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The role of FRIGIDA and
FLOWERING LOCUS C genes In
flowering time of Brassica rapa
leafy vegetables

Satoko Takada(®?, Ayasha Akter?!, Etsuko Itabashi?, Namiko Nishida?, Daniel J. Shea®?3,
Naomi Miyajil, Hasan Mehraj?, Kenji Osabe*, Motoki Shimizu®, Takeshi Takasaki-Yasuda?,
Tomohiro Kakizaki®?, Keiichi Okazaki?, Elizabeth S. Dennis®’ & Ryo Fujimoto?

There is a wide variation of flowering time among lines of Brassica rapa L. Most B. rapa leafy (Chinese
cabbage etc.) or root (turnip) vegetables require prolonged cold exposure for flowering, known as
vernalization. Premature bolting caused by low temperature leads to a reduction in the yield/quality
of these B. rapa vegetables. Therefore, high bolting resistance is an important breeding trait, and
understanding the molecular mechanism of vernalization is necessary to achieve this goal. In this
study, we demonstrated that BrFRIb functions as an activator of BrFLC in B. rapa. We showed a positive
correlation between the steady state expression levels of the sum of the BrFLC paralogs and the days
to flowering after four weeks of cold treatment, suggesting that this is an indicator of the vernalization
requirement. We indicate that BrFLCs are repressed by the accumulation of H3K27me3 and that the
spreading of H3K27me3 promotes stable FLC repression. However, there was no clear relationship
between the level of H3K27me3 in the BrFLC and the vernalization requirement. We also showed that
if there was a high vernalization requirement, the rate of repression of BrFLC1 expression following
prolonged cold treatments was lower.

Flowering is an event that transitions a plant from vegetative to reproductive growth, and is regulated by both
internal and external factors"* Because plants use the energy accumulated during the vegetative growth period
for the reproductive growth phase to propagate offspring, flowering is a crucial developmental process in a plant’s
life cycle!?. Flowering time is also important for the yield of crops or vegetables, and the regulation of flowering
time is an important goal of plant breeding??®. Changes to flowering time can broaden the area or the period of
suitable cultivation, and lead to tolerance against changing climatic conditions'*

Many plant species require prolonged cold exposure, generally encountered during the course of winter,
before flowering and setting seed. Without exposure to a prolonged cold period, flowering is blocked. This process
is known as vernalization, which is derived from the Latin word vernalis, meaning ‘of, relating to, or occurring in
the spring. Variation in the requirement for vernalization exists in plant species>®. A vernalization requirement
is an evolutionary adaptation to temperate climates, preventing flowering before encountering a winter season
and ensuring flowering occurs under the more favorable weather conditions of spring"*¢. Vernalization require-
ment is also important for the quantity and quality of crop production"*. In vegetative crops, early bolting and
flowering caused by a low vernalization requirement can limit the potential for increase in yield or devalue the
products®®.
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The molecular mechanism of vernalization has been studied extensively in Arabidopsis thaliana, and an
abundance of information about its mechanism has been discovered. In A. thaliana, the two genes, FRIGIDA
(FRI)” and FLOWERING LOCUS C (FLC)*'°, are the major determinants of flowering time'*. FRI is one of the
causative genes of natural variation of vernalization in A. thaliana, and FRI acts as a positive regulator of FLC’.
Another flowering regulator, FLC, encodes a MADS-box transcription factor and acts as a floral repressor®-'°.
FLC is expressed before cold exposure and its expression is repressed by vernalization''. Cold exposure induces
the formation of a plant homeodomain-polycomb repressive complex 2 (PHD-PRC2) that results in an increased
abundance of tri-methylation of the 27 lysine of histone H3 (H3K27me3) at the nucleation region of the FLC
locus'*!®. Upon return to warm conditions, H3K27me3 spreads over the entire FLC gene and silencing of FLC is
maintained*'>.

Varieties of Brassica rapa L. include Chinese cabbage (var. pekinensis), pak choi (var. chinensis), komatsuna
(var. perviridis), turnip (var. rapa), and oilseed (var. oleifera). B. rapa is closely related to A. thaliana, both being
members of the Brassicaceae family. Bolting caused by low temperature leads to a reduction in the yield and
quality of the harvested products of leafy vegetables such as Chinese cabbage, pak choi, and komatsuna or root
vegetables such as turnip. Therefore, a line highly resistant to bolting (i.e., possessing a high vernalization require-
ment) is desirable for the breeding of B. rapa cultivars>*. Comparative genetic and physical mapping and genome
sequencing studies have revealed that the B. rapa genome has undergone a whole-genome triplication, which
results in multiple copies of paralogous genes'é~'%. Flowering time genes have been characterized and there are
two FRI paralogs in B. rapa'®?. B. rapa has four FLC paralogs (BrFLCI1, BrFLC2, BrFLC3, BrFLC5)"*2!, of which
BrFLC5 is a pseudogene in the reference genome due to the deletion of two exons!®?!. BrFLC genes are expressed
before vernalization and their expression is repressed following vernalization®>*?2. The silencing of the three func-
tional BrFLC paralogs is associated with increased H3K27me3 around the transcription start site?>. FLC paralogs
co-localized with quantitative trait loci (QTLs) for flowering time in B. rapa®~*’. Thus, FLC genes are considered
to be key regulators of the vernalization requirement in B. rapa®>.

In B. rapa, FRI gene function has not yet been confirmed, and how the multiple FLC genes are involved in the
vernalization requirements is not fully understood. In this study, we characterized two BrFRI genes, BrFRIa and
BrFRIb, and confirmed BrFRIb functions as an activator of FLC. The relationship between expression levels of
BrFRIs (BrFRIa+ BrFRIb) or BrFLCs (BrFLCI + BrFLC2 + BrFLC3 + BrFLC5) and days to flowering was exam-
ined. We also examined the expression levels of BrFLC genes and the accumulation of H3K27me3, before and
after prolonged cold treatment, in two lines that vary in their vernalization requirements. Our results suggest that
the steady state of the sum of functional BrFLC expression levels and the level of reduction of this expression by
vernalization are key factors in determining the vernalization requirement in B. rapa.

Methods

Plant materials and growth conditions. Nine B. rapa lines (RJKB-T02, RJKB-T17, ‘Harunosaiten,
‘Harusakari, ‘Natsumaki 50nichi, ‘Yellow sarson, BRA2209, Homei, and Osome) were used as plant materials to
examine days to flowering after four weeks of cold treatment (Supplementary Table 1). In total, 37 B. rapa lines
including the above nine lines were used for sequence determination of BrFRI genes. Genetic distances among
33 of the 37 lines have been examined®® and these 33 lines all need vernalization for flowering (Supplementary
Fig. 1, Supplementary Table 1).

Seeds were surface sterilized and grown on agar solidified Murashige and Skoog (MS) plates with 1% (w/v)
sucrose under long day (LD) conditions (16 h light) at 22 °C. For vernalizing cold treatments, 14-day seedlings on
MS plates were treated for 2, 3, 4, 5, 6, or 8 weeks at 4°C under LD conditions (16 h light) or four weeks at 4°C and
then seven days in normal growth condition.

To examine the flowering time in the nine lines, seeds were surface sterilized and grown on MS plates with
1% (w/v) sucrose under LD conditions (16 h light) at 22°C for 14 days, and 14-day seedlings on MS plates were
treated for four weeks at 4 °C under LD conditions (16 h light). After cold treatment, the plants were transferred to
soil and grown in normal growth conditions. The number of days until the appearance of flower buds was counted
and scores were set based on the criteria shown in Supplementary Table 2. More than ten plants of each line were
used for examining the flowering time.

RNA extraction and RT-PCR/qPCR. Total RNA was isolated from 1% and 2" leaves using the SV Total
RNA Isolation System (Promega). The cDNA was synthesized from 500 ng total RNA using ReverTra Ace QPCR
RT Master Mix with gDNA Remover (Toyobo). For RT-PCR, the cDNA was amplified using Quick Taq® HS
DyeMix (Toyobo). PCR was performed using the following conditions; 1 cycle of 94 °C for 2 min, 25, 30, or
35 cycles of 94°C for 30, 58 °C for 30, and 68 °C for 30s. Primer sequences used for RT-PCR are shown in
Supplementary Table 3.

RT-qPCR was performed using LightCycler 96 (Roche). cDNA was amplified using FastStart Essential DNA
Green Master (Roche). PCR conditions were 95 °C for 10 min followed by 40 cycles of 95°C for 105, 60 °C for 10,
and 72°C for 155, and Melting program (60 °C to 95°C at 0.1°C/s). After amplification cycles, each reaction was
subjected to melt temperature analysis to confirm single amplified products. The expression level of each gene
relative to BrACTIN® was automatically calculated using automatic CQ calling according to the manufacturer’s
instructions (Roche). Data presented are the average and standard error (s.e.) calculated from three biological and
experimental replications. Primer sequences used for RT-qPCR are shown in Supplementary Table 3.

