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Abstract

Background

Pulmonary embolism continues to be a significant cause of death. The aim was to derive

and validate a risk prediction model for in-hospital death after acute pulmonary embolism to

identify low risk patients suitable for outpatient management.

Methods

A confirmed acute pulmonary embolism database of 1,426 consecutive patients admitted to

a tertiary-center (2000–2012) was analyzed, with odd and even years as derivation and vali-

dation cohorts respectively. Risk stratification for in-hospital death was performed using

multivariable logistic-regression modelling. Models were compared using receiver-operating

characteristic-curve and decision curve analyses.

Results

In-hospital mortality was 3.6% in the derivation cohort (n = 693). Adding day-1 sodium

and bicarbonate to simplified Pulmonary Embolism Severity Index (sPESI) significantly

increased the C-statistic for predicting in-hospital death (0.71 to 0.86, P = 0.001). The valida-

tion cohort yielded similar results (n = 733, C-statistic 0.85). The new model was associated

with a net reclassification improvement of 0.613, and an integrated discrimination improve-

ment of 0.067. The new model also increased the C-statistic for predicting 30-day mortality

compared to sPESI alone (0.74 to 0.83, P = 0.002). Decision curve analysis demonstrated

superior clinical benefit with the use of the new model to guide admission for pulmonary

embolism, resulting in 43 fewer admissions per 100 presentations based on a risk threshold

for admission of 2%.

Conclusions

A risk model incorporating sodium, bicarbonate, and the sPESI provides accurate risk pre-

diction of acute in-hospital mortality after pulmonary embolism. Our novel model identifies

PLOS ONE | https://doi.org/10.1371/journal.pone.0179755 July 13, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lau JK, Chow V, Brown A, Kritharides L,

Ng ACC (2017) Predicting in-hospital death during

acute presentation with pulmonary embolism to

facilitate early discharge and outpatient

management. PLoS ONE 12(7): e0179755. https://

doi.org/10.1371/journal.pone.0179755

Editor: Chiara Lazzeri, Azienda Ospedaliero

Universitaria Careggi, ITALY

Received: January 8, 2017

Accepted: June 2, 2017

Published: July 13, 2017

Copyright: © 2017 Lau et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The New South

Wales Population and Health Services Research

Ethics Committee prohibits the authors from

making the minimal data set publicly available.

Interested researchers may contact the Ethics co-

ordinator (ethics@cancerinstitute.org.au) to seek

permission to access the data and upon approval

should contact Dr Austin Ng (chin.ng@sydney.edu.

au) to request the data; data will be available upon

request to all interested researchers who obtain

approval from the New South Wales Population

and Health Services Research Ethics Committee.

https://doi.org/10.1371/journal.pone.0179755
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0179755&domain=pdf&date_stamp=2017-07-13
https://doi.org/10.1371/journal.pone.0179755
https://doi.org/10.1371/journal.pone.0179755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:ethics@cancerinstitute.org.au
mailto:chin.ng@sydney.edu.au
mailto:chin.ng@sydney.edu.au


patients with pulmonary embolism who are at low risk and who may be suitable for outpa-

tient management.

Introduction

Venous thromboembolism is a common cardiovascular disease, with pulmonary embolism

(PE) its most severe manifestation [1]. PE occurs in approximately 100 per 100,000 people

annually [1]. The predictors of early mortality after PE include advanced age, medical comor-

bidities and clinical features at presentation [2–5].

The Pulmonary Embolism Severity Index (PESI) [6] and the simplified Pulmonary Embo-

lism Severity Index (sPESI) [7] are validated prediction scores to risk stratify patients hospital-

ized with acute PE. Calculated based on patient’s demographics, comorbidities, and initial

clinical assessment findings, they have been shown to predict 30-day mortality. The PESI and

sPESI however, do not incorporate any biomarkers. In addition, there are currently no risk

models to predict in-hospital death after acute PE.

Hyponatremia has been shown to be a predictor of in-hospital and 30-day all-cause mortal-

ity after acute PE across all strata of PESI risk [8, 9]. Arterial base deficit has also been reported

to be a marker of PE severity [10].

The present study investigates the potential for low serum sodium and low serum bicarbon-

ate to contribute to risk stratification in acute PE, which may be used to identify low risk

patients suitable for outpatient management. We demonstrate the addition of day-1 serum

sodium and bicarbonate values to the sPESI significantly improves in-hospital mortality risk

stratification after acute PE.

Materials and methods

Study population

Since January 2000, all consecutive patients admitted to Concord Hospital (Sydney, New

South Wales, Australia) with a confirmed principal diagnosis of PE have been entered into a

PE database. The outcomes of patients from this database have been reported previously [8,

11, 12]. Patients admitted between January 2000 and December 2012 were identified with

non-local state residents excluded in order to minimize incomplete tracking of outcomes. All

patients had their diagnosis of PE confirmed as per published guidelines [13]. For patients

with recurrent PE, only their initial presentation was included in the study.

Data collection

Data variables extracted from medical record were entered into the PE database by trained

medical personnel (V.C. and A.N.). Data variables collected included details of patient’s admis-

sion and comorbidities (see Text A in S1 File for details of variables collected). Chronic kidney

disease was defined as an estimated glomerular filtration rate<60mL/min/1.73m2. Values out-

side the institution laboratory reference ranges were regarded as abnormal.

The sPESI score was calculated based on age (>80years), history of malignancy, chronic

cardiopulmonary disease, heart rate�110beats/min, systolic blood pressure�100mmHg, and

oxyhemoglobin saturation <90% [7].
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Study outcomes

The primary outcome was in-hospital all-cause mortality. In-hospital mortality was chosen to

facilitate development of a model to determine if patients can be managed in an outpatient set-

ting from day-1. A state-wide death registry database was used to verify and determine the

cause of death. Each death certificate was reviewed independently by at least two reviewers

(J.L., L.K. or A.N.), with disparities resolved by consensus. The cause of death was coded in

accordance with the World Health Organization guideline [14].

Derivation and validation cohorts

Patients presenting in the odd years between 2001 and 2011 constituted the derivation cohort

and were used to develop the new predictive model for in-hospital mortality after acute PE. To

determine the applicability of the new model, we validated it in patients who presented in the

even years between 2000 and 2012.

Statistical analysis

Continuous variables are expressed as means plus-minus standard deviations (SD), while cate-

gorical variables are presented as numbers and frequency percentage. Comparisons between

continuous variables were performed using the unpaired t test or the Mann-Whitney U test.

Categorