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Abstract
Background: The global increase in diabetes prevalence necessitates advanced diagnostic 
methods. Machine learning has shown promise in disease diagnosis, including diabetes. 
Materials and Methods: We used a dataset collected from the Medical City Hospital laboratory 
and the Specialized Center for Endocrinology and Diabetes at Al‑Kindy Teaching Hospital in Iraq. 
This dataset includes 1000 physical examination samples from both male and female patients. The 
samples are categorized into three classes: diabetic  (Y), nondiabetic  (N), and predicted diabetic  (P). 
The dataset contains twelve attributes and includes outlier data. Outliers in medical studies can result 
from unusual disease attributes. Therefore, consulting with a specialist physician to identify and 
handle these outliers using statistical methods is necessary. The main contribution of this study is the 
proposal of two hybrid models for diabetes diagnosis in two scenarios:  (1) Scenario 1  (presence of 
outlier data): Hybrid Model 1 combines the K‑medoids clustering algorithm with a Gaussian naive 
Bayes (GNB) classifier based on kernel density estimation (KDE) to handle outliers and (2) Scenario 
2 (after removing outlier data): Hybrid Model 2 combines the K‑means clustering algorithm with a 
GNB classifier based on KDE with suitable bandwidth. We performed principal component analysis 
to minimize dimensionality and evaluated the models using fivefold cross‑validation. Results: All 
experiments were conducted in identical settings. Our proposed hybrid models demonstrated superior 
performance in two scenarios, handling and rejecting outliers, compared to other machine‑learning 
models in this study, including support vector machines  (with radial‑based, polynomial, linear, and 
sigmoid kernel functions), decision trees  (J48), and GNB classifiers for diabetes prediction. The 
average accuracy for Scenario 1 with Hybrid Model 1 was 0.9743, and for Scenario 2 with Hybrid 
Model 2, it was 0.9867. We also evaluated precision, sensitivity, and F1‑score as performance 
metrics. Conclusion: This study presents two hybrid models for diabetes diagnosis, demonstrating 
high accuracy in distinguishing between diabetic and nondiabetic patients and effectively handling 
outliers. The findings highlight the potential of machine‑learning techniques for improving the early 
diagnosis and treatment of diabetes.
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Introduction
Type  2 diabetes is a prevalent and costly 
chronic disease associated with various 
health complications.[1] It affects the body’s 
ability to use sugar  (glucose) for energy 
and hampers proper insulin utilization, 
leading to elevated blood sugar levels if 
left untreated.[2,3] Symptoms may initially 
be mild and take years to manifest, 
often resulting in a late diagnosis when 
complications have already arisen.[4‑6] 
Diabetes has reached epidemic proportions, 
affecting millions worldwide and placing a 

significant strain on healthcare systems. In 
2022, 537 million adults were living with 
diabetes, and this number is projected to 
rise to 783 million by 2045. This global 
crisis demands urgent action, including 
promoting healthy lifestyles, ensuring 
early diagnosis, and providing effective 
treatment.[7,8] Machine‑learning algorithms 
have been utilized in many fields, 
particularly medicine, to improve disease 
diagnosis.[9,10]

Kumar P et al. proposed a hybrid model 
combining bee colony algorithms and a 
fuzzy system for diabetes prediction.[11] 
Machine‑learning algorithms aim to describe 
and predict data, assisting in the initial 
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assessment and diagnosis of diabetes.[12,13] Previous studies 
have explored various machine‑learning techniques for 
predicting diabetes and evaluating their effectiveness and 
accuracy.[12,14] For example, Reinehr, Thomas, and Martin 
Wabitsch conducted a thorough investigation using a dataset 
of 520  cases and 17 features and found that the extra tree 
classifier  (ETC) outperformed other algorithms, achieving 
an accuracy of 98.55%.[15] Another study compared 
decision tree  (DT), support vector machine  (SVM), and 
naive Bayes  (NB) algorithms and concluded that NB 
exhibited the highest accuracy.[16] In addition, researchers 
in Luzhou, China, applied three machine‑learning 
algorithms and found that random forests provided optimal 
accuracy for diabetes prediction.[17] They employed an 
area under the receiver operating characteristic  (ROC) 
curve to measure the discriminatory capabilities of these 
models. Pal, Madhumita, and their colleagues proposed 
a machine‑learning model for the early prediction of 
type  2 diabetes based on Indian diabetes data, in which 
they used the area under the ROC curve to examine and 
compare the performance of each model.[18] In their study, 
Zhou et  al.[19] introduced a diabetes prediction model that 
uses Borota feature selection and ensemble learning. This 
model includes using Borota feature selection, extracting 
important features from the dataset, using the K‑means++ 
algorithm for unsupervised data clustering, and adopting a 
cumulative ensemble learning approach for classification.

Given the severe complications and treatment costs 
associated with diabetes, there is a growing interest in novel 
approaches for its prevention and management. Medical 
studies may encounter unique cases or disease attributes, 
necessitating consultation with specialists, and consideration 
of data outliers.[20,21] The NB classifier has gained attention 
in medical diagnosis due to its simplicity and high accuracy 
on small datasets.[22,23] However, the assumption of a normal 
distribution in the Gaussian NB (GNB) classifier may limit 
its applicability. In this study, we examined a dataset that 
did not follow a normal distribution and sought alternative 
methods. Kernel density estimation  (KDE) was employed 
as a nonparametric approach to estimate the probability 
density function without assuming the shape of the data 
distribution.[24,25] To address the limitations of KDE when 
data within a class originates from different distributions, 
we employed clustering methods to group data into smaller, 
more accurately classified subsets.

