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ABSTRACT

Though the advent of long-read sequencing tech-
nologies has led to a leap in contiguity of de novo
genome assemblies, current reference genomes of
higher organisms still do not provide unbroken se-
quences of complete chromosomes. Despite reads in
excess of 30 000 base pairs, there are still repetitive
structures that cannot be resolved by current state-
of-the-art assemblers. The most challenging of these
structures are tandemly arrayed repeats, which occur
in the genomes of all eukaryotes. Untangling tandem
repeat clusters is exceptionally difficult, since the
rare differences between repeat copies are obscured
by the high error rate of long reads. Solving this prob-
lem would constitute a major step towards comput-
ing fully assembled genomes. Here, we demonstrate
by example of the Drosophila Histone Complex that
via machine learning algorithms, it is possible to ex-
ploit the underlying distinguishing patterns of single
nucleotide variants of repeats from very noisy data
to resolve a large and highly conserved repeat clus-
ter. The ideas explored in this paper are a first step
towards the automated assembly of complex repeat
structures and promise to be applicable to a wide
range of eukaryotic genomes.

INTRODUCTION

Drosophila melanogaster has been one of the most impor-
tant model organisms for over a hundred years (1). It has
also played a crucial role as a proof of concept (2) for the
technologies and algorithms that lead to the successful Hu-
man Genome Project (3,4). Despite the successful assembly
of the Drosophila genome, the Drosophila Histone Com-
plex has eluded assembly by conventional assembly meth-
ods (5). It consists of over a hundred copies of a 5 kbp re-
peat (6) that contains the coding information of the four
core histones (H2A/B, H3 and H4) as well as the linker his-
tone H1. The fast expression of histone proteins is essential
for DNA replication and cell division. Therefore, eukary-

otes always contain multiple clustered copies of the histone
coding sequence.

The Drosophila Histone Complex contains tandemly re-
peated (7), highly conserved coding sequences in an unusu-
ally high number of copies. It thus represents a particularly
challenging instance of a structure that occurs in similar
configurations in most eukaryotes, including humans.

Therefore, it provides a reasonable basis for investigating
the resolution of repeat clusters.

The development of third generation sequencing tech-
nologies like the Pacific Bioscience single molecule real-time
sequencing (8–10), and more recently, Oxford Nanopore
Technologies nanopore sequencing (11), has revolutionized
de novo genome assembly. With read lengths exceeding 10
kbp, the assembly of bacterial genomes can now be re-
garded as a solved problem (12). In addition, for eukary-
otic genomes the contiguity of de novo assemblies has risen
by orders of magnitude, due to the possibility to span in-
terspersed repeats with the support of unique flanking se-
quences.

However, while genome assemblers like FALCON (13),
MARVEL (14) and Canu (15) have solved the problem of
arranging millions of long reads into long contiguous as-
semblies, tandemly arrayed repeats still generally remain
unresolved. In particular, high quality D. melanogaster long
read assemblies have been created with each of these assem-
blers, but the Drosophila Histone Complex is not resolved
in any of them.

The resolution of tandemly arrayed repeats is hindered
by the occurrence of further repeat copies as flanking se-
quences. This compels us to distinguish the slightly distinct
copies of the tandem repeat and to order copy versions be-
tween the unique flanking sequences of the complex. The
various copy versions of the repeated sequence have to be
classified by identifying the large-scale variations (i.e. indels
>100 bp) and single nucleotide variants (SNVs) that char-
acterize each copy.

Here, we introduce a novel correction heuristic based on
artificial neural networks. Our heuristic decreases the error
rate in extracted SNVs to a point, where automatic assem-
bly of the complex becomes feasible.
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MATERIALS AND METHODS

Data

To test our correction heuristic, we use several repeat
datasets. A dataset of reads sampled from the histone com-
plex, a simulated repeat dataset and 17 transposon datasets
(see Table 7 for an overview). Each dataset is constructed
around a repeat sequence template. The templates are con-
sensus sequences of the repeat characteristic of the dataset.

For the histone dataset the template is the histone coding
sequence (6). It is used to extract ∼5000 reads that contain
instances of this sequence via mapping from a high qual-
ity PacBio dataset sequenced from a subline of the ISO1
(y;cn,bw,sp) strain of D. melanogaster (16). We extract all
reads that align to the template over 1 kbp with an align-
ment error below 30%. This dataset has a coverage of >90×
and an average read length of >10 kbp.

To independently benchmark our correction heuristic,
we extract reads containing transposable elements from
the same sequencing run to build 17 different transposon
datasets. The extraction is again done via mapping, with
a minimal local alignment length of 1 kbp and a maximal
alignment error of 30%. The transposon datasets are based
on templates taken from the transposon sequence canoni-
cal set (17) [https://github.com/cbergman/transposons/], see
Table 1. They contain Drosophila transposons of compara-
ble length (>4 kbp) as the histone repeat.

Additionally, we simulate a 5 kbp repeat family with 100
copies using a simulation tool we implemented. As template
for the simulation, we use an empirical sequence randomly
sampled from the Escherichia coli reference. We then first
create 100 identical copies of the template. These are then
perturbed via a pool of 300 random SNV, each of which we
assign to a random subset of the copies. Finally, the actual
simulated reads are obtained from these perturbed copies
superimposing the typical PacBio error rate (11.5% inser-
tions, 3.4% deletions and 1.4% mismatches). We use this
simple version of a simulated repeat dataset to verify our
correction heuristic and the associated preprocessing steps.
The test on simulated data further shows that the problems
solved in the processing steps are not specific to the selected
empirical test datasets of the chosen genome.

In the following, we provide an overview over the individ-
ual (pre-)processing steps.

Multiple sequence alignment

In the first preprocessing step, our objective is to subdivide
each extracted histone read into instances of the repeat se-
quence. Some of these instances contain insertions, dele-
tions or duplications. If properly identified, insertions, dele-
tions and duplications, allow for assigning these instances
either to unique repeat copies or to small groups of repeat
copies. All other instances of the repeat sequence that do
not deviate in such a significant way from the histone tem-
plate, will have to be disambiguated by more sophisticated
means.

To that end, we map short (100–250 bp) substrings of
the histone coding sequence on each read. The mapping
information is then used to detect several insertions, dele-
tions or duplications between 100 and 8 kbp in length (see

Figure 1A)). These large-scale deviations from the template
uniquely classify several distinct repeat copies. We then cut
all histone reads into such instances of uniquely classified
copies and into all other, non-deviating instances of the hi-
stone template (6,18), see Figure 1B).

Subsequently, the non-deviating instances of the histone
template are arranged into a global multiple sequence align-
ment (MSA). The uniquely classified instances will be used
later on to provide additional information for the correction
algorithm and the assembly.

The transposon reads are cut into unique flanking se-
quences and transposon sequences analogously. The trans-
poson sequences are also arranged into an MSA. The flank-
ing sequences are clustered according to alignment scores
(Levenshtein distance) to provide the ground truth for copy
versions. For the simulated data only repetitive sequences
are generated. They can hence be immediately arranged into
an MSA without any preprocessing.

All initial MSAs are built incrementally by aligning
the repetitive sequences to the respective repeat sequence
template. These MSAs are then refined by realigning the
sequences iteratively, minimizing the unweighted sum-of-
pairs score (19), see Figure 1C). Both of these tools are im-
plemented from scratch in the C programming language.

Identifying discriminative columns

The refined MSAs contain sequences that are sampled from
highly similar but not identical repeat copies. These se-
quences have now been arranged in such a way that a differ-
ence between repeat copies becomes detectable as groups of
different bases or alignment gaps within a column. How-
ever, not every sequence covers the entire breadth of the
MSA. Additionally, the substantial error-rate (12–15%) in
the original reads, introduces instances of all bases, as well
as alignment gaps, into all columns, whether they contain a
repeat copy difference or not.

Therefore, each column typically contains instances of
all four bases {A, C, G, T}, as well as alignment gaps and
coverage gaps {−, }. We define for a given MSA M ∈
{A, C, G, T,−, }r,c, with r rows and c columns, a given
‘base’ (including the alignment gaps) B ∈ {A, C, G, T,−},
and a given column i < c, a base group Gi

B := { j < r |Mi j =
B}. To identify columns where entries differ from the ma-
jority entry due to the discriminative variation between
repeat copies (as opposed to random error), we calcu-
late the statistical significance of the intersections between
base groups from different columns i, l, Gi

B1
∩ Gl

B2
=

{ j ∈ Gi
B1

| j ∈ Gl
B2

}.
The intersection of two base groups, induced by random

error is an instance of the classical urn problem ‘drawing
without replacement’. Two additional details have to be
taken into account. The base groups in adjacent columns
are not statistically independent, therefore, we only com-
pare base groups from columns that are at least 40 columns
apart. And given that not every sequence in the MSA will
cover both columns, we have to base our calculation only
on those elements of the base groups that share coverage
for both columns.

To this end we use the cumulative hypergeometric prob-
ability CHG(Gi

B1
, G j

B2
) : = min(P(X >= k), P(X < k)),

https://github.com/cbergman/transposons/
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Table 1. Properties of the transposon datasets

No. Av. length Copies Coverage Gr.truth coverage

0 7215 bp 37 37 23
1 7380 bp 49 45 27
2 4672 bp 25 45 27
3 6850 bp 44 51 35
4 6093 bp 16 37 29
5 7538 bp 34 46 26
6 4479 bp 7 51 41
8 5168 bp 9 54 41
9 6371 bp 13 49 33
10 5201 bp 89 48 30
11 4762 bp 135 48 33
12 4690 bp 157 46 33
15 4361 bp 8 48 29
16 7481 bp 12 35 18
19 6128 bp 5 51 32
20 5376 bp 20 41 30
21 5048 bp 22 43 32

The numbering is according to the transposon sequence canonical set, missing numbers are due to transposons being below the length cut-off. Ground
truth coverage is calculated on the basis of the reads that can be assigned to a cluster of flanking sequences.

Figure 1. In (A), we illustrate the fundamental problem: a hypothetical master consensus of all copy versions is more similar to the signatures than signatures
that belong to the same copy are to each other. With that property, it acts like a vanishing point, signatures with low error rate all seem to be quite similar.
The neural network depicted in (B) solves this problem because it is able to pick up on the sub-signatures shared by signatures from the same copy. In (C),
we show the unrolled converging corrector: the signatures are repeatedly corrected by the concatenated neural networks using them and both neighbouring
signatures until the bases stop changing. Panel (D) shows one assembly graph greedily traversed starting from one end of the complex. Node size and
number give the size of each assembly group after mapping all clusters, even those that do not fit anywhere well. This over mapping allows us to double
check on over represented groups and to catch the two collapsed parts of the complex marked in red. The other coloured nodes stand for large scale
variations.

where P (X = k) =

(
K
k

)(
N − K
n − k

)
(

N
n

) , for N being the shared

coverage of both groups, K the size of base group 1
restricted to the shared coverage, n the size of base group
2 restricted to the shared coverage and k the size of the
intersection between the base groups.

The CHG has been approximated by the Poisson distri-
bution (20) in the past. Instead, we discard 99.9% of all in-
tersections by means of the fast normal distribution, while
for the remaining intersections, we calculate the CHG ex-
actly (21).

The ubiquity of erroneous insertions (11% in PacBio
data), means that discriminative insertions will share a col-
umn with a large number of false positives. This makes the
detection of discriminative insertions difficult, while han-

dling the noise in the detected discriminative insertions is
even more challenging. For this reason, we restrict our de-
tection to columns that contain a majority of bases as op-
posed to those containing mostly gaps. We choose a rel-
atively high significance cutoff of negative log-probability
−log(CHG(Gi

B1
, G j

B2
)) > 15.0 based on an empirical as-

sessment via trial and error. We call a column a discrimina-
tive column, if the statistical significance of the intersection
of at least one of its base groups with another base group is
above the statistical significance cutoff.

The transposon sequences are generally less highly con-
served than the histone coding sequence. Thus, we restrict
the number of selected discriminative columns in our test
sets to 300 to conduct an as fair as possible correction com-
parison to the histone dataset.

The selected discriminative columns D=
{d1, d2, d3, . . . dn} constitute the n distinguishing fea-
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tures, on the basis of which we disambiguate the instances
of the repeat sequence.

For each row i of the refined MSA M, we define a sig-
nature Sj<n as a vector of entries {Mid | d ∈ D}, see Fig-
ure 1D). Additionally, we create a unique faux-signature
for each large-scale variation, which is likewise an element
of {A, C, G, T,−}n. This allows us to model each read R :
[S1, S2, S3, . . . SNR] as a list of signatures.

Correction

The native sequencing error rate is expected to carry
over into our extracted signatures. Additionally, the high
insertion/deletion rates in PacBio reads result in an un-
avoidable bias. This bias arises as those frequently inserted
bases often provide better options for optimizing the align-
ment score than the correct base. Consequently, rare varia-
tions are more likely to be treated as an error by the MSA
algorithm. Furthermore, the differences between copies are
distributed in a hierarchical fashion, due to an evolution of
copying and mutation (22). This means that a large fraction
of the copies is highly similar, if not identical. Complicating
matters even more, not every read shows the average error
rate. Instead, the error rate, especially the rate of insertions,
varies strongly from read to read. For these reasons, suc-
cessfully extracting distinguishing features from the reads
does not automatically induce a correct disambiguation of
repeat copies.

Note that the expectation that sequences with more sim-
ilar features belong to the same repeat copy does not hold.
The large number of copies, the high and varying error
rate, the MSA bias and the small number of differences be-
tween repeat copies lead to the situation that similarity mea-
sures between signatures are almost completely dominated
by the noise level (see Figure 2A). Subreads sequenced from
the same repeat copy are not characterized by having more
similar features, despite on average this being the case, but
rather by sharing a characteristic subset of features, which
is a priori unknown. This misleads standard clustering algo-
rithms or read overlapping approaches. Non-standard clus-
tering approaches based on rare subsequences of signatures
face substantial run time limitations, as the number of possi-
ble subsequences quickly grows prohibitive with increasing
subsequence length.