Sequencing DNA fragments of BrFRI and BrFLC genes. The region covering BrFRIa or BrFRIb was
amplified using primers, FRIa-F1/-R1 or FRIb-F1/-R1, respectively, using genomic DNA as templates. DNAs
from 37 B. rapa lines were used for the direct sequencing of PCR products (Supplementary Table 1). PCR
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products were treated by illustra ExoProStar (GE Healthcare Life Sciences) and were sequenced using ABI Prism
3130 (Applied Biosystems). Primer sequences used for direct sequencing are shown in Supplementary Table 3.

Regions covering the coding sequence of each BrFLC paralog in RJKB-T02, RJKB-T17, RJKB-T24, Homei,
‘Harunosaiten, and BRA2209, were amplified using cDNA as templates (Supplementary Table 1). PCR products
were treated by illustra ExoProStar (GE Healthcare Life Sciences) and were sequenced using ABI Prism 3130
(Applied Biosystems). PCR was performed using the following conditions; 1 cycle of 94 °C for 2 min, 35 cycles
of 94 °C for 305, 58°C for 305, and 68 °C for 30s. Primer sequences used for direct sequencing are shown in
Supplementary Table 3.

The genomic regions covering BrFLCI1, BrFLC2, and BrFLC3 and their promoter regions were amplified using
genomic DNA as a template in BRA2209. PCR products were then cloned into pPGEM®-T Easy vector (Promega).
Nucleotide sequences of three clones of PCR products were determined with the ABI Prism 3130 (Applied
Biosystems), and the data were analyzed using Sequencher (Gene Codes Corporation, MI, USA). PCR was per-
formed using the following conditions; 1 cycle of 94 °C for 2 min, 35 cycles of 94 °C for 305, 58 °C for 30s, and
68°C for 2min. Primer sequences and their positions used for PCR and sequencing are shown in Supplementary
Fig. 2 and Supplementary Table 3.

Constructs and plant transformation.  Using cDNAs from leaves of RJKB-T24, either BrFRIb or BrFLCI,
2, or 3 cDNA fragments were amplified by RT-PCR using primers designed to add Bam HI and Sac I restriction
sites to the 5'- and 3’-ends (Supplementary Table 3), and PCR products were then cloned into pGEM®-T Easy
vector (Promega). DNA fragments of BrFRIb or BrFLCI, 2, or 3 cDNA was inserted into Bam HI and Sac I
restriction sites of pBI121. These constructs were transformed into Agrobacterium tumefaciens strain EHA105,
and transformation of Columbia-0 (Col) accession in A. thaliana was carried out by the floral dip procedure®.
Transgenic seedlings were selected through resistance to kanamycin on a selection medium.

Seeds of T, plants were sown on MS medium with or without four weeks of cold treatment and grown under
LD conditions (16 h light) at 22 °C. After growing plants on MS medium, they were transferred to soil and grown
under the conditions described above. Flowering time in A. thaliana was expressed as the number of rosette
leaves at the time of flowering.

Chromatin immunoprecipitation (ChIP). ChIP experiments were performed as described by Buzas et
al*'. One gram of non-crosslinked chromatin taken from the 1* and 2" leaves of Homei and ‘Harunosaiten’ was
used (Supplementary Table 1). Mononucleosomes were obtained by MNase digestion and samples were soni-
cated twice. The samples were incubated with anti-H3K27me3 (Millipore, 07-449) antibodies for 4h and then
with protein A agarose for 2h at 4 °C with rotation. The protein A agarose was washed, and immunoprecipitated
DNAs were eluted by proteinase K treatment followed by a clean-up using Qiagen PCR cleanup kit (Qiagen). We
validated the enrichment of purified immunoprecipitated DNAs by ChIP-qPCR using the previously developed
positive and negative control primer sets of H3K27me3 (Supplementary Table 3)?2. Three independent ChIP
experiments were carried out on each sample for biological replicates.

ChIP-qPCR was performed by the same method as the RT-qPCR using the immunoprecipitated DNA as a
template. The H3K27me3 level of each BrFLC gene relative to the SHOOT MERISTEMLESS gene (BrSTM)?,
which has H3K27me3 accumulation, was automatically calculated using automatic CQ calling according to the
manufacturer’s instructions (Roche). The difference in the amplification efficiency between primer pairs was cor-
rected by calculating the difference observed by qPCR amplifying the input-DNA as a template. Data presented
are the average and standard error (s.e.) from three biological and experimental replications. Primer sequences
used for ChIP-qPCR are shown in Supplementary Table 3.

Amino acid sequence analysis. Using the genome sequences of BrFRIa and BrFRIb in 37 B. rapa lines,
predicted amino acid sequences were obtained. The amino acid sequences of BrFRIa and BrFRIb in 37 lines of
B. rapa, two BoFRI*?, and AtFRI (AF228499.1) were aligned using ClustalW (http://www.ddbj.nig.ac.jp/search/
clustalw-j.html). A phylogenetic tree was constructed with the neighbor joining method??, and the bootstrap
probabilities of 1,000 trials were calculated.

Results

Variation of the days to flower after prolonged cold treatment. To determine the duration of
prolonged cold treatment, we determined the days to flowering after prolonged cold treatment. We examined
the percentage of plants that had flowered in two early (Homei and RJKB-T02) and two late flowering lines
(RJKB-T17 and BRA2209) with different durations of cold treatments, i.e., two, three, four, or five weeks. After
two weeks of cold treatment, no line flowered within 100 days (Supplementary Fig. 3). All plants of two early
flowering lines flowered after three weeks of cold treatment, while no plant of two late flowering lines flowered
(Supplementary Fig. 3). In two late flowering lines, four of six plants of RJKB-T17 flowered following four weeks
of cold treatment, while no plant in BRA2209 flowered following four weeks of cold treatment (Supplementary
Fig. 3). Following five weeks of cold treatment, all lines flowered even though there were differences in days to
flowering (Supplementary Fig. 3). From these data, we determined that four weeks of cold treatment is suitable
for detecting differences in vernalization requirement among the B. rapa lines.

Next, we examined the days to flower after four weeks of cold treatment in nine B. rapa lines. Scores were
used for the evaluation of flowering time, because some plants in the late flowering line did not flower within 100
days (see Methods). “Yellow Sarson’ and Homei were early flowering, while Osome, BRA2209, RJKB-T17, and
‘Harunosaiten’ were late flowering (Fig. 1).

Functional analysis of FRIGIDA in B. rapa. As the early flowering phenotype in some A. thaliana acces-
sions is due to the loss of function of AtFRI, we examined the sequence variation in BrFRI genes using 37 lines of
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Flowering time score

Figure 1. Flowering time score represented by the expected value of number of days from sowing to bolting in
nine B. rapa lines. Data presented are the average and standard error (s.e.) from more than ten plants. Letters
above the bars indicate significant differences at p < 0.05 (Tukey-Kramer test).

B. rapa including the nine lines whose flowering time had been assessed (Fig. 1, Supplementary Table 1). In the
reference genome, Chiifu-401-42, there are two FRI genes, BrFRIa (Bra029192, A03) and BrFRIb (Bra035723,
A10). The BrFRIa sequence in the reference genome is comprised of three exons and showed sequence simi-
larity to AtFRI and BoFRIa. BoFRIa* and AtFRI” have already been shown to be functional activators of FLC,
considering that BrFRIa in Chiifu-401-42 is functional; sharing a high sequence similarity to BoFRIa suggests
that BrFRIa may perform a similar function. The nucleotide sequence of BrFRIa in 37 lines was determined by
direct sequencing. There was a high sequence similarity of the amino acid sequence of BrFRIa among 37 B. rapa
lines (from 97.8% to 100.0%) (Supplementary Table 4). The amino acid sequence identities between BrFRIa and
AtFRI were from 56.8% to 57.5% and from 87.9% to 88.1% between BrFRIa and BoFRIa (Supplementary Figs 4,
5, Supplementary Table 4). Lines showing different flowering times had identical amino acid sequences of BrFRIa
(Fig. 1, Supplementary Table 4), indicating that the differences of vernalization requirements among the nine B.
rapa lines are not due to amino acid sequence variation in BrFRIa.

In contrast, the annotated BrFRIb (Bra035723), termed BrFRIbA, is comprised of two exons, and appears
to lack the 3" exon (Supplementary Fig. 6). We mapped RNA-seq reads that was previously performed* using
14-day leaves in RJKB-T23 and RJKB-T24 on the region covering BrFRIbA and found another ORE which con-
tains three exons (Supplementary Fig. 7), suggesting that an unannotated functional copy of BrFRID is present
in the reference genome sequence. As further evidence of this, transformation of the annotated BrFRIbA driven
with the 35S CaMV promoter into the Col accession of A. thaliana, which lacks AtFRI function, did not com-
plement the AtFRI function (Supplementary Fig. 8), indicating that the annotated BrFRIbA is non-functional.

We examined whether the newly identified BrFRIb in this study is functional. We transformed BrFRIb into
the Col accession of A. thaliana, and 14 independent T plants were obtained. The flowering time segregated in T,
plants that were derived from three independent T plants, and the flowering times of T, plants with the transgene
were later than the T, plants without the transgene or wild type Col (Student #-test, p < 0.01) (Fig. 2A). We also
found that T, plants from some T, lines did not flower even when the rosette leaf number was greater than 45.
We confirmed the induction of AtFLC expression in these late flowering transgenic plants (Fig. 2B). T, seeds were
treated with cold for four weeks, and then examined for flowering time. The flowering time in T, plants with the
transgene was the same as without the transgene (Fig. 2A). Repression of AtFLC by cold treatment was observed
in T, plants with the transgene (Fig. 2B,C), indicating that AtFLC induced by BrFRIb is suppressed by cold treat-
ment. These results indicate that BrFRIb functioned like AtFRI.

We determined the nucleotide sequence of BrFRIb in 37 lines by direct sequencing. There was a high sequence
similarity of the amino acid sequence of BrFRIb among B. rapa lines (from 95.8% to 100.0%) (Supplementary
Fig. 5, Supplementary Table 4). The amino acid sequence identity between BrFRIb and AtFRI were from 59.4% to
59.9% and from 85.8% to 87.4% between BrFRIb and BoFRIb (Supplementary Figs 4, 5, Supplementary Table 4).
The amino acid sequence identities ranged from 63.1% to 64.3% between BrFRIa and BrFRIb (Supplementary
Table 4). Like BrFRIa, lines showing different flowering time had identical amino acid sequences of BrFRIb
(Fig. 1, Supplementary Table 4), indicating that the difference of vernalization requirement among nine B. rapa
lines is not due to the amino acid sequence variation of BrFRIb.

Next, we examined whether transcription levels of BrFRI genes contribute to the difference of vernalization
requirement. We examined the transcription levels of BrFRIa, BrFRIb, or BrFRIs (BrFRIa+ BrFRIb) by RT-qPCR
in 14-day leaves of the nine lines whose flowering time had been measured (Figs 1 and 3A-C). Expression in
“Yellow sarson’ was the lowest, while RJKB-T17 and BRA2209 had the highest expression levels of BrFRIs, with
expression levels in BRA2209 being 6.8 times higher than that in “Yellow sarson’ (Fig. 3C). There was a moderate
correlation between BrFRIs expression level and flowering time but it was not statistically significant (r=0.56,
p>0.05) (Fig. 3D). There was no correlation between BrFRIa or BrERIb expression level and flowering time
(Supplementary Fig. 9).
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Figure 2. Overexpression of BrFRIb causes late flowering and induce AtFLC expression. (A) Number of

rosette leaves and flowering-time phenotypes in T, plants with overexpressing BrFRIb with (V) or without
vernalization (NV). +TG and —TG show the presence and absence of transgenes (TG), respectively. **p < 0.01
(Students t-test) (B) RT-PCR analysis showing transcription of BrFRIb and AtFLC before and after four weeks of
cold treatment. Non-vernalized Col line is included as a control. AtGAPD was used as a control to demonstrate
equal RNA loading. NV, non-vernalized; V, vernalized. (C) RT-qPCR analysis of AtFLC with (V) and without
(NV) four weeks of cold treatment. AfFLC expression level relative to AtGAPD is shown in the y-axis. Non-
vernalized Col line is included as a control. Data presented are the average and standard error (s.e.) from three
biological and experimental replications. **p < 0.01 (Students ¢-test).

Three FLOWERING LOCUS C paralogs function as floral repressors in B. rapa. We examined
whether BrFLC is a key regulator of the differences in vernalization requirements for B. rapa. First, we con-
firmed all three BrFLCs (BrFLCI, BrFLC2, and BrFLC3) function as floral repressors. Transformation of a 35S
promoter::BrFLCI1cDNA, 35S promoter::BrFLC2cDNA, or 35S promoter::BrFLC3cDNA construct into the Col
accession of A. thaliana, where AtFLC was not expressed because of loss of function of AtFRI, revealed that trans-
genic plants with overexpressed BrFLC1, BrFLC2, or BrFLC3 showed late flowering (Supplementary Fig. 10),
confirming that all three BrFLCs function as floral repressors like AtFLC.

Second, we examined the amino acid sequences of three functional BrFLC paralogs (BrFLC1, BrFLC2, and
BrFLC3) in RJKB-T24, which was the line used for testing the 35S promoter::BrFLC constructs. The amino
acid sequence of the early flowering lines, RJKB-T02 and Homei, and the late flowering lines, RJKB-T17,
‘Harunosaiten, and BRA2209, were also examined. A comparison of the amino acid sequences for each BrFLC
paralog showed no sequence differences between lines, indicating that any difference in flowering time is not due
to amino acid sequence variation.