This article is structured as follows: Section 2 reviews 
the clustering methods used in this study. Section 3 
covers classification methodologies. Section 4 describes 
the materials and methods, with a focus on Section 4.2, 
which details the proposed model. Section 5 explains the 
evaluation criteria for the models. Section 6 presents the 
test results. Section 7 discusses the results and suggests 
directions for future research. Finally, Section 8 concludes 
the study by summarizing the key findings and their 
implications for the field.

Clustering
Clustering is dividing the population or data points into 
several groups such that data points in the same group 
are more similar to other data points in the same group 
than to those in different groups. The aim is to segregate 
groups with similar traits and assign them into clusters.[26] 
In this study, we used two K‑medoids clustering methods 
in the first proposed model in the presence of outliers 
and K‑means in the second proposed model after outlier 
rejection, which is described below. All of these algorithms 
were implemented in the Python programming language 
environment.

K‑means

K‑means is a widely‑used clustering algorithm that 
partitions a set X of points in a vector space into k clusters. 
The algorithm begins with an initial set of cluster centers, 
often chosen randomly from the data points, and iteratively 
assigns each point to the nearest centroid. After each 
assignment, the centroids are updated based on the mean 
of the points assigned to them. This process continues 
until convergence criteria, such as minimal change in 
centroids or a maximum number of iterations, are met.[27] 
For a comprehensive outline of the steps involved in this 
algorithm, please refer to Section A of the Appendix, where 
the corresponding pseudocode is provided.

K‑medoids

The K‑medoids algorithm is a clustering algorithm 
related to the K‑means algorithm. Both the K‑means 
and K‑medoids algorithms are for partition  (breaking the 
dataset up into groups). K‑means attempts to minimize the 
total squared error, while K‑medoids minimize the sum of 
dissimilarities between points labeled to be in a cluster and 
a point designated as the center of that cluster. In contrast 
to the K‑means algorithm, K‑medoids choose data points 
as centers  (medoids). A  medoid can be a point in the data 
that acts as an example for other points in the.[28] This point 
is the central point in the cluster because it has the lowest 
average dissimilarity compared to the other data points in 
the cluster. K‑means clustering algorithms related to outliers, 
dirty data, and abnormal data are highly sensitive.[29] This is 
because if a data point has large values, the data distribution 
may be biased,[30] but the K‑medoids algorithm is more 
robust. For a detailed outline of the steps involved in this 
algorithm, please refer to Section A of the Appendix, where 
you can find the corresponding pseudocode.

Classification
In this study, we used NB, KDE, DT, and SVM 
classification methods. All of these classification algorithms 
were implemented in the Python programming language.



Farnoosh, et al.: Two machine‑learning models and T2D prediction

Journal of Medical Signals & Sensors | Volume 15 | Issue 4 | April 2025� 3

Naive Bayes

The NB classification algorithm for machine learning 
is a group of probabilistic classification methods 
based on the Bayesian theorem, and assumes that 
each attribute is conditionally independent of the other 
attributes.[31] Its advantages, such as easy understanding 
and simple implementation, have made it more useful than 
other machine‑learning algorithms.[32‑34]

Let X = {x1, x2,…, xN} represents the set of training 
samples, where each ith feature vector Xi = [xi1, xi2,…, xid]. 
Let C be a set containing class labels  (in this study, we 
have three classes), P(x1, x2,…, xd|c) denotes the likelihood, 
P(c) and denotes the prior probability.[50] The classifier 
for selecting the most likely class by this algorithm is 
converted as follows:

 ( ) ( )
d

NB i
c C i 1

c argmax P c P x |c
∈ =

= ∏ � (1)

For a comprehensive breakdown of the steps involved in 
this algorithm, along with the relevant equations, please 
refer to Section B of the Appendix, where you can find the 
corresponding pseudocode.[50]

Support vector machine

A SVM is a supervised learning method used in machine 
learning for classification. SVMs classify data by predicting 
labels from one or more attribute vectors, creating a 
decision boundary known as a hyperplane that separates 
two classes.[35] This hyperplane is determined by the closest 
data points from each class, known as support vectors.

In its simplest form, SVM does not support multiclass 
classification. Only binary classification and the separation 
of data points into two classes are supported. After breaking 
down a multiclass classification problem into numerous 
binary classification problems, the same method is applied 
to multiclass classification. The concept is to map the 
data points into a high‑dimensional space to achieve a 
linear separation between the two classes once more. The 
one‑versus‑one  (OvO) approach separates a multiclass 
classification problem into numerous binary classification 
problems and is known as the one‑to‑one approach.[36,37] 
For each pair of classes, a binary classifier is used.

The one‑to‑one classification strategy uses a 
( )| | | | 1
2

C C −

SVM, where  |C| is the number of classes, which in this 
case is three. Figure 1a shows an example of a three‑class 
classification problem with green, red, and blue classes. 
In the one‑to‑one technique, a hyperplane is required to 
separate every two classes, ignoring the points of the third 
class. This means that only the points of the two classes 
in the current split are considered in the separation. For 
example, the red‑blue line [Figure 1b] aims to optimize the 
separation exclusively between the blue and red points. It 
has nothing to do with the green points.

Decision tree

One of the most common machine‑learning models used for 
classification and regression is the DT model, which uses a 
divide‑and‑conquer approach to describe the classification 
process using a tree structure based on attributes.[38] The 
important components of a DT are nodes and branches. 
The most critical processes in creating a DT are splitting, 
pausing, and pruning. There are three types of nodes in a 
DT:
1.	 The decision node, also known as the root node, 

partitions all data into two or more mutually exclusive 
subsets

2.	 An internal node, also known as a chance node, 
represents one of the structural options available in 
a tree. The top edge is connected to the parent node, 
while the bottom edge is connected to the child or leaf 
nodes

3.	 The leaf or end node, which represents the final 
outcome, is the last type of node in the DT.

The final outcome is a decision. The results of the root 
node, or internal node, are represented by branches. 
A  hierarchical structure with branches is used to create a 
DT. Each path from the root node to an internal node to 
a leaf node represents a classification decision rule. These 
paths can also be expressed using if‑then rules.[39]

ID3, C4.5, J48, and other DT algorithms are common. The 
J48 DT method was employed in this investigation. This 
algorithm is a top‑down divide‑and‑conquer strategy. For 
a comprehensive breakdown of the steps involved in this 
algorithm, along with the relevant equations, please refer 
to Section B of the Appendix, where you can find the 
corresponding pseudocode.

Kernel density estimation

KDE is a nonparametric density estimation method in 
which the probability density function  (pdf) is estimated 
directly without a distribution assumption and based on 
only given data and similarity theory.[40] This method can 
be an effective way to estimate the data probability density 
function when we do not know the data distribution. For a 
mathematical representation of the method, see Section B 
of the Appendix.

Materials and Methods
Data

The Iraqi Patient Dataset for Diabetes[41]  (IPDD) was 
obtained from 1000 individuals, including 565  males and 
435  females aged 20‑79  years, during in‑hospital physical 
examinations at the Specialized Center for Endocrinology 
and Diabetes‑Al‑Kindy Teaching Hospital in Iraq. This 
dataset is divided into three regions: Diabetic  (C0) with 
844  samples, nondiabetic  (C1) with 103  samples, and 
predicted diabetic (C2) with 53 samples. These included 12 
physical examination indicators. Table  1 lists the attribute 
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descriptions, and the distribution of each attribute in the 
dataset is shown in Figure  2, where the green, blue, and 
yellow color distributions denote the diabetic, nondiabetic, 
and predicted diabetic classes, respectively.

Proposed models

We will elaborate on each component of these two 
proposed models, as illustrated in Figures  3 and 4, in the 
following sections.

Data preprocessing

One of the important steps in machine‑learning projects 
that are performed in the early stages is data preprocessing, 
which has an impact on the performance of the model. In 
this study, we performed the following steps to clean the 
data:
•	 Removing duplicate samples: After examining all 1000 

data samples in this study, we found that seven of them 
were identical. Consequently, these duplicates were 
removed, leaving 993 samples

•	 Attribute conversion: The gender attribute values 
were changed to two values, 0 for females and 1 for 
males, and the class labels were 0 for Y, 1 for N, and 
2 for P

•	 Filling in missing data: It is recommended to fill 
in missing or null values because they can lead to 
incorrect inferences for each class.[42] In this study, we 
use the K‑nearest‑neighbor  (K‑NN) algorithm to avoid 
the negative effect of missing data, and the results are 
shown in Figure 5

•	 Outlier rejection: In the first proposed model, we 
conducted classification on a dataset comprising 
1000 samples, including outliers. Outliers are data points 
that deviate markedly from the general data distribution, 
potentially skewing the results of sensitive classifiers. 
Therefore, identifying and managing outliers is critical 
to ensuring the accuracy of our model.[43] We identified 
outliers in the dataset using an extended interquartile 
range  (IQR) method. This method calculates the IQR 
as the difference between the third quartile  (Q3) and 
the first quartile  (Q1). In this study, we considered 

any data point falling below 3Q1 IQR
2

 − × 
 

 or above 
3Q3 IQR
2

 + × 
 

 as an outlier. This extended range 

provides a more robust criterion for detecting outliers 
than the traditional IQR method. For example, we 
detected outliers in the low‑density lipoprotein  (LDL) 
attribute, as shown in Figure  6. To effectively manage 
and eliminate outliers, we implemented the OR(.) 
function, which utilizes this extended IQR range. By 
applying this function, we systematically excluded 
identified outliers from the dataset. This approach 
mitigates the influence of extreme values on our 
classification model, thereby enhancing the robustness 
and accuracy of our predictions. Detailed information 
about the OR(.) function, including the specific formula, 
can be found in Section C of the Appendix

•	 Normalization: Because the values of some attributes 
in the data have a wide range, this can have a 
serious impact on the performance of the classifier. 
To rescale the range of our continuous features to 
an interval between 0 and 1, we employed min‑max 

Table 1: Overview of the Iraqi patient dataset for 
diabetes

Attributes Description Mean±SD
Gender 0 for females and 1 for male 0.565±0.4958
Age Age in years 53.739±8.8557
FBS Result of a blood sample taken after 

a patient fasted for at least 8 h
10.1443±5.0844

High BUN BUN is the amount of urea nitrogen 
that is in your blood

5.1808±3.3486

Cr Blood levels of chromium 69.28±62.2764
Chol Fast Chol levels 4.9092±2.004
TG Concentration tri glycoside levels 2.3506±1.3988
BMI BMI 29.4255±4.8553
LDL LDL 2.6145±1.1175
VLDL VLDL 1.8573±3.6563
HDL HDL 1.2067±0.6594
HbA1C For the previous 2–3 months, 

average blood glucose (sugar) levels
8.2623±2.5370

FBS: Fasting blood sugar, BUN: Blood urea nitrogen, Cr: Chromium, 
HbA1C: Gyrated hemoglobin, BMI: Body mass index, 
LDL: Low‑density lipoprotein, VLDL: Very LDL, HDL: High‑density 
lipoprotein, Chol: Cholesterol, SD: Standard deviation

Figure 1: (a). An example of a classification problem of 3 classes: green, red, and blue. (b). The red‒blue line is generated via a one‑to‑one technique to 
maximize the distance between the blue and red spots. Green points have nothing to do with it

ba
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normalization.[44] For a more in‑depth explanation 
of this technique, please refer to Section C of the 
Appendix

•	 Data normality test: After the normalization stage in 
this study, we used various methods for testing data 

normality, such as the D’Agostino K‑square test, 
Anderson–Darling test, Shapiro–Wilk’s test with a 
hypothesis test, and finally, the quantile‑quantile plot 
for more certainty. We concluded that some attributes 
could not have a normal distribution

Figure 2: The Iraqi Patient Dataset for Diabetes dataset population distribution of all attributes, where the green, blue, and yellow color distributions 
indicate diabetic (C0) individuals, nondiabetic (C1) individuals, and predicted diabetic (C2) individuals, respectively

Figure 3: M1. In the first scenario, which involves the presence of outliers. Thus, we used K‑medoids clustering methods and then naive Bayes‑based 
Kernel density estimation
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•	 Finally, the dataset was randomly divided into two 
parts: 1/5 for testing and 4/5 for training the models.

Clustering and classification in the proposed models

Considering the various tests performed in the data 
normality test section in the data preprocessing section, we 
concluded that some attributes lack a normal distribution, 
so the use of an NB classifier reduces the performance 
of the classifier; thus, we used KDE. For example, for 
the  AGE and TG  attributes in Figure  7a and b, we see 
that using KDE works better than the normal distribution; 
however, according to Figure  7a and b, we see that the 
data and attributes of a class lack a unique distribution 
and have different distributions in different regions; we 
use a clustering method to divide the data of a class into 
several subclasses with the same statistical similarity in 
each cluster. According to the results we obtained in the 

Figure 4: M2. In the second scenario, after outlier rejection, we used K‑means clustering and then naive Bayes‑based kernel density estimation

Figure 5: Results from using the K‑nearest‑neighbor algorithm to fill in missing and empty data

Figure 6: Outliers associated with low‑density lipoprotein
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previous sections, because the K‑means clustering method 
is sensitive to outliers, this clustering algorithm cannot be 
used in the first scenario  (M1), which is the presence of 
an outlier. Thus, we used K‑medoids clustering for M1 
macrophages. In the second scenario  (M2), after outlier 
rejection, we used K‑means clustering [Figures 3 and 4].

Suppose we have N random variables X = [X1,X2, .., 
Xn] belonging to class c, drawn from a multimodal 
mixed‑density function. in such a way that it is a 
multimodal random variable. Each main class has several 
subclasses. Samples X1,X2, ..., Xn belongs to subclasses 

X1,X2, ..., Xn, where 
i

i i i
1 N,X [X .,X ]= …  and N

ii 1
N N

=
= ∑ . 

Now, with the entry of a new observation X, the conditional 
probability is obtained with the finite model mixed with the 
following equation:

( ) ( ) ( ) ( )
i in n r

k k k
i i i j i

k=1 k=1 j=1

p c | x = p c | x = p c p x | C∑ ∑ ∏ � (2)

where the prior probability for each subclass is calculated 
as follows:

( )
k

k i
i

i

NP c
N

= � (3)

The likelihood probability for each subclass  k‑th is from 
the main class i‑th calculated using KDE as follows:

( )
k
i

i

k
N j i, j,tk

j i k t=1k=1,2,3,..,n
i i, j

x ‑ x1p x | c = K
hhn

 
      

 
∑ � (4)

Ni
k and hi,j

k are the number of samples and the calculated 
bandwidth for the  attribute of the data belonging to the k 
subclass of the  i‑th main class, respectively; r is the number 
of attributes of each sample; ci

k represents the label of 
the k‑th subclass of the  i‑th main class; and ni indicates the 
number of  i‑th subclass of the main class. In this study, we 
employed 6 different types of kernel functions (K1 to K6), 
which are listed in Section D of the Appendix and Table 2.

Another important factor influencing the quality of the 
probability density function f  using KDE is the smoothing 
parameter, or bandwidth, and an improper h bandwidth 
may result in undersmoothing or oversmoothing. One of 
the most methods for selecting bandwidths is Silverman’s 
rule of thumb (ROT) method.[40] The optimal bandwidth for 
the Gaussian kernel function is defined as follows:



( )

1
r 1

k k
i, j i, j k

i

4h
r 2 N

+ 
=   + 
σ � (5)

where ki, jσ  is the estimated standard deviation of the 
j‑th attribute of subclass  k‑th from the main class  i‑th. It 
performs well even when the probability density function 
is approximately not similar in shape to the Gaussian 
function.[45] The standard deviation is sensitive to outliers. 
Outliers can increase the standard deviation, misrepresent 

Table 2: The values of bandwidth h used for comparison
Bandwidth Values of bandwidth
h1 Used Equation 5 based on the SD of Equation 6

1
2

hh
2

=
Used Equation 5 based on the SD of Equation 6

1
3

2hh
5

=
Used Equation 5 based on the SD of Equation 6

1
4

2hh
5

=
Used Equation 5 based on the SD of Equation 6

h5 Used Equation 5 based on the SD estimated 
from data samples

5
6 hh

2
=

Used Equation 5 based on the SD estimated 
from data samples

5
7

3hh
2

=
Used Equation 5 based on the SD estimated 
from data samples

5
8

2hh
5

=
Used Equation 5 based on the SD estimated 
from data samples

SD: Standard deviation

Figure 7: (a) The Kernel density estimation performance is better than that of the normal distribution. For the AGE attribute and (b) for the TG attribute. In 
addition, we see that both attributes have different distributions in different regions. In addition, we used a clustering method to divide the data of a class 
into several clusters with the same statistical similarity in each cluster

ba
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the dispersion, and select the wrong bandwidth value. 
Silverman’s ROT uses standard deviation. Because the 
standard deviation is sensitive to outliers, we use a strong, 
changed standard deviation as follows.[46]



( )( )j jk
i, j

Median X Median X

0.6745

−
=σ � (6)

In the last equation, the median is used, which is more 
resistant to outlying data than the mean. The scaling factor 
of 0.6745 used in the equation is used to obtain the correct 
answer for data that follow a Gaussian distribution. In the 
normal distribution with mean μ and standard deviation σ, 
the probability that a value is within one standard deviation 
from the mean is approximately 0.6745. Using this scaling 
factor, estimates obtained by robust statistical methods are 
usually adapted to the correct approximate distribution for 
data that do not follow a normal distribution. In fact, the 
use of this scaling factor leads to robust statistical estimates 
for the parameters of sparse data and distributions that 
differ from the normal distribution.

The selection of the appropriate kernel function is a crucial 
factor in the accuracy of the probability density function 
estimation via KDE.

In this study, in M1, which is made in the presence of 
outliers, we used the standard deviation that estimated each 
attribute in the ROT rule, and in M2, which is the outlier 
rejection process, we used the standard deviation that 
estimated each attribute in the ROT rule. All bandwidth 
used in this study is listed in Table  2. The pseudocode of 
the proposed models is given in section E of the Appendix.

Feature extraction

One way to improve computational efficiency and increase 
the reliability of estimated joint probabilities is to find 
useless features that have little effect on classification 
and impair predictive performance. We used the principal 
component analysis (PCA) method to reduce the maximum 
relevance and dimensionality. PCA[47] is a mathematical 
approach for reducing the dimensionality of data based 
on identifying directions called principal components and 
retaining the most variation in the dataset. Using a few 
components, each sample can be represented by a relatively 
small number instead of many variables.

Evaluation metrics

In this study, to evaluate the effectiveness of the multiclass 
classification model, we employed  average accuracy (AAC), 
precision, recall, and F1‑score metrics.[48,49] The formulas for 
these metrics are provided in Section G of the Appendix.

Results
In this section, we implement the proposed 
models  [Figures  3 and 4] based on different kernel 
functions using different algorithms and bandwidths.

We then applied these models to the Iraqi diabetic patient 
dataset, which includes 12 features. Finally, on the basis of 
different evaluation metrics, we measured the multiclass 
classification performance. To make a more accurate 
comparison, we initially used all the features to predict 
diabetes, and the results are presented in Tables  3 and 4. 
We concluded that in the first scenario, which is in the 
presence of outliers  [Table  3], M1 had better results than 
the other models. In the second scenario, which is after the 
outlier rejection process  [Table  4], M2 had better results 
than the other models based on the results obtained from 
Tables 3 and 4.

We found that glucose had the greatest information gain, 
confirming common sense and providing the foundation for 
clinical diagnosis. However, there were diabetic patients in 
the dataset who had a fasting blood sugar of less than 6.8. 
We reasoned that this could be because the patients had 
been injected with insulin before the physical examination 
to manage their blood sugar. Tables  5 and 6 show the 
results of using all of the attributes without blood glucose 
to predict diabetes to better understand the value of other 
indices in predicting diabetes. Table  5 shows that in the 
presence of outliers, M1 had the optimal results, whereas 
Table 6 shows that after the outlier rejection procedure, M2 
had the optimal results.

Features were then reduced using PCA. According to the 
Kaiser–Meyer–Olkin and Bartlett’s tests, the dataset was 
suitable for PCA to reduce the number of features. We also 
obtained the eigenvalues and composition matrix. Finally, 
we extracted eight new features for this dataset from the 
composition matrix and interpreted the total variance. We 
then conducted an experiment using the additional features, 
and the results are presented in Tables 7 and 8 for the first 
and second scenarios, respectively. The results show that 
the AAC dataset is superior to the previously mentioned 
approaches. The results show that PCA is suitable for this 
dataset.

The results of the above experiments are shown in 
Figures  8‑10. In terms of the accuracy of each method, 
we can summarize that these results provide a better 
comparison between different models.

When we employed all of the data to predict diabetes, we 
discovered that the two proposed models outperformed 
the other models in both the first and second scenario 
situations: In the first scenario in the presence of outliers 
and the second scenario following the outlier rejection 
process [Figure 8].

From Figure  8, with 12 or all the features without blood 
glucose features, when the presence of outliers is taken into 
account, the first proposed models of SVM  (polynomial), 
GNB, and J48 have similar performances, and the second 
proposed model is better. After the outlier rejection process, 
the NB, DT  (J48), and SVM  (polynomial) models have 
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similar performances and are better than the first model, 
which takes the presence of outliers into account.

In addition, by comparing the results obtained in Figure 9, 
we conclude that when predicting diabetes in both scenarios 
without blood glucose, the performance is lower than that 
when using all features to predict diabetes.

From Figure  10, we can find the appropriate PCA for 
the dataset. Using all the features did not have good 
performance; however, when we used the PCA, in both 
scenarios, the two proposed models had the optimal 
performance compared to the other models.

In addition the number of clusters in each class was chosen 
from 2, 3…,15 in both clustering algorithms employed in 
this study. To identify the number of ideal clusters, we use 

a greedy search technique. To be more exact, we set the 
number of clusters for all classes to 1 from the start. Then, for 
the class labeled 0, we obtain the optimal number of clusters. 
Then, there is number 1, etc. Once the number of clusters of a 
class is received, it will be fixed until we determine all other 
classes’ cluster numbers. We also experimented several times 
and concluded that to obtain suitable performance in the two 
proposed models in both scenarios, the number of clusters 
in the first class affects the performance of the models, and 
the change in the number of second‑  and third‑class clusters 
has less effect on one, as shown in Figure  11. When the 
number of first‑class clusters reaches 3, the performance of 
the proposed models is more appropriate.

In contrast, the number of clusters in the other two classes 
is 1 or 2. This is because, in the dataset, the number of 

Figure 8: Diabetes can be predicted using all of these features (13). (a). In the first scenario, that is, the presence of an outlier, M1 had a greater AAC in 
predicting diabetes than did the other models. (b). In the second scenario, after outlier rejection, M2 had a greater AAC for predicting diabetes than did 
the other models

ba

Figure 9: Diabetes can be predicted using all features without blood glucose (12). (a). In the first scenario, that is, the presence of an outlier, M1 had 
a greater AAC in predicting diabetes than did the other models. (b). In the second scenario, after outlier rejection, M2 had a greater AAC in predicting 
diabetes than did the other models, and compared to the other experiments, in this case, the AAC decreased

ba

Figure 10: Diabetes can be predicted by using principal component analysis to reduce dimensionality. Compared to other experiments, in this case, the 
highest AAC value is obtained. (a) In the first scenario, that is, the presence of an outlier, M1 had a greater AAC in predicting diabetes than did the other 
models. (b). In the second scenario, after outlier rejection, M2 had a greater AAC in predicting diabetes than did the other models, and compared to the 
other experiments, in this case, the AAC decreased

ba
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samples from the first class is much greater than that from 
the other two classes. For comparison with the methods 
in other papers, we used fivefold cross‑validation in all 
the experiments. To balance the data for each class, we 
assigned the following weights to each class: 1.18 for 
class C0, 9.71 for class C1, and 18.87 for the C2 class.

Finally, the two proposed hybrid models performed 
better than the single models investigated on the IPDD 
dataset in terms of performance measures. According to 
Table  9 and Figure 12, comparing the proposed method 
with the method presented by Soukaena Hassan et al.[14] 
shows that the proposed model outperforms the other 
two models both in terms of presence and after outlier 
rejection

Discussion and Future Work
The primary objective of this study was to develop and 
assess the efficacy of two novel machine‑learning hybrid 
models for predicting type  2 diabetes mellitus  (DM). The 
first model combines the K‑medoids clustering algorithm 
with a GNB classifier, using KDE to enhance classification 
accuracy. The second model uses the K‑means clustering 
algorithm with the same classifier. To reduce dimensionality, 
we applied PCA, and we evaluated the model performance 
through rigorous fivefold cross‑validation.

Type 2 DM is a pervasive chronic metabolic condition that 
affects millions of people worldwide. Timely diagnosis and 
intervention are paramount for mitigating complications 
and improving patient prognosis. Machine‑learning 
methodologies offer a promising avenue for predictive 

analytics in type  2 DM, prompting the development and 
evaluation of these innovative hybrid models.

Recent research has underscored the utility of diverse 
machine‑learning frameworks in this domain, yielding 
varying insights and outcomes. The robustness of the 
proposed models in handling outliers emerges as a notable 
advantage. Leveraging K‑medoids and K‑means clustering 
algorithms, these models demonstrate resilience to outlier 
influence. Moreover, the GNB classifier, grounded in KDE, 
exhibits commendable efficacy in probabilistic feature 
classification. PCA has emerged as a pivotal tool for 
dimensionality reduction, preserving essential data facets 
while streamlining computational complexity.

Despite the promising results, this study is not without 
limitations. Firstly, the models were tested on a relatively 
small dataset, which might not capture the full spectrum of 
variability present in larger and more diverse populations. 
Secondly, while PCA effectively reduced dimensionality, 
it also potentially discarded some minor yet informative 
features that could contribute to the prediction accuracy. 
Thirdly, the computational complexity of the hybrid 
models, especially with large datasets, presents scalability 
concerns that need to be addressed. Lastly, the reliance on 
specific clustering algorithms  (K‑medoids and K‑means) 
and the GNB classifier may limit the generalizability of the 
models to datasets with different distributions or underlying 
characteristics.

Future research should explore several avenues to address 
these limitations and enhance the models’ applicability. 
One critical area is validating these models on larger and 

Figure 11: Changes in the number of first‑class clusters can have an impact on the performance of the two models in different scenarios. The number of 
first‑ and second‑class clusters has less impact than the number of first‑class clusters

Table 9: Comparison of diabetes prediction models in terms of AAC performance criteria
Researchers Proposed model Presence of the 

outlier (%)
After the outlier 

rejection (%)
Soukaena 
Hassan et al.[14] 

Designing a diabetes hybrid diagnosis system by 
combining KNN and ID3 algorithms

75.50 98.25

Current study Combination of clustering and classification method 97.43 98.67
AAC – Average accuracy
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Figure 12: Comparison of diabetes prediction models in terms of AAC performance criteria

more heterogeneous datasets to ensure their robustness 
and generalizability. In addition, investigating alternative 
dimensionality reduction techniques that retain more 
informative features without significantly increasing 
computational complexity could improve model performance.

Exploring different clustering algorithms and classifiers 
may yield better results for specific datasets. For instance, 
hierarchical clustering or density‑based clustering methods 
might offer advantages in handling nonlinear data structures. 
Similarly, employing ensemble learning techniques or deep 
learning approaches can enhance predictive accuracy and 
adaptability.

Moreover, incorporating additional patient data such as genetic 
information, lifestyle factors, and real‑time health monitoring 
data could provide a more comprehensive model for predicting 
type  2 DM. Finally, developing methods to dynamically 
update and refine the models as new data becomes available 
would ensure their continued relevance and accuracy.

Conclusion
This study presents two hybrid models for type  2 diabetes 
prediction, each addressing distinct scenarios. In the 
first scenario  (M1), a GNB based on KDE was used 
with K‑medoids clustering to group data with statistical 
similarity and insensitivity to outliers. In the second 
scenario  (M2), outliers were removed before applying 
K‑means clustering to group the remaining data. A  GNB 
classifier based on KDE was then used for diabetes 
classification. The dataset used in this study included 
1000 physical examination samples, including outliers, 
from the Medical City Hospital’s laboratory. The proposed 
models were evaluated using classification metrics such 
as accuracy, precision, F1‑score, and recall and compared 
to other algorithms, including GNB with different kernel 
functions, support SVM with different kernel functions, 
and DT. The experimental results showed that the proposed 
hybrid models performed better across multiple evaluation 
metrics, outperforming other algorithms like GNB, 
DT (J48), and SVM with polynomial and sigmoid kernels.

Availability of data and materials

The data used were from a publicly available dataset[42] 
(https://data.mendeley.com/datasets/wj9rwkp9c2/1) (Note: 
Of course, it should be noted that the dataset in this link does 

not have the attribute value FBS. Through correspondence 
with the person responsible for this dataset,[28] we obtained 
the values of this feature and added them to the dataset.).
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Appendix
In this section, of the article, which serves as an appendix for diabetes disease prediction, we delve into a range of 
key components. This encompasses various types of clustering algorithms  (A), classification algorithms  (B), data 
preprocessing  (C), kernel functions  (D), pseudocode of the proposed model  (E), principal component analysis  (F), and 
evaluation metrics  (G). These fundamental insights aim to enhance comprehension and facilitate a more nuanced analysis 
of the primary subject matter, ultimately aiding in the provision of more effective solutions for diabetes disease prediction.

A.	 Clustering Algorithms

•	 K‑means Clustering

The K‑means clustering algorithm can be summarized by the following pseudocode, which outlines the steps involved in 
the process:
1.	 Select the k value (k is the total number of clusters).
2.	 Arbitrary Select k initial centers (centroid) c1, c2, ..., ck.
3.	 For each 1 ≤ i ≤ k, set the cluster Ci to be the set of points in X that are closer to ci than to any cj with j ≠ i.

4.	 For each 1 ≤ i ≤ k, set 
i

i x C
i

1c x
| C | ∈

= ∑ , i.e., the center of mass of the points in Ci.

5.	 Repeat Steps 1 and 2 until the clusters Ci and the center's ci do not change anymore. The partition of X is the set of 
clusters C1, C2, ..., Ck.

•	 K‑medoids Clustering

The K‑medoids clustering algorithm can be summarized by the following pseudocode, which outlines the steps involved in 
the process:
1.	 Select the k value (k is the total number of clusters).
2.	 Arbitrary Select k initial centers (medoids).
3.	 Assign each point to the cluster with the nearest medoid.
4.	 Calculate the total distance between the object and its cluster medoid.
5.	 Swap the medoid with a nonmedoid point.
6.	 Recalculate the positions of the k medoids.
7.	 Repeat Steps 1 to 4 until the medoids become fixed.

B.	 Classification Algorithms

•	 Naive Bayes Classifier

According to [61], X = {x1, x2, ..., xN} be training samples, such as the ith feature vector Xi = [xi1, xi2, ..., xid], and let C be 
a set containing class labels  (in this study, we have three classes). This classification method is as follows: For a new test 
instance X = [x1, x2, ..., xd], for all classes, the c ∈ C classifier returns the c  class with the highest class probability or class 
conditional probability.

( )
c C

c argmaxˆ  P c|x
∈

= � (1)

This idea of Bayesian inference has been known since Bayesian time. Now, using the Bayesian rule, the conditional 
probability (likelihood) is defined as follows:

( ) ( ) ( )
( )

P X|c P c
P c|X

P X
= � (2)

By substituting Eq. 4 into Eq. 3, we obtain the following equation:

( ) ( ) ( )
( )c C c C

P X|c P c
c argmax P c|x arˆ gmax  

P X∈ ∈
= = � (3)

Because P(X) does not change for each class and our goal is to find the most likely class with the same class for each 

class, we can drop it in ( )P X|c | P(c)
P(c)

to the denominator, so we can select the most likely class with the simplified equation 

below:
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( ) ( ) ( )
c C c C

c argmax  P c|x argmax Pˆ X|c P c
∈ ∈

= = � (4)

Now, by placing the test sample vector X = [x1, x2, ..., xd] in Eq. 6, we obtain the following equation:

( ) ( ) ( )1 2 d 1 2 d
c C c C

ĉ argmax  P c|x , x , , x argmax  P x , x , , x |c P c
∈ ∈

= … = … � (5)

where P(x1, x2, ..., xd|c) is the likelihood and P(c) is the prior probability and is obtained as follows:

( ) cN
P c

N
= � (6)

where Nc is the total number of training samples from class c (c ∈ C) and is N the total number of training samples. Now, 
according to the NB conditional independence assumption, which expresses the independence of probabilities P(xi|c) from a 
given class c, “naively” P(x1, x2, ..., xd|c) can be multiplied as follows:

( ) ( ) ( ) ( )1 2 d 1 2 dP x , x , , x |c  P x |c P x |c P x |c… = × ×…× � (7)

Ultimately, by placing Eq. 9 in Eq. 7, the final classifier for selecting the most likely class by the NB is converted as 
follows:

( ) ( )
d

NB i
c C i 1

c argmax P c P x |c
∈ =

= ∏ � (8)

•	 J48 Classifier Algorithm:

This algorithm can be summarized by the following pseudocode, which outlines the steps involved in the process
1.	 An attribute for the root node is selected.

1.	 Generate a branch for each possible attribute value.
2.	 The sample is divided into multiple subsets, each subset of which corresponds to a branch of the root node.
3.	 The process was repeated in reverse for each branch until all samples had the same classification.

In the DT  (J48) classifier, nodes are determined by the information gain criterion. The J48 classifier based on Eq. 11 
calculates the value of the information gain for each attribute in each iteration and chooses the attribute with the highest 
value of the information gain as the node for the current iteration. The information gain G(X, A) defines the attribute A on 
the set‑in terms of the set X of available samples as follows:

( ) ( ) ( ) ( )v
vv Values A

X
G X,A H X H X

X∈
= −∑ � (9)

where G denotes the information gain, H is the entropy, Values (A) is the category of all possible values for attribute A, 
and Xv is the number of subsamples of X that have the value of v for attribute A, i.e., Xv = {x ∈ X|A(x) = v}.

•	 Kernel Density Classifier:

If X1, X2, ..., Xn are samples of a continuous unknown probability density function f, then the probability density function 
f̂ : →  estimated by KDE is defined as follows:

( )
n

i
H

i 1

ˆ X X1f X K
nh h=

− =  
 

∑ � (10)

Here, h > 0 is the smoothing parameter of the KDE estimator, known as the bandwidth, n is the number of samples, and 
( )K . :  →   is the nonnegative kernel function with the following constraint.

( )K x dx 1
+∞

−∞
=∫ � (11)

C.	 Data Preprocessing

•	 Outlier Rejections

We used the following mathematical equation to reject outliers:
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( ) 1 1
3 3x.                   if Q IQR x Q IQR

OR x 2 2
reject.         otherwise  

 − × ≤ ≤ + ×= 


� (12)

where x is the number of occurrences of a feature vector in n dimensions; nx∈ , the first quartile, third quartile, and 
interquartile range of the qualities are represented by Q1, Q3, and IQR, respectively, where Q1, Q3, and nIQR∈ .

•	 Min–Max normalization:

We used the following mathematical equation for normalization:
x minx

max  min
−′ =
−

� (13)

where x and x′ are equal to the original data and the converted value, respectively.

D.	 Kernel Functions

In this study, we utilized 8 different types of kernel functions, which are listed in Table 1.

Table 1: Kernels function
Kernels Equations
Gaussian

( )
21 uK u exp
22

 
∝ − 

 π

Epanechnikov
( ) ( ) ( )23K u 1 u I u 1

4
= − ≤

Biweight (quartic)
( ) ( ) ( )215K u 1 u I u 1

16
= − ≤

Triweight
( ) ( ) ( )235K u 1 u I u 1

32
= − ≤

Exponential
( ) ( )1K u exp u

2
∝ −

π

Linear ( )K u 1 U  if u 0∝ − <

E.	 Pseudo code of the proposed model

Input: Training data sample {(c1,X1), ... , (cC,Xn), number of HSC [n1, ... , nc], test data X.

Output: Classification result cd.

1.	 For (each ic C⊆ ) {

2:	 Compute ( )i i in n n1
i 1 i i{ c . X . . (c .X )}…  by using K-means or K-medoids algorithms;

3.	 For each 1
i ic c∈ {

4.	 Compute prior probability using Eq.(2) from section (2-4).
5.	 Compute bandwidth k k k

i. j i. j i.rh dia. h , , h   = …   by using Eqs. (4) or (5), and (6) from section (2-4).
6.	 For each xj ∈ X
7.	 Compute likelihood P(xj|ci

k) by using Eq. (3) with hi.j
k from section (2-4).

8.	 }
9.	 }
10.	Compute posterior probability P(ci|X) by using (2) from section (2-4). 
11: end for each
12: Choose the maximum posterior probability ( )1 c C 1 kc argmax {p c |X . .p(c )}ˆ | X≤ ≤= 
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F.	 Mathematical representation of the PCA factor extraction model

The mathematical representation from the PCA model can be expressed as follows:

( )i i1 1 i2 2 ik kFactor T X T X T X    i 1, 2, ,m= + + = … � (14)

PCAFactori represents the i principal component factor; Tij represents the i principal component factor’s load on the j index; 
m represents the number of principal component factors; and k represents the number of indicators.

G.	 Evaluation Metrics

In this study, we used various metrics for evaluating the multiclass classification model to measure the effectiveness of the 
classification, the formulas of which are as follows:
•	 Average Accuracy: accuracy (AAC), The average per‑class effectiveness of the classifier

	

k i i
i 1

i i i i

tp tn
tp tn fp fnACC

k

=

+
+ + +

=
∑

� (15)

•	 PrecisionM: Precision or positive predictive value (PPV), average per‑class agreement of the true class labels with those 
of the classifier

	
( )

k i
i 1

i i
M

tp
tp fp

PPV   
k

= +
=
∑

� (16)

•	 RecallM: Sensitivity, recall, hit rate, or true positive rate (TPR), average per‑class effectiveness of a classifier to identify 
class labels

	
( )

k i
i 1

i i
M

tp
tp fn

TPR   
k

= +
=
∑

� (17)

•	 F1 - scoreM: The harmonic mean of the microaverage precision and recall

	 M M
1,M

M M

2 Precision RecallF
Precision Recall
× ×

=
+

� (18)

where the total number of classes is k, the number of microaverages is M, the number of true positives TP represents the 
number of samples that are predicted to be positive and true, the number of samples that are predicted to be positive and 
false  (FP), the number of samples that are predicted to be negative and true  (TN), and the number of samples that are 
predicted to be negative and false (FN).