We develop a machine learning architecture that specifi-
cally exploits the structure described above to correct signa-
tures to a point where standard approaches become feasible.
We use neural networks to utilize these underlying charac-
teristic subsets of features. The task of these networks is to
predict the instance of a target feature within a signature,
based on all other entries of the signature and of the two
neighbouring signatures within the same read, if available.
The two neighbouring signatures provide additional infor-
mation that allows the neural networks to improve predic-
tion. However, using even more bases from the same read
would impede generalization as signatures with that many
neighbours become rare.

The basic structure of the neural networks we use is a
simple fully connected network with one hidden layer, for
a comprehensive treatment of neural networks, see (23).
Every i -th base B ∈ {A, C, G, T,−} in a signature S ∈

{A, C, G, T,−}n is encoded as a one hot vector of length five

Ii = (Ii
A, Ii

C, Ii
G, Ii

T, Ii
−) with Ii

B : = {1.0, Si = B
0.0, Si �= B. The input

vector I for a given signature consists of a concatenation of
the vectors Ii<n of all bases of the full signature or in the
histone case of the signature and its two direct neighbours,
but excluding the target base Sj . The excluded target base
Sj , represented by the vector I j , is then approximated by
the output vector of the neural network, O ∈ (0, 1) 5 with∑
B∈{A,C,G,T,−}

OB = 1.0. The output vector is calculated us-

ing a softmax function σ (z j ) : ez j∑5
k = 1 ezk

and can be inter-

preted as a probability distribution over {A, C, G, T,−}.
For each feature, a distinct and randomly initialized net-

work is trained using backpropagation with gradient de-
scent (24). For each given signature, it strives to predict the
base at the chosen feature using the bases at all other fea-
tures as input. Until a given accuracy is reached, the learn-
ing rate is adapted. L2-regularization (25) is used to aid gen-
eralization. Dropout (26) can be used, but is discarded if
learning stalls. If possible, we train until we reach a predic-
tion accuracy of >97%, though some networks stall signif-
icantly below this threshold. Each trained neural network
can then be used to correct its target base in every signature
by changing it to the most probable predicted base.

As illustrated in Figure 2B, the hidden layer enables
the network to model the sub-signatures that characterize
groups of signatures that share a certain base at the tar-
get feature. The idea is that this allows the network to cre-
ate generalized predictions that are closer to the underlying
truth than the actual data, without being misled by overall
similarity or dissimilarity of the complete signatures. Con-
sequently, simply using linear regression would be bound to
fail, while deploying more hidden layers would not improve
the accuracy. This intuition behind the hidden layer can be
verified by observing certain sub-signatures that fully excite
neurons of the hidden layer in trained networks.

Converging corrector

While some discriminative SNVs occur in many copies and
in parallel with other SNVs, other SNVs might describe
only a single specific copy and be the only SNV that does
so. Therefore, the signal that has to be recognized to accu-
rately predict the different copy versions that lead to a cer-
tain base at a certain feature varies greatly. Picking up the
weakest signal necessitates an overfitting of the network to
the data. This means that the network learns to predict the
bases of individual signatures by recognizing their specific
pattern of erroneous bases. This initially impedes general-
ized prediction.

By training a separate network, Nj : Si<n, i �= j → Sj , for
every feature j < n, that is part of the signatures, we create
a signature to signature function by concatenation, N : =
⊕ j<n Nj : Sj<n → Sj<n . A fixpoint of this function is a sig-
nature in which all bases are consistent with each other as
judged by the neural networks. Intuitively, every error free
signature should be internally consistent and therefore con-
stitute a fixpoint. This suggests that one should repeatedly
apply the function to a signature until convergence. In the
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first pass over the data, the neural network might still recog-
nize individual signatures. Subsequent corrections can only
rely on the underlying pattern, since the characteristic sig-
nature errors have already been corrected in earlier passes.
This yields a generalized, instead of an overfitted correction.

Regarded on a more abstract level, the function that out-
puts the number of bases in a signature that are equal to the
predicted base can be seen as describing a consistency land-
scape of signatures. Fixpoints are maxima in this consis-
tency landscape since every base is the predicted base. The
repeated application of our concatenated networks to a sig-
nature until convergence can be seen as an ascent towards
the nearest consistency maximum.

Assembly

After reducing the error rate of the signatures, we can clus-
ter the corrected signatures and traverse the assembly graph
that is given by the resulting clusters. The clustering algo-
rithm we use on the corrected signatures is a variation of
the popular k-means clustering (27).

To reach the best possible assembly result we use all avail-
able information. That includes the corrected signatures, the
unique sections classified in our first preprocessing step and
the results of the following two additional analyses.

There exists a shorter version (4.8 kbp) of the repeat se-
quence that has already been described in the literature (8).
It differs from the histone template by a large deletion, that
we also detect and classify in our preprocessing analysis.
We create a separate MSA for this 4.8 kbp repeat. Due to
the substantially lower copy number compared to the whole
complex, the detected SNVs allow us to divide these shorter
sequences into three different copy versions.

Additionally, we extract indels of 3 to 30 bases by cluster-
ing sections of the rows of the original MSA. These indels
are challenging to detect from the extracted features alone.
Both, short versions and indels are added to the corrected
signatures in the form of fake triple base features. Further-
more, we extend each signature to encompass the features
of all neighbouring signatures within the same read.

As centroids, we choose all extended and corrected signa-
tures, whose coverage extends in both directions, for at least
c bases. The selected centroids are restricted to these c bases,
to ensure that all centroids have the same coverage. The pa-
rameter c is empirically chosen to be 1.2 times the length of
a signature. This results in an average coverage of each re-
peat copy by seven centroids. Thereby, it is highly unlikely
that a repeat copy is missed. After this initialization, all ex-
tended signatures S are distributed among the centroids C
by the first best fit according to D(C, S) = ∑

i〈n|Si �=Ci

1. In a

second round, the consensuses of these initial clusters are
used as centroids. Finally, all elements of clusters under a
size cut-off are distributed among the remaining clusters.

Due to the high number of initial centroids, the clustering
generally splits the signatures into more clusters than there
could possibly be repeat copies. These clusters c j , ci ∈ C
naturally constitute the nodes of an assembly graph G :=
(C, E0<n<3). Two nodes ci , c j ∈ C are connected by a di-
rected edge, if there exists a read R = [. . . Sk, . . . , Sk+d . . .],
such that Sk ∈ ci , and Sk+d ∈ c j with d ∈ {1, 2}. For a given

distance d, the set of these directed edges is denoted by
Ed (ci , c j ).

Therefore, the task remaining is a layered graph drawing,
in which clusters are linearly ordered into layers that can
contain more than one cluster such that the order of these
layers respects the order of signatures in reads as far as pos-
sible.

At each step, we choose the cluster whose
best placement maximizes the scoring func-
tion SF(c, l) := SF1 + 2 × SF2 − SF3 − 2 ×
SF4 − SF5, where SF1 := ∑

E1(v,c)|v∈Ll−1
1 +∑

E1(v,c)|v∈Ll+1
1, SF2 := ∑

E2(v,c)|v∈Ll−2
1 + ∑

E2(v,c)|v∈Ll+2
1,

SF3 := ∑
E1(v,c)|v /∈Ll−1

1 + ∑
E1(v,c)|v /∈Ll+1

1, SF4 :=∑
E2(v,c)|v /∈Ll−2

1 + ∑
E2(v,c)|v /∈Ll+2

1, SF5 := ∑
v∈Ll

D(c, v),
D(c, v) := ∑

i〈n|Cc [i ]�=Cs [i ] 1 D(c, v), Cc is the consensus of
cluster c, Ll contains the cluster elements currently assigned
to the l-th layer and Ed (v, c) is the set of directed edges
defined above. This score rewards edges consistent with
the already placed clusters and punishes edges inconsistent
with the earlier cluster placements, as well as differences
between the cluster consensuses within a layer.

On the resulting assembly, we call a consensus sequence
using the designated PacBio variant caller quiver (28). This
is expected to result in a Q40 sequence for the minimal cov-
erage of our assembly, Q45 for 97% and Q55 for 82% of the
complex.

Validation

To validate our automated assembly and to assess the ac-
curacy of the correction algorithm, we also created a hand-
curated assembly of the uncorrected signatures. In the fol-
lowing, we describe several insights that make manual as-
sembly possible and the analyses based on these insights.

The expansion of the complex by unequal recombination
(22), tends to create adjacent identical copies. This entails
that the instances of a given distinguishing feature are likely
to be clustered within the complex. Such neighbour similar-
ity makes overlapping approaches infeasible, mainly due to
the difficult statistical assessment of the trade-off between
long overlaps and ‘good’ overlaps. But with a simple sta-
tistical analysis we can utilize the neighbour similarity to
considerably reduce the problem size.

For each instance b ∈ {A, C, G, T,−} of a fea-
ture v < n, we define a clustering coefficient Cc(v, b) :=∑

S| Sv= b 1/
∑

S|Sv �=b 1 for the S ∈ R with
∑

Si〈NR|Si
v=b 1 > 1,

where each read R is represented as a list of signatures
R := [S1, S2, S3, . . . SNR], which is simply the number of
occurrences of an instance divided by the number of non-
occurrences of the instance over all reads in which it occurs
at least twice.

Intuitively, this number captures in how many contigu-
ous parts the subcomplex described by the instance b occurs
within the complex, that is, how strongly the copies belong-
ing to the subcomplex are clustered. The problem can now
be broken down into smaller locally connected sub-clusters.
This is done by selecting subsets of reads that are defined by
the occurrence of an instance. We then manually analyse in-
stances in order of decreasing clustering coefficients.
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Table 2. The error rate reduction of the converging corrector

Datasets Original error Corrected error Collapsed variations

Histone 8.22% 1.32% 0.42%
Transposons(median) 6.51% 1.78% 0.41%
Transposons(mean) 7.26% 2.01% 0.80%
Transposons(best) 5.26% 0.20% 0.00%
Simulated 8.89% 1.34% 1.29%

The error rate is the average percentage of the bases of a signature, that differ from the consensus of the uncorrected signatures in the ground truth group (i.e.
manual assembly copy group) to which the signature belongs. ‘Original’ denotes the uncorrected signatures, ‘corrected’ the corrected signatures. ‘Collapsed
variations’ are variations where the majority of signatures of a ground truth group have been corrected towards the incorrect majority base.

Table 3. The error rate reduction of the first pass correction

Datasets Original error Corrected error Collapsed variations

Histone 8.22% 4.64% 0.19%
Transposons(median) 6.51% 4.14% 0.05%
Transposon(mean) 7.26% 4.45% 0.12%
Transposons(best) 5.26% 2.04% 0.00%
Simulated 8.89% 2.49% 1.05%

The error rate is the average percentage of the bases of a signature, that differ from the consensus of the uncorrected signatures in the ground truth group (i.e.
manual assembly copy group) to which the signature belongs. ‘Original’ denotes the uncorrected signatures, ‘corrected’ the corrected signatures. ‘Collapsed
variations’ are variations where the majority of signatures of a ground truth group have been corrected towards the incorrect majority base.

In each of these smaller problems we try to identify com-
binations of features that appear to describe a single repeat
copy. Each of these combinations of features defines a fixed
group of signatures in which it occurs. These fixed groups
are connected if their signatures occur in the same reads.
They are strongly and consistently connected if their signa-
tures occur often and with a consistent distance in the same
reads. To each side, a third of signatures has a full signa-
ture neighbour. Assuming a coverage of C and an indepen-
dent assignment of signatures to two fixed groups of size C1

and C2, we can expect C1×C2
C∗3d consistent connections between

them, if they accurately describe copies that have a distance
d in the complex. We use this observation to validate inde-
pendently described fixed groups. We cannot always define
unambiguous groups that are just one or two copies away
from each other. These gaps have to be filled with long reads
that can be anchored in validated fixed groups.

By this slow manual process, the whole complex can be
assembled. This manual assembly constitutes the ground
truth for the automated assembly described above.

To assess the results achieved by our correction heuristic,
we use transposon reads from the same dataset, for which
the ground truth is provided by unique flanking sequences,
as well as a simulated dataset. For the histone dataset the
ground truth is given by the manual assembly described
above.

To quantify the results of the presented correction heuris-
tic, we use the following metrics that are calculated for those
signatures that are assigned to a ground truth group. For
both, the first pass of the correction, and the fully converged
correction, each signature has a corresponding corrected
signature, a ground truth consensus of uncorrected signa-
tures (consensus) and a ground truth consensus of corrected
signatures (cor-consensus).

The ‘error’ is the percentage of bases of the signatures that
differ from the respective consensus. We report the percent-
age of bases of the cor-consensuses that differ from the con-

sensuses as ‘collapsed variations’. ‘Internal consistency’ de-
notes the similarity of uncorrected signatures to the consen-
sus and corrected signatures to the cor-consensus, respec-
tively.

‘Recall’ is the percentage of true positives among the cor-
rect positives according to the consensus, or 100% - ‘error’
as defined above, whereas ‘precision’ is the percentage of
true positives among the positives.

RESULTS

Assembly

The greedy layered graph drawing algorithm can in princi-
ple be started with any cluster. Here, the flanking sequences
and the unique large-scale variations are the obvious initial
choices. Depending on the starting cluster our automated
assembly algorithm correctly orders up to 90 consecutive
copies out of 113 (including flanking sequences and large-
scale variations).

Starting from the left end of the complex and for most
other unique large-scale variations as starting cluster, our
automated assembly algorithm only fails at two histone
complex locations. Around repeat copy 32, a combination
of two copy versions occurs twice, one after another, and is
not resolved by the clustering. Also at the right end of the
complex the copies are extremely similar and therefore re-
main unresolved. Between these locations and the flanking
sequences, 35, 60 and 3 of the copies are correctly arranged.
Figure 2D shows the assembly graph resulting from a graph
traversal starting from the left end of the complex. The red
nodes indicate misassemblies consisting of collapsed copies.

The combination of clustering and greedy layered graph
traversal places 90% of the signatures into a layer which con-
tains a majority of signatures from the same copy according
to the manual assembly, resulting in almost identical con-
sensus signatures.
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Correction

Table 2 shows that we achieve significant error reduction
in all datasets. The comparison with Table 3 shows that
the converging corrector leads to a substantial accuracy
improvement compared to the accuracy achieved in the
first pass. In our target dataset, the Drosophila histone se-
quences the error of 8.22% is reduced in the first pass to
4.64%. This is then further reduced to 1.32% in the converg-
ing corrector. Figure 3 illustrates how this error reduction
translates into substantially improved overlap accuracy and
‘sharper’ differences among signature groups. It is worth
noting that reinserting the corrected SNVs into the reads
would not substantially change the read error. Our correc-
tion heuristic solely intends to ‘sharpen’ the extracted dif-
ferences between repeat copies.

Consensus sequence

The final assembly of the histone complex contains 107
copies of the histone repeat sequence and extends over 570
kbp. Two of these copies are shortened by the same long
deletion, and two are extended by a doubling of the H2A
gene. Finally, another two copies have insertions of differ-
ent length. The known 4.8 kbp repeat version (8) occurs nine
times loosely clustered at the beginning of the complex.

The preprocessing analysis showed 11 reads with a di-
vergent arrangement of two large-scale variations demon-
strating the presence of a second haplotype represented by
10–15% of the data, despite the highly inbred strain. These
reads have been excluded from all our analyses. Beyond the
3′ end of the complex, we found an assortment of dysfunc-
tional histone copies. The mechanism of this local accumu-
lation of degenerate copies is unknown. No further copies
outside the complex were found.

DISCUSSION

Correction

There is an intrinsic limit as to what de-noising algorithms
can achieve. The presented heuristic is no exception. If the
information necessary to correct a certain feature for a cer-
tain copy is not part of the data, the variation will be ‘col-
lapsed’, that is, transformed into the majority instance of
that particular feature. This collapse is unavoidable and
more ‘sharply’ distinguishes between signatures from dif-
ferent copies, in the sense that now all (or most) signatures
from this particular repeat copy have the same base at the
given position. This means that once the best possible dis-
tinction on the basis of the corrected signatures has been
achieved, it might be useful or necessary to return to the
original signatures for further refinement. A collapse also
occurs if error-induced false variations are above the signif-
icant threshold. In this case the collapse is just a correction.
Table 2 shows that the collapse of variations does not rep-
resent a significant problem in our datasets.

The rarer bases at any given SNV position is subjected to
a stronger bias by the MSA. The incentive to maximize the
count of the most frequent base in every column is insep-
arable from the MSA algorithm itself. The high insertion
rate of PacBio data leads to an abundance of alignment op-
tions and as a result the rarer base is often ‘shifted’ out of

the correct column. Therefore, rare bases initially show a
significantly higher error rate.

Rare bases describe but a few copies of the repeat family.
This means that they are more easily collapsed. Indeed, in 1
out of 17 transposon datasets the average recall of the rare
bases is clearly worse after the first pass correction. This is
due to a number of collapsed variations that decrease the
average recall, with their recall of 0.00%. In the corrected
version, this number grows to 5 out of 17. Table 5 shows that
overall, even the rare bases considerably improve recall.

Rare bases also compete with a high number of false
positives, which from an assembly point of view is more
problematic than the collapse of variations. Our correction
heuristic achieves improved precision for every transposon
dataset. Table 6 depicts the overall results for rare base pre-
cision improvements.

The collapse of variations may also lead to scenarios in
which the average accuracy of corrected bases presents a
misleading picture. If a minority base has been fully cor-
rected for one group and collapsed for another group, the
average accuracy would be the same, as when both groups
show an accuracy of 50%. In the former case however, the
internal consistency of both groups is higher, although the
overall accuracy is the same. Table 4 shows that while the
correction improves the overall accuracy of rare bases, it im-
proves the internal consistency to an even larger degree.

Assembly

We want to emphasize that assembly via clustering includ-
ing the very specific analyses it entails does not represent a
general repeat cluster assembly algorithm. Instead, it illus-
trates the type of analysis that is feasible via our correction
heuristic.

We expect other repeat complexes to exhibit their own id-
iosyncrasies. It is thus unlikely that our assembly approach
will be directly applicable. For instance, all histone reads
were oriented according to the template upon extraction
by mapping. This simplifies downstream processing, but
is only possible because there is no strand reversal in the
complex. However, strand reversal does occur, for exam-
ple, in the Drosophila ribosomal RNA (rRNA)-complex.
The rRNA-complex also contains several distinct repeat se-
quences, which would require further non-trivial adapta-
tions of our clustering algorithm.

While the clustering and graph traversal resolves large
stretches of the complex correctly, an important question is
how to detect possible misassemblies. Figure 2D shows the
assembly graph with misassemblies consisting of collapsed
copies indicated by the red nodes. We detect these misas-
semblies by mapping the clusters that could not be reliably
placed onto the assembly which results in coverage anoma-
lies (significantly more than the average 125 signatures per
graph layer) in collapsed assembly groups. In Figure 2D the
coverage is indicated by both the labels and the diameters
of the nodes.

The first misassembly cuts out a large-scale variation
by collapsing similar copies at either side of the variation.
Starting from this large-scale variation we obtain an assem-
bly which correctly orders the first 90 copies. For the second
misassembly this trick does not work, because the collapse
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Figure 2. In (A), we examine full signatures with ground truth information. For each signature, we calculate the likelihood that the n-th best overlapping
signature belongs to the same ground truth copy group. This likelihood starts low and drops fast, whereas the corrected signatures have a significantly
higher likelihood of correct overlaps, which stays stable for the 25 best overlaps. Panel (B) shows the error reduction achieved by first pass correction and
the converging corrector. In (C) and (D), we use a t-distributed stochastic neighbor embedding visualization (t-SNE) to show how the correction facilitates
the separation of neighbouring groups of signatures.

Table 4. The internal consistency of groups over all datasets before and after correction

Datasets Original First pass Corrected

Histone 91.7% 95.3% 98.8%
Histone rare 77.7% 83.4% 91.3%
Transposons(median) 93.4% 95.8% 99.2%
Transposons(mean) 92.7% 95.6% 98.8%
Transposons(best) 94.7% 98.1% 99.8%
Trans. rare(median) 85.4% 90.2% 96.8%
Trans. rare(mean) 85.7% 89.6% 95.4%
Trans. rare(best) 92.7% 95.5% 99.7%
Simulated 91.1% 98.5% 99.9%
Simulated rare 85.4% 95.8% 99.7%

‘Original’ denotes the uncorrected signatures, ‘corrected’ the corrected signatures, while ‘first pass’ describes the signatures after a single application of the
neural network corrector. In the ‘corrected’ and ‘first pass’ cases the internal consistency is the similarity of corrected signatures of a ground truth group
(i.e. manual assembly copy group) to the consensus of the corrected group, instead of to the consensus of the uncorrected group. In the uncorrected case,
internal consistency is just accuracy, that means 100% - error rate.
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Figure 3. Panel (A) shows how raw sequencing data is categorized as repeat or unique sequence using the mapping information of subsequences of the
repeat template. In (B), the reads are cut and the repeat sequences are arranged into a MSA. Panel (C) shows the refinement of the MSA. In (D), corrections
between rows are detected and statistically significant bases are collected into signatures. Panel (E) illustrates how the signatures are corrected via neural
networks. In (F) finally, the signatures are clustered and the resulting assembly graph is traversed.

Table 5. Recall of rare bases

Datasets Original recall First pass recall Corrected recall

Histone 77.7% 83.1% 88.6%
Transposons(median) 85.4% 87.6% 90.7%
Transposons(mean) 85.7% 87.8% 86.0%
Transposons(best) 92.7% 95.5% 99.7%
Simulated 85.4% 88.1% 90.7%

The percentage of true positives among the correct positives. ‘Original’ denotes the uncorrected signatures, ‘corrected’ the corrected signatures, while ‘first
pass’ describes the signatures after a single application of the neural network corrector.

Table 6. Precision of rare bases

Datasets Original precision First pass precision Corrected precision

Histone 69.0% 79.1% 93.1%
Transposons(median) 86.3% 87.0% 91.4%
Transposons(mean) 80.0% 81.7% 89.8%
Simulated 94.1% 99.0% 99.7%

The percentage of true positives among the positives. ‘Original’ denotes the uncorrected signatures, ‘corrected’ the corrected signatures, while ‘first pass’
describes the signatures after a single application of the neural network corrector.

Table 7. Properties of the datasets

Datasets Copies Coverage Length Variations

Histone 107 30–90X 5 kbp 185
Transposons 5–157 35–54X 4.3–7.5 kbp 300
Simulated 100 50X 5 kbp 300

The number of variations used for correction, is comparable in all datasets, as the histone correction uses additional neighbouring signatures.
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already occurs during the clustering phase. Here, we have to
resolve the ambiguous part on the basis of a few very long
reads.

Conclusion

To our knowledge this is the first approach that is capable
of dealing with the intrinsic complexity of tandem repeat
resolution. We expect a wide applicability of the presented
methods for the resolution of tandem repeats in genome as-
sembly, but also, for the resolution of non-tandem repeat
clusters and long transposable elements.

Future work

The main current challenge regarding the assembly of fur-
ther repeat complexes is the initial analysis of the repeti-
tive and unique sequences that occur in the complex as well
as the classification of large-scale deletions, insertions and
duplications. Automating this task to a significant degree
by combining ideas from machine learning with more typi-
cal alignment algorithms is a promising direction of future
work.

DATA AVAILABILITY

The code, datasets and assembled sequence are avail-
able via GitHub at (https://github.com/PhilippBongartz/
DrosophilaHistoneComplex).
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