Third, we examined the expression levels of BrFLC genes in the nine B. rapa lines whose flowering time had
been measured (Fig. 1, Supplementary Table 1) using a primer set that can amplify all four FLC genes. The lowest
level of BrFLCs was in early flowering RJKB-T02 and the highest in late flowering RJKB-T17; the expression
level in RJKB-T17 was 3.6 times higher than in RJKB-T02 (Fig. 4A). The expression levels of BrFRIs and BrFLCs
showed a weak correlation (r=0.23, p > 0.05) (Supplementary Fig. 11). There was a high correlation between
BrFLCs expression level and flowering time (r=0.73, p < 0.05) (Fig. 4B), suggesting that the expression level of
BrFLCs before cold treatment is associated with the vernalization requirement.

Variation of the vernalization response in BrFLCs. Of nine B. rapa lines whose flowering time had
been measured, two early (RJKB-T02, Homei) and two late flowering (BRA2209, ‘Harunosaiten’) lines were
selected to examine the BrFLCs expression in different durations of cold treatments. A decrease in BrFLCs expres-
sion levels in response to four weeks of cold treatment was from 15.8% to 47.8%, with the weakest repression
observed in BRA2209 (Fig. 5A,B). The rate of repression of BrFLCs expression by four weeks of cold treatment
was not related to the expression level of BrFLCs before cold treatment (Fig. 5A,B). BrFLC expression levels after
four weeks of cold treatment in BRA2209 and ‘Harunosaiten’ were higher than that in RJKB-T02 and Homei
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Data presented are the average and standard error (s.e.) from three biological and experimental replications.
Letters above the bars indicate significant differences at p < 0.05 (Tukey-Kramer test). (B) The steady state
expression level of BrFLCs is associated with days to flower after four weeks of cold treatment. The correlation
coeflicient between BrFLCs and flowering time score is 0.73 (p < 0.05) and if remove the BRA2209 data (outlier)
being 0.91 (p < 0.05).

(p <0.05; Tukey-Kramer test) (Fig. 5A). This difference was related to the difference of flowering time after four
weeks of cold treatment (Fig. 1). BrFLCs expression levels were reduced following the cold treatment length in all
four lines (Fig. 5A). The rate of decrease in BrFLCs expression level was lowest in BRA2209 (Fig. 5B).
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Figure 5. Variation of BrFLC repression by cold treatment. (A) Expression pattern of BrFLCs

(BrFLC1+ BrFLC2+ BrFLC3 + BrFLC5) in four B. rapa lines before (NV) and after 4, 6, and 8 weeks of cold
treatments (4wkV, 6wkV, and 8wkYV, respectively). Y-axis represents the relative expression level of BrFLCs
compared to BrACTIN (BrACT). Data presented are the average and standard error (s.e.) from three biological
and experimental replications. (B) The ratio of the expression level after cold treatment compared to before cold
treatment.

Histone modification spreads at the BrFLC locus upon a return to normal growth conditions
after vernalization. We selected two lines (Homei, ‘Harunosaiten’) to examine the relationship between
H3K27me3 levels at the BrFLC loci and differences in the vernalization requirements. Homei showed low levels
of BrFLCs expression before cold treatment and an early flowering phenotype after four weeks of cold treatment,
whereas ‘Harunosaiten’ showed high levels of BrFLCs expression before cold treatment and late flowering phe-
notype after four weeks of cold treatment (Figs 1 and 5). In both lines, the expression levels of BrFLCs decreased
following the four weeks of cold treatment and transcriptional repression was maintained upon return to normal
temperature (Supplementary Fig. 12).

At the end of four weeks of cold treatment, H3K27me3 accumulation was observed around the transcription
start site (TSS) of BrFLC in both lines. The accumulation of H3K27me3 levels in the region around the TSS
was maintained in both lines seven days after returning to normal growth conditions (Fig. 6). In the 5% exon
regions, H3K27me3 levels slightly increased, but were lower relative to the TSS in both lines at the end of four
weeks of cold treatment (Fig. 6). In both lines, H3K27me3 levels increased seven days after returning to normal
growth conditions (Fig. 6); the spreading of H3K27me3 regions in the BrFLC loci was observed in Homei and
‘Harunosaiten’ after seven days of normal growth conditions following four weeks of cold treatment (Fig. 6).
The accumulation of H3K27me3 was similar between Homei and ‘Harunosaiten, suggesting that the level of
H3K27me3 at the BrFLC loci does not explain the difference in vernalization requirement between these lines.

Characterization of three functional BrFLC paralogs in BRA2209. We found that the rate of repres-
sion of BrFLCs expression by cold treatment was low in BRA2209, and this line showed a high vernalization
requirement (Figs 1 and 5). We examined the expression level in each BrFLC paralog in BRA2209 using paralog
specific primer sets*. Before cold treatment, BrFLCI had the highest expression among the four paralogs (Fig. 7).
After four weeks of cold treatment, BrFLCI still had the highest expression level and the suppression rate of
BrFLCl1 following four weeks of cold treatment was lower than that of other BrFLC paralogs (Fig. 7).

The sequences of full lengths of the genic regions of BrFLCI, BrFLC2, and BrFLC3 in BRA2209 were deter-
mined. In BrFLCI, there was a 410 bp deletion, including part of the 7% exon (31 bp of the 3’ region including stop
codon) and a downstream region (Supplementary Fig. 13). Except for two SNPs in the 5 intron, the other exon
and intron regions were identical to the reference sequence. There were three SNPs in the 963 bp region upstream
of the TSS, and no sequence differences in the 497 bp region downstream from the deleted region in BrFLCI
of BRA2209 (Supplementary Fig. 13). In BrFLC2, there were several substitutions and indels in promoter and
intron regions, but no substitutions in the exon regions (Supplementary Fig. 13). In BrFLC3, the promoter region
had some sequence differences in comparison to the reference genome and there were some substitutions and
indels in the intron regions. However, the coding sequence was identical to the reference genome (Supplementary
Fig. 13).

Discussion
High bolting resistance is an important trait for leafy vegetables in B. rapa, and previous reports showed that FLC
is a key gene for vernalization®*. Co-localization of flowering time QTLs with the BrFLCI or BrFLC2 gene sug-
gests that the loss-of-function of BrFLC causes early flowering??. Our study and a previous study revealed that all
three BrFLCs function as floral repressors®. The loss-of-function of one of the BrFLC paralogs can result in early
flowering, implying that the expression of BrFLC paralogs works to repress flowering in a quantitative manner>>.
From the reference genome sequence of B. rapa, two BrFRI genes were identified. BrFRIa has three exons and
is similar to the functional FRI genes found in other species, while the annotated BrFRIb in the reference genome
(BrFRIbA) has two exons and appears to be truncated in the C-terminus. As the C-terminus is critical in AtFRI
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Figure 6. ChIP-qPCR using H3K27me3 antibodies of BrFLC genes before and after four weeks of cold
treatment. Upper panel is the gene structure of three BrFLC paralogs. Black boxes represent exon and arrows
represent the primer position for ChIP-qPCR. Bottom panel shows the level of H3K27me3 in three BrFLCs
before and after four weeks of cold treatment. Y-axis represents the ratio compared to BrSTM, which is an
H3K27me3-marked gene. Data presented are the average and standard error (s.e.) from three biological and
experimental replications. Statistical tests between NV and 4wkV or between NV and 4wkV + 7d are shown
(Student t-test, *p < 0.05, **p < 0.01). NV, non-vernalized; 4wkV, four weeks of cold treatment; 4wkV + 7d, four
weeks of cold treatment and then seven days normal growth condition.
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Figure 7. Expression pattern of BrFLC genes in BRA2209 before (NV) and after four weeks of cold treatments
(4wkV). Expression level of each BrFLC paralog relative to BrACTIN (BrACT) is calculated. Data presented
are the average and standard error (s.e.) from three biological and experimental replications. The ratio of the
expression level after cold treatment compared to before cold treatment are shown above the bars. NV, non-
vernalized; 4wkV, four weeks of cold treatment.

function’®, BrFRIbA could be non-functional. Indeed, transformation of BrFRIbA into the A. thaliana Col acces-
sion did not complement the early flowering phenotype. However, we found a third exon by mapping RNA-seq
reads against the reference genome. Complementation using this new ORF, termed BrFRIb, confirmed it to be
functional, and transformation of BrFRIb into Col delayed flowering. In addition, BrFRIb induced AtFLC tran-
scription and induced AtFLC, which was suppressed by four weeks of cold treatment, indicating that BrFRIb has
the same function as AtFRI. We did not find mutations leading to a major defect in the translated protein in any of
37 varieties of B. rapa, and the amino acid sequences of BrFRIa or BrFRIb among these varieties were more than
95% identical. In B. oleracea, BoFRIa has been confirmed to be functional by a complementation experiment™,
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and has about 88% amino acid sequence identity to BrFRIa, suggesting that BrFRIa is functional. We consider that
both BrFRIa and BrFRIb are functional activators of the floral repressor gene FLC in B. rapa.

In our study, the nine lines of B. rapa did not show any positive correlation between the expression levels of
the BrFRIs and BrFLCs before cold treatment. These results suggest there is no strong correlation between the
expression levels of FRI and FLC before vernalization in the genus Brassica.

There was variation in the flowering time after four weeks of cold treatment among nine lines of B. rapa, sug-
gesting that a cold treatment of four weeks in duration is not saturating for promoting flowering in some lines. In
A. thaliana, the variation of flowering time is due to naturally occurring loss-of-function mutations, which have
originated independently and result in early flowering accessions (summer annual habit)”*-*°. It is unlikely that
sequence variation in the coding sequences of BrFRIa or BrFRIb influences flowering time variation or the ver-
nalization requirement, because the amino acid sequences are highly conserved and there were no differences in
the amino acid sequence between lines showing different flowering times. The absence of an association between
BrFRI expression levels and vernalization requirement in this study and the low number of reports showing an
association between flowering time QTL and FRI in the genus Brassica*! suggest that the variation of vernalization
requirement in B. rapa is not greatly influenced by sequence or transcriptional variation of BrFRI.

All three BrFLCs function as floral repressors; this has been confirmed by other groups in B. rapa® or B.
napus*?. These results suggest that we should consider not only each paralogous BrFLC transcript, but also the
sum of the three paralogous BrFLC transcripts as an important factor for the vernalization requirement. There is
a positive correlation between the expression levels of BrFLC paralogs before cold treatment and the days to flow-
ering after four weeks of cold treatment. This suggests that the expression levels of BrFLC genes before cold treat-
ment may be an indicator of the duration of cold required for vernalization. The rate of suppression of BrFLCs
expression by cold treatment was similar among lines except for BRA2209. Generally, if the rate of repression of
BrFLC expression is similar among varieties, the expression level before cold treatment is predictive of duration
of cold required for vernalization. As a longer cold period will be required to suppress BrFLCs expression in lines
having a higher BrFLCs expression prior to cold treatment, the positive correlation between the expression lev-
els of BrFLCs before cold treatment and days to flowering after four weeks of cold treatment supports this idea.
However, our experiment assessed nine lines, and we need to verify this possibility by analyzing additional lines.

In BRA2209, expression levels of BrFLCs before cold treatment were not as high as in other lines, but the rate
of repression of BrFLCs expression by cold treatment was low, especially of BrFLC], leading to higher expression
levels of BrFLCs after four weeks of cold treatment, consistent with the late flowering phenotype. An extremely
late bolting line of B. rapa has a long insertion in the 1* intron of BrFLC2 and BrFLC3, and the rate of decrease
in the expression of BrFLC2 and BrFLC3 is low, indicating a weak vernalization response?”. We did not identify
any sequence difference in the 1* intron of BrFLCI between BRA2209 and the reference genome. In contrast, we
found a 401 bp deletion covering part of the 7" exon and downstream regions in BrFLCI of BRA2209, suggesting
that the 3’ region of BrFLCI might include a sequence important for the response to prolonged cold.

We have shown that FLC chromatin is enriched with the active histone marks, H3K4me3 and H3K36me3,
prior to cold treatment, and that these histone marks are replaced with the repressive histone mark, H3K27me3,
during cold exposure??, suggesting that chromatin change is important for the repression of FLC in the vernal-
ization of B. rapa. In A. thaliana, increasing the duration of cold quantitatively enhances the stability of AtFLC
repression, and the necessary period of cold treatment varied among accessions. In two different accessions of
A. thaliana (FRI Col and Lov-1), the accumulation of H3K27me3 at the entire FLC locus, upon transfer of the
plants back to warm conditions after cold treatment, was faster in the accession that requires a shorter period of
cold (FRI Col) than in the accession that needs a longer period of cold (Lov-1)*. When treated with four weeks of
cold, an enrichment of H3K27me3 was observed around the TSS of the BrFLC loci, but not at the region covering
the 5 exon in either line. Upon returning to warm conditions after cold exposure, H3K27me3 accumulation
occurred at both TSS and the 5% exon regions in both lines, suggesting that H3K27me3 spreads from the 5’ to 3’
direction in BrFLC genes to maintain FLC repression. The spreading of H3K27me3 in the BrFLC locus is similar
to the spreading reported in A. thaliana'*'>**, Unlike the distinct difference in H3K27me3 accumulation reported
in A. thaliana, we did not find a difference in the accumulation patterns of H3K27me3 at the BrFLC loci between
early and late flowering lines of B. rapa.

Taken together, two factors, the steady state expression levels of BrFLCs and the sensitivity of the repression
of BrFLCs by cold treatment, are important for the vernalization requirement in B. rapa. Further study will be
required to identify whether variations of these two factors are regulated by cis or trans.
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