroptosis was first defined, it was induced by
erastin which inhibited cystine uptake by the cystine/glutamate
antiporter, leading to suppressed antioxidant defenses due to
GSH reduction (Dixon et al., 2012). This is the classic pathway
to initiate ferroptosis. It is indicated that erastin inhibits cystine
uptake which is mediated by system xc

−, a member of the
heterodimeric amino acid transporter family (Dixon et al., 2012).
Containing two subunits (SLC3A2 and SLC7A11), system xc

− is
the cystine/glutamate reverse transporter, which is expressed on
cell membrane and capable of maintaining redox homeostasis
(Bentea et al., 2020; Kim et al., 2020; Li et al., 2021). System
xc
− can transport glutamate into the extracellular space and

meanwhile cystine into the cell on an equal ratio. After imported
by system xc

−, cystine is reduced and degraded to cysteine,
which is utilized to synthesize antioxidant GSH (Bentea et al.,
2020; Kim et al., 2020). Under the catalysis of GPX4, GSH
converses to glutathione disulfide (GSSG) (Mirochnitchenko
et al., 2000; Yang et al., 2014). In the meantime, free hydrogen
peroxide is converted to water, or lipid hydroperoxides (L–
OOH) are reduced to lipid hydroxy derivative (L–OH) by
GPX4 (Mirochnitchenko et al., 2000; Yang et al., 2014). These
procedures are essential for the maintenance of cellular redox
homeostasis. When glutamine is absent or glutaminolysis is
inhibited, cystine starvation and blockage of cystine import fail
to induce the accumulation of ROS, lipid peroxidation, and
ferroptosis (Gao et al., 2015; Stockwell et al., 2017). On the
contrary, GSH depletion leads to the inactivation of GPX4 and
thus produces excessive ROS (Yang et al., 2014). Hence, it is
reasonable to hypothesize that system xc

− and GPX4 serve as
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FIGURE 2 | Amio acid metabolism in ferroptosis. Containing two subunits (SLC3A2 and SLC7A11), system xc
- is the cystine/glutamate reverse transporter on cell

membrane, which transports cystine into cells and glutamate outside cells. Glutamate is transferred from glutamine, which is mediated by GLS. Then glutamate is
imported into mitochondria for TAC to synthesize OXPHOX. In cells, cystine is degraded to cysteine for GSH synthesis. GSH is conversed to GSSG under the
catalysis of GPX4, synchronized with conversion of L-OOH to L-OH. Meanwhile, NADPH is transferred to NADP+, which is catalyzed by GR. Erastin and sorafenib
are inhibitors of system xc

- to affect the amio acid metabolism. RSL3, ML162, and FIN56 can inhibit GPX4 and thus lead to excessive L-OOH in cells, which causes
ROS accumulation. GLS, glutaminase; TAC, tricarboxylic acid cycle; OXPHOX, oxidative phosphorylation; GSH, glutathione; GSSG, glutathione disulfide; GPX4,
glutathione peroxidase 4; NADPH, nicotinamide adenine dinucleotide phosphate; GR, glutathione reductase; RSL3, RAS-selective lethal 3; ROS, reactive oxygen
species.

negative regulators of ferroptosis. Figure 2 shows how amino acid
metabolism is related to ROS production in organism.

Nevertheless, not all routes of glutaminolysis promote
ferroptosis. The first step of glutaminolysis involves the
conversion of glutamine into glutamate which is catalyzed
by the glutaminases GLS1 and GLS2. Only GLS2 takes part
in the initiation of ferroptosis, though GLS1 and GLS2 are
structurally and enzymatically similar (Gao et al., 2015). The
GLS2 gene is a transcriptional target of the tumor suppressor
p53, and upregulation of GLS2 can promote p53-dependent
ferroptosis (Jennis et al., 2016). Therefore, a precise target for
inhibiting ferroptosis in amino acid metabolism still requires
further researches.

Lipid Peroxidation
Lipid metabolism is intimately associated with cell death
because it compromises membrane structural integrity, exerts
downstream cytotoxic effects, and is involved in suicide
signaling cascades (Reed, 2011; Yin et al., 2011; Ayala et al.,
2014). As mentioned above, the inhibition of GPX4 causes
lethal accumulation of lipid peroxides and thus leads to
ferroptosis. This pathway has been demonstrated to mostly

affect polyunsaturated fatty acid (PUFA), which contains bis-
allylic hydrogen atoms that can be readily abstracted (Yang
et al., 2016). Therefore, the abundance and localization of PUFA
determine the degree of lipid peroxidation in cells, and the
level of ferroptosis. PUFA must be esterified into membrane PLs
and oxidated to become ferroptotic signals (Kagan et al., 2017).
Also, accumulation of PL hydroperoxides has been detected
in ferroptosis, including phosphatidylcholine, cardiolipin, and
phosphatidylethanolamine (Yang et al., 2016). Hence, it has been
proposed that PLs containing PUFA are the major substrates
of ferroptotic lipid peroxidation and membrane damage is an
essential event in ferroptosis (Friedmann Angeli et al., 2014; Yang
et al., 2016; Kagan et al., 2017).

Recently, several lipidomic studies proposed that
phosphatidylethanolamines (PEs) containing arachidonic
acid (AA) or its elongation product, adrenic acid are pivotal PLs
that undergo oxidation and actuate ferroptosis (Doll and Conrad,
2017; Kagan et al., 2017). As a result, coenzyme-A-derivatives that
participate in the synthesis of these PUFAs and their insertion
into PLs are required to produce ferroptotic signals. Two
lipid metabolism-associated enzymes, lysophosphatidylcholine
acyltransferase 3 (LPCAT3) and acyl-CoA synthetase long-chain
family member 4 (ACSL4) are proved to participate in the
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biosynthesis and restructuring of PUFA-PEs in cell membrane
(Dixon et al., 2015). In fact, ACSL4 acylates AA and then
LPCAT3 catalyzes the acylated AA into membrane PLs, which
increases the oxidization of sensitive fatty acids such as PUFA
in the membrane and eventually causes lipid peroxidation
(Xie et al., 2016).

The formation of lipid hydroperoxides is demonstrated to be
associated with enzymatic reactions and autoxidation catalyzed
by lipoxygenase (LOX) (Yang et al., 2016). In ferroptosis, LOXs
can promote the di-oxygenation of free and esterified PUFA
to catalyze lipid peroxidation directly (Kuhn et al., 2015; Yang
et al., 2016). The first step in LOXs catalysis is the abstraction
of a labile hydrogen atom from a bis-allylic position on PUFA.
Next, molecular oxygen adds to the intermediate carbon-centered
radical to produce a peroxyl radical, which is then deoxidated
by the enzyme to yield the hydroperoxide product (Kuhn et al.,
2015). These products subsequently react with other PUFAs to
pass on a chain reaction of lipid peroxidation, which yields PUFA
peroxides and reactive aldehydes that cause cell damage (Yang
et al., 2016; Figure 3).

Likewise, the progression of oxygen-driven free radical
chain reaction, also named non-enzymatic lipid peroxidation,
is believed to be involved in the occurrence of ferroptosis.
Non-enzymatic lipid peroxidation includes the generation of
early lipid radical L· based on the production of sufficiently
reactive free radicals, the oxidation of L· in a chain reaction,
and the termination of oxidation by antioxidants (Frank, 1950).
Furthermore, lipid peroxidation spontaneously produces PLOO·
and PLO·, which constantly recruit lipid molecules to free
radical reactions and form a lipid peroxidation circle (Davies
and Guo, 2014). It is believed that Fenton reaction can also
provide the free radicals for lipid peroxidation metabolism, which
can be a connecting point between iron metabolism and lipid
peroxidation in ferroptosis (Zhai et al., 2021).

FERROPTOSIS AND CVDs

Iron Homeostasis in the Heart
The regulation of iron homeostasis in cardiac myocytes is similar
to that of systemic iron homeostasis mentioned above. The
import of iron is mediated by TfR1 and the export of iron
from cells is implemented via FPN. Different from systemic cells,
FPN in cardiomyocytes is regulated by both hepcidins produced
by liver and locally in heart. Cardiac hepcidin has important
autocrine effects and participates in autonomous regulation
of iron in cardiomyocytes. Opposite to systemic hepcidin,
loss of cardiac hepcidin upregulates FPN in cardiomyocytes
to maintain cellular iron homeostasis (Lakhal-Littleton et al.,
2016). It is indicated that iron level in cardiomyocytes is a
balance between cellular iron efflux regulated by the cardiac
hepcidin/FPN axis and systemic iron availability regulated by the
systemic hepcidin/FPN axis (Lakhal-Littleton et al., 2016). In fact,
cardiomyocytes are extra sensitive to iron overload with sufficient
iron-importing mechanisms and only one export regulator.
Nevertheless, either overload or deficiency of iron is harmful to
homeostasis of cardiomyocytes. The import, utilization, storage,

export, and regulation of iron in cardiomyocytes are presented
in Figure 4. Interestingly, mitochondrial ferritin (mtFT) is an
H-ferritin-like protein to store iron in mitochondria, which is
mostly expressed in high oxygen-consuming and high metabolic
cells. A recent study has demonstrated that mtFT can protect
cardiomyocytes against the oxidative stress caused by cardiac
injury via increasing the sensitivity of mitochondria (Li X. et al.,
2017). The role of mtFT in iron homeostasis in cardiomyocytes
still needs more researches to confirm.

Cardiomyocytes apoptosis can be induced by iron overload
through mitochondrial dysfunction, in which increased
mitochondrial oxidative stress triggers the release of cytochrome
c and activates the caspase-dependent apoptotic pathway
(Khamseekaew et al., 2017; Kumfu et al., 2018). This can
result in iron-overload cardiomyopathy (IOC), which occurs
in hemochromatosis and thalassemia major patients (Gulati
et al., 2014). Moreover, the European Society of Cardiology
currently recommended that the assessment of iron deficiency
served as a comorbidity in chronic heart failure (CHF), due
to the high prevalence of iron deficiency in patients with CHF
(Klip et al., 2013).

The Role of Ferroptosis in CVDs
Ferroptosis and Cardiomyopathy
Several studies have indicated that ferroptosis is involved in many
cardiomyopathies, including IOC, diabetic cardiomyopathy
(DCM), doxorubicin (DOX)-induced cardiotoxicity, and so on.

As mentioned above, iron overload can destroy cardiac
iron homeostasis, thereby leading to IOC through several
mechanisms. IOC is regarded as a progressive electromechanical
deterioration of the heart, which is the major reason for
fatality in hemochromatosis patients (Nakamura et al.,
2019). Also, several studies have demonstrated that high
concentrations of intracellular iron induce ferroptosis in
cardiomyocytes. Baba et al. (2018) verified that excessive
iron induced cardiomyocytes ferroptosis as efficiently as
erastin and RSL3 by directly incubating isolated mouse
cardiomyocytes in ferric citrate. Furthermore, they found that
cardiomyocytes treated with both Fe(III)-citrate and ferrostatin-
1 (Fer-1), a specific ferroptosis inhibitor, were prevented from
Fe(III)-citrate-induced cell death (Baba et al., 2018). This
indicated that ferroptosis might play a significant role in the
pathophysiological process of IOC, but the mechanism of how
ferroptosis was associated with IOC remained unclear and
needed further studies.

Diabetic cardiomyopathy, which is characterized by
hypertrophy and fibrosis in the heart with the absence of
clinical hypertension and coronary artery disease, is one of
the most common complications of diabetes (Bugger and
Abel, 2014; Parim et al., 2019). It can result in left ventricular
remodeling event and subsequently develop into heart failure,
which involves various mechanisms such as hyperglycemia,
insulin resistance, increased fatty acid oxidation, oxidative
stress, myocardial fibrosis and hypertrophy, endothelial
dysfunction, myocyte cell death, autonomic neuropathy, arterial
stiffness, autophagy, endoplasmic reticulum stress and so on
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FIGURE 3 | Lipid metabolism in ferroptosis. PEs containing AA or AdA are fatty acid substrates, which are synthesized to PUFA under the catalysis of ACSL4,
LPCAT3, and CoA. PUFA can insert to PL and be oxidated to produce L-OOH, which is catalyzed by LOX. Mitochondria provides Fe-S and H2O2 to participate in
Fenton reaction, during which iron is oxidated and H2O2 is deoxidated. Reactive free radicals, ·OH, is produced and eventually conversed into L-OOH, which leads
to accumulation of lipid ROS. GPX4 can mediate the transformation of L-OOH to L-OH, which can be inhibited by liproxstatin-1. Fer-1 and liproxstatin are inhibitors
of PUFA synthesis, while Vit E can inhibit LOX to prevent PUFA oxidation. PEs, phosphatidylethanolamines; AA, arachidonic acid; AdA, adrenic acid; PUFA
polyunsaturated fatty acid; PL, polyunsaturated fatty acid; LOX, lipoxygenase; Fe-S, iron–sulfur cluster; SOD, superoxide dismutase; ROS, reactive oxygen species;
GPX4, glutathione peroxidase 4; Fer-1, ferrostatin-1; Vit E, vitamin E.

(Coats and Anker, 2000; Fiordaliso et al., 2001; Vinereanu
et al., 2003; Brunner et al., 2006; Turan, 2010; Lakshmanan
et al., 2013; Riehle et al., 2013; Brahmanaidu et al., 2017;
Parim et al., 2019). Nowadays, it has been widely accepted
that oxidative stress is the common pathogenesis of diabetic
cardiomyopathy, which results from an imbalance between
the production of ROS and the antioxidant capacity (Khullar
et al., 2010; Huynh et al., 2014). Based on that, a recent
research found that knockdown of nuclear factor-erythroid
factor 2–related factor 2 (Nrf2), a main regulator of antioxidant
defense, selectively suppressed glucolipotoxicity, while Fer-1
and iron chelator deferoxamine inhibited glucolipotoxicity in
rat H9C2 cells cultured in high glucose (Zang et al., 2020).
Moreover, the expression of ferroptosis markers, cyclooxygenase
2 (Cox2) and glutathione-specific γ-glutamylcyclotransferase 1
(Chac1), was upregulated, while the expressions of GPX4 and
ferroptosis suppressor protein 1 (Fsp1) were downregulated in
mice with streptozotocin-induced type 1 diabetes (T1D) (Zang
et al., 2020). These results indicated that autophagy deficiency
caused by diabetes initiated an Nrf2-operated ferroptosis in
cardiomyocytes, thereby worsening the progression of diabetic
cardiomyopathy. Hence, Nrf2 pathway-mediated ferroptosis
should be focused on in the future, since it can be a novel target
for treatment of DCM.

DOX is a class of anthracyclines that is commonly used to
treat breast cancer, leukemia, and several types of malignancies
(Young et al., 1981). Nevertheless, the clinical use of DOX is
limited due to its cardiotoxicity, which can induce irreversible
degenerative cardiomyopathy and congestive heart failure (Singal
and Iliskovic, 1998). Fang et al. (2019) indicated that ferroptosis
drove DOX-induced cardiomyopathy, owing to the results that

DOX-treated cardiomyocytes in mice showed features of typical
ferroptotic cell death and Fer-1 significantly decreased DOX-
induced myocardial injury. Besides, by measuring mitochondrial
lipid peroxidation to examine the effects of combining Fer-
1 with zVAD-FMK (zVAD), an apoptosis inhibitor, in DOX-
treated cardiomyocytes, Tadokoro et al. (2020) found that
ferroptosis was the main form of RCD and triggered in
mitochondria under DOX treatment. Luo et al. (2021) proved
that DOX promoted ferroptosis in cardiomyocytes, whereas the
administration of Astragaloside IV, an ingredient isolated from
astragalus membranaceus, inhibited ferroptosis by activating
Nrf2 signaling pathway and increased GPX4 expression (Luo
et al., 2021). These studies demonstrated ferroptosis exerted
a significant influence on DOX-induced cardiomyopathy and
proved the therapeutic validity of inhibiting ferroptosis.

There is also a correlation between ferroptosis and sepsis-
induced cardiomyopathy. Li N. et al. (2020) discovered that
Fer-1 inhibited LPS-induced lipid peroxidation and injury
of H9C2 myofibroblasts, which illustrated that ferroptosis
served as a critical mechanism contributing to sepsis-induced
cardiac injury. It is also proposed that targeting ferroptosis in
cardiomyocytes may be a promising therapeutic strategy for
preventing sepsis in the future.

Ferroptosis and Myocardial Infarction
Myocardial Infarction (MI) is a clinical term for heart attack,
which is commonly caused by myocardial ischemia due to narrow
or blocked coronary arteries. MI manifests as the death of
cardiomyocytes and the replacement of damaged heart tissues by
fibrotic scar tissue, which is unable to compensate for contraction
function and thus causes heart failure (Hashimoto et al., 2018).
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FIGURE 4 | Iron homeostasis in cardiomyocytes. Tf-bound iron is imported into cardiomyocytes via TfR1, whereas Non-Tf-bound iron enters via DMT1, L/TTCC, and
ZT. After imported into cardiomyocytes, iron is located in endosome and deoxidated before stored in LIP. In cytoplasm, iron is stored by binding to FT and exported
by FPN, which is regulated by hepcidin. Iron is transported into mitochondria for synthesis into 4Fe–4S and mtFT, which stores excessive iron during cardiac injury.
ABCB8 is the iron exporter of mitochondria. Cardiac iron homeostasis is regulated by IRP-IRE with upregulation of TfR1 and downregulation of FT and FPN. Cardiac
injury affects iron homeostasis by upregulating hepcidin, while DOX influences IRP-IRE and ABCB8. Tf, transferrin; TfR1: transferrin receptor 1; DMT1, divalent metal
transporter 1; L/TTCC, L/T-type calcium channel; ZT, Zinc transporter; LIP, labile iron pool; FT, ferritin; FPN, ferroportin; Fe–S, iron–sulfur cluster; mtFT, mitochondrial
ferritin; ABCB8, adenosine triphosphate (ATP)-binding cassette subfamily B member 8; IRP, iron regulatory protein; IRE, iron responsive elements; DOX, doxorubicin.

Currently, a variety of regulated cardiomyocyte deaths have been
focused on and proved to play an important role in MI (Lee
et al., 2003; Del Re et al., 2019). Bulluck et al. (2016) revealed
that most of the ST-segment-elevation MI patients with IMH
had residual myocardial iron at follow-up, which indicated that
residual myocardial iron might be a potential therapeutic target
to prevent adverse left ventricular remodeling in reperfused
cardiac tissue of MI. By using quantitative proteomic analyses,
Park et al. (2019) found that GPX4 and ROS pathway was
downregulated significantly in early and middle stages of MI.
This substantiates that ferroptosis contributes to cardiomyocyte
death during MI under metabolic stress. Also, a recent research
found that BTB and CNC homology 1 (BACH1), a regulator in
heme and iron metabolism which could repress the transcription
of erastin-induced protective genes, aggravates acute MI by
promoting ferroptosis (Nishizawa et al., 2020). Tang et al. (2020)
discovered autophagy in cardiomyocytes after MI could promote
ferroptosis, which could be inhibited by microRNA-30d via
binding to ATG5. Moreover, Song et al. (2021) examined the

expression of DMT1 in vivo and in vitro acute MI models, and
found that overexpression of DMT1 promoted cardiomyocyte
ferroptosis. They also found that exosome of mesenchymal stem
cells derived from human umbilical cord blood (HUCB-MSC)
suppressed cardiomyocytes ferroptosis to mediate myocardial
repair in acute MI by delivering miR-23a-3p (Song et al., 2021).
Therefore, inhibition of ferroptosis might be a new insight for
repairing cardiomyocyte injury in MI.

Ferroptosis and Myocardial Ischemia/Reperfusion
Injury
Myocardial ischemia/reperfusion injury (IRI) is mostly caused
by oxidative processes with ROS generation as the central
pathogenesis. Although ROS from mitochondrion is considered
as the primary cause of IRI in myocardium, several researches
have purposed the significance of ferroptosis in induction of
cardiomyocyte injury. By examining the level of myocardial
iron in mouse models of IRI generated by 30-min left anterior
descending coronary artery (LAD) ligation, Baba et al. (2018)
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detected cardiomyocyte death with excessive iron accumulating
around the myocardial scar, which proved to be ferroptosis
by iron overload. Fang et al. (2019) treated mice with 30 min
of myocardial ischemia followed by 24 h of reperfusion and
discovered the occurrence of significantly increased cardiac
non-heme iron. Also, they found that pretreatment of Fer-1
or iron chelator reduced ischemia/reperfusion-induced cardiac
remodeling and fibrosis, with the decrease of cardiac mt-Cytb
and mt-Atp6 mRNA levels (Fang et al., 2019). Recently, Chen
et al. (2021) discovered an increase in cellular iron levels but
decreases in GPX4 activity as well as FTH1 and GSH levels
in mice myocardial IRI model. Meanwhile, they found that
the knockdown of embryonic lethal-abnormal vision like
protein 1 (ELAVL1) could attenuate ischemia/reperfusion-
induced ferroptosis by inhibiting autophagy, which was
activated by Forkhead box C1 (FOXC1) in cardiomyocytes
treated with hypoxia followed by reoxygenation (Chen et al.,
2021). Fan et al. (2021) indicated that baicalin inhibited
ACSL4-controlled ferroptosis to ameliorate myocardial IRI
in vitro. Stamenkovic et al. (2021) put forward that increased
oxidized phosphatidylcholines (OxPCs) generated in myocardial
IRI provoked cardiomyocyte death through ferroptosis.
Furthermore, several medications have been proposed to
alleviate IRI by interfering with ferroptosis. Lv et al. (2021)
proved that Etomidate suppressed ferroptosis in IRI model via
upregulation of Nrf2 and heme oxygenase-1 (HO-1) protein
expression. Cyanidin-3-glucoside, a kind of anthocyanin, is
verified to attenuate myocardial IRI via ferroptosis inhibition
by reducing oxidative stress and Fe2+ accumulation in vivo
and in vitro (Shan et al., 2021). Ma et al. (2020) demonstrated
that USP22 (ubiquitin-specific protease 22), a member of the
deubiquitinase family, could inhibit ferroptosis in myocardial
IRI via the SIRT1/p53/SLC7A11 association. On the contrary,
USP7 is found to protect cardiomyocytes against ferroptosis
caused by IRI via activation of the p53/TfR1 pathway (Tang et al.,
2021b). Likewise, ferroptosis is demonstrated to be associated
with diabetes myocardial IRI. Li et al. discovered that inhibiting
ferroptosis reduced endoplasmic reticulum stress and mitigated
myocardial damage (Li W. et al., 2020). These results suggested
inhibiting ferroptosis could provide significant protection
from myocardial IRI. Interestingly, a recent study found no
significant changes in ACSL4, GPX4, iron, and malondialdehyde
in cardiac ischemia region, whereas increased ACSL4, iron, and
malondialdehyde as well as decreased GPX4 were observed in the
reperfusion model (Tang et al., 2021a). Hence, it is believed that
ferroptosis takes place in the phase of myocardial reperfusion
instead of ischemia, which provides a fresh perspective for
intervention of ferroptosis in IRI therapy.

Ischemia/reperfusion injury is one of the toughest
challenges in heart transplantation, causing considerable
sterile inflammation that leads to a high rate of primary graft
dysfunction and even mortality in recipients (Kobashigawa
et al., 2014). Li et al. (2019) found that Fer-1 reduced levels
of hydroperoxy-arachidonoyl-phosphatidylethanolamine, a
mediator of ferroptosis, which also repressed the ferroptosis of
fibroblasts instead of endothelial cells in heart grafts submitted
to IRI. They indicated that ferroptosis coordinated neutrophil

recruitment to injured myocardium by promoting adhesion
of neutrophils to coronary vascular endothelial cells through
a TLR4/Trif/type I IFN signaling pathway (Li et al., 2019).
Therefore, inhibition of ferroptosis in donor hearts before
transplantation may reduce IRI and improve prognosis.

Ferroptosis and Heart Failure
Heart failure (HF), featured by cardiac hypertrophy and
fibrosis, is a clinical syndrome, in which pumping function
of heart is damaged and cardiac output fails to meet basic
metabolic needs (Li et al., 2018; Miller et al., 2019). As loss
of terminally differentiated cardiomyocytes is irreversible in
HF, early prevention of cardiomyocyte death can maintain
cardiac function and decelerate the progression of heart failure.
A recent study observed ferroptotic cell death in the rat HF
model induced by descending aortic banding (Liu et al., 2018).
What’s more, Puerarin, an antioxidant reagent, could reduce iron
content and increase ROS elimination, suggesting that puerarin
is a promising therapy for HF by inhibiting cardiomyocyte
ferroptosis (Liu et al., 2018). By knockdown of TLR4 and NADPH
oxidase 4 (NOX4) in HF rats, Chen et al. (2019) discovered
a detainment of ferroptosis which was detected by expression
of GPX4 and FTH1. Recently, Fang et al. (2020) found that
a high-iron diet caused severe cardiac injury, hypertrophic
cardiomyopathy, and eventually HF via inducing cardiomyocyte
ferroptosis. Also, they revealed that cardiomyocytes deficient
of FTH reduced expression of the SLC7A11 from system xc

−,
whereas overexpressing SLC7A11 selectively in cardiomyocytes
increased GSH levels and prevented cardiac ferroptosis (Fang
et al., 2020). Wang et al. (2020) indicated mixed lineage kinase
3 (MLK3), a member of MAP3K family, could regulate the
JNK/p53 signaling pathway to initiate ferroptosis and cause
myocardial fibrosis in the advanced stage of HF, which could
be reversed by miR-351. Circular RNA (circRNA) is a new type
of non-coding RNA, which is involved in the pathogenesis of
cardiovascular diseases such as HF (Kolakofsky, 1976; Wang
et al., 2017). Zheng et al. (2021) constructed a circRNA–miRNA–
mRNA regulatory network based on competitive endogenous
RNA and verified miR-224-5p, downstream target of circSnx12,
could downregulate FTH1 expression in HF model. Altogether,
these studies illustrate the significance of ferroptosis in cardiac
hypertrophy and HF.

Ferroptosis and Vascular Injury
Vascular injury, a complicated type of CVDs including aortic
dissection and abdominal aortic aneurysm, is caused by
multifactorial damages such as genetic variant, diet, and
environment. It is widely acknowledged that smoking is one of
the main risk factors leading to aortic dissection and the rupture
of abdominal aortic aneurysm (Lederle et al., 2003; Kakafika and
Mikhailidis, 2007; Kihara et al., 2017). Sampilvanjil et al. (2020)
found that cigarette smoke extract (CSE) initiated ferroptosis in
vascular smooth muscle cells (VSMCs) rather than endothelial
cells by depleting GSH rapidly and reducing the suppression
of GPX4 overexpression, which resulted in medial VSMC loss
in ex vivo aortas. These findings suggest that ferroptosis is the
main cause of CSE-induced VSMC death and vascular injury.
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TABLE 3 | Application of ferroptosis for treatment of cardiovascular diseases.

Reagents Mechanisms Protective effects References

Knockdown of
Nrf2

Reduce heme
degradation

Prevent
Hmox1-dependent
ferroptosis in DIC.

Fang et al., 2019

Upregulation of
GPX4

Decrease lipid ROS
levels

Protect
cardiomyocytes in MI.

Park et al., 2019

Overexpression
of SLC7A11

Increase GSH
levels

Mediate cardiac iron
homeostasis and
prevent hypertrophic
cardiomyopathy.

Fang et al., 2020

Fer-1 DXZ Prevent lipid
peroxidation

Maintain the function
of mitochondrial and
prevent DIC.

Fang et al., 2019

Lip-1 Increase GPX4
protein levels and
reduce ROS
generation

Reduce myocardial
infarct size and
ischemia/reperfusion
injury

Feng et al., 2019

Vitamin E Suppress LOX Inhibit PUFA oxidation
and prevent
ferroptosis.

Kagan et al., 2017

DIC, doxorubicin-induced cardiomyopathy; GPX4, glutathione peroxidase 4; ROS,
reactive oxygen species; MI, myocardial infarction; GSH, glutathione; DXZ,
dexrazoxane; Fer-1, ferrostatin-1; Lip-1, liproxstatin-1; LOX, lipoxygenase; PUFA,
polyunsaturated fatty acid.

Further researches are expected to prove the role of ferroptosis
in vascular diseases caused by other pathogenic factors such as
atherosclerosis.

Ferroptosis and Stroke
Ischemic stroke refers to the restriction of blood supply to
certain parts of the brain due to the occlusion of the internal
carotid, middle cerebral, or vertebral/basilar arteries, which
results in activation of ischemic cascade and ultimately cell
death (Brouns and De Deyn, 2009; Au et al., 2017). Speer
et al. (2013) hypothesized that ferroptosis might cause neuronal
death induced by cerebral ischemia and that iron chelators
prevented ferroptosis by inhibiting 2-oxoglutarate, oxygen-
dependent dioxygenases, and the hypoxia-inducible factor (HIF)
prolyl hydroxylases. Tuo et al. (2017) found that ferroptosis
inhibition attenuated IRI in a middle cerebral artery occlusion
model. More excitingly, they also found that tau-knockout mice
were protected against hemispheric IRI, suggesting the tau–
iron interaction as a pleiotropic modulator of ferroptosis and
ischemic stroke outcome (Tuo et al., 2017). Recently, a research
indicated that ACSL4 expression was downregulated in early
ischemic stroke and its overexpression exacerbated ischemic
cerebral injury, which proposed that ACSL4 expression might be
a potential therapeutic target in ischemic stroke (Cui et al., 2021).

Intracerebral hemorrhage (ICH) occurs when a weakened
vessel ruptures and bleeds, thereby leading to higher morbidity
and mortality than ischemic stroke (Donnan et al., 2010).
Hemoglobin/heme released from lysed erythrocytes after ICH
is considered as a neurotoxin to induce lethal ROS after being
metabolized into free iron and ultimately cause neuronal death
(Ward et al., 2014; Xiong et al., 2014). A research showed
that inhibition of iron-dependent hypoxia-inducible factor prolyl

hydroxylase domain enzymes (HIF-PHDs) protected neurons
from hemin-induced toxicity (Karuppagounder et al., 2016). Li Q.
et al. (2017) found that Fer-1 prevented neuronal death and
reduced iron deposition induced by hemoglobin in organotypic
hippocampal slice cultures. Moreover, Zille et al. (2017) indicated
that ICH in vivo and in vitro shared features of ferroptotic and
necroptotic cell death, but not caspase-dependent apoptosis or
autophagy. Collectively, all these studies suggest that ferroptosis
contributes to neuronal death after ICH.

Ferroptosis and Arrhythmia
Cardiac arrhythmia can occur in terminal sudden unexpected
death in epilepsy (SUDEP), due to a high rate of hypoxic
stress induced by convulsions with excessive sympathetic
overstimulation that triggers a neurocardiogenic injury (Nashef
et al., 2012). Recently, arrhythmia in SUDEP is considered to be
associated with iron overload in conditions of cardiac hypoxia.
Akyuz et al. (2021) indicated ferroptosis might be a potential
intrinsic mechanism that led to fatal cardiac arrhythmia, with
hemosiderin observed in the cardiomyocytes in the SUDEP
model. However, the deep mechanism of how ferroptosis is
involved in arrhythmia remains unclear. Further investigations
on this issue are expected to carry on in the future.

THE APPLICATION OF FERROPTOSIS IN
TREATMENT OF CVDs

As mentioned above, ferroptosis plays a significant role in
the occurrence and development of various CVDs. Therefore,
targeting ferroptosis is proposed as a feasible approach for cardiac
protection (Table 3).

Genetic manipulations in ferroptosis signaling pathway have
been verified to successfully inhibit ferroptosis and decrease
myocardial injury. The knockdown of Nrf2 to reduce heme
degradation (Fang et al., 2019), upregulation of GPX4 (Park
et al., 2019), and overexpression of SLC7A11 to increase GSH
levels (Fang et al., 2020) are capable of inhibiting ferroptosis
in cardiomyocytes.

Iron chelators are able to block redox reactions catalyzed by
iron ions and to allow efficient transport and excretion without
iron redistribution. Nowadays, 3 types of iron chelators including
deferiprone, deferoxamine, and deferasirox are applied in clinical
practice, mostly for the treatment of IOC (Pennell et al., 2013).
Compared to the other two iron chelators, deferiprone targets
hemorrhage-derived iron in IRI, which exerts a cardioprotective
effect in acute MI by alleviating intramyocardial hemorrhage and
cardiac hypertrophy (Behrouzi et al., 2020). Moreover, several
retrospective studies revealed that deferiprone monotherapy
showed better protection in heart than deferoxamine therapy
or subcutaneous desferrioxamine therapy (Galanello et al., 2006;
Pepe et al., 2011; Bilgin et al., 2020; Li et al., 2021).

The cardioprotective effects of antioxidants (e.g., Fer-1,
liproxstatin-1, vitamin E) have been verified currently. Fer-
1 is demonstrated to eliminate alkoxyl radicals produced by
Fe2+ from lipid hydroperoxides in other excess iron-induced
ferroptosis (Baba et al., 2018). Also, Fer-1 is beneficial to
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cardiomyopathy in Fth-deficient mice (Fang et al., 2020).
Likewise, liproxstatin-1 can decrease the levels of voltage-
dependent anion channel 1 and rescue GPX4 levels to protect
myocardium against IRI (Feng et al., 2019). Vitamin E and
α-tocotrienol are capable of inhibiting ferroptosis by suppressing
LOXs (Kagan et al., 2017).

PERSPECTIVE AND CONCLUSION

In this review, we summarized the main mechanisms of
ferroptosis and discussed the role of ferroptosis in CVDs.
As CVDs are a global health problem causing high rates of
mortality, morbidity, and disability, understanding the pathology
of cardiomyocyte damage is essential to develop a promising and
novel therapeutic strategy for CVDs. With more and more focus
on RCD in cardiomyocytes, ferroptosis, as an iron-dependent
form of cell death, has received increasing attention.

Ferroptosis is mainly caused by the occurrence of lipid
peroxidation of PUFA accumulation, which results from the
accumulation of intracellular free Fe2+ and/or dysfunction of
GSH peroxidation. Hence, the prominent features of ferroptosis
are PUFA or PL peroxidation as well as accumulation of
excessive iron. With overload of iron and lipid peroxidation, ROS
accumulates and cell membrane is damaged, which eventually
leads to cell death.

Iron overload is recently proved to be the significant cause
of cardiomyocyte death, with cardiovascular imaging showing
accumulation of iron in the damaged zone of heart. Also, verified
by abundant studies with specific models in vivo and in vitro,
ferroptosis has been demonstrated to play an important role
in different types of CVDs, including cardiomyopathy, MI, IRI,
HF, vascular injury, stroke, arrhythmia and so on. Inhibition
of ferroptosis in CVDs can decrease cardiomyocyte death and
improve cardiopathic conditions. Consequently, ferroptosis is a
promising therapeutic target for CVDs.

However, the molecular mechanisms of ferroptotic cell death
in cardiomyocytes remain unclear. Except for the destruction of
iron metabolism, GSH depletion and lipid peroxidation, various
pathways are also involved in the process of ferroptosis, such
as high levels of extracellular glutamic acid, organelle-mediated
pathways, Nrf2 pathway and so on (Zhai et al., 2021). Moreover,

there are few researches on the relationship between ferroptosis
and pathogenesis of arrhythmia. And further studies need to be
performed to demonstrate the association between ferroptosis
and vascular diseases. Though several inhibitors of ferroptosis,
such as Fer-1 and GPX4, have been proposed to effectively repair
cardiomyocyte injury, these novel methods are unsuitable for
routine clinical therapy and their feasibility needs verification.

In conclusion, ferroptosis plays a significant role in the
pathogenesis of various CVDs. With mechanisms and clinical
feasibility under exploration, targeting ferroptosis to treat CVDs
is a new continent to be explored.
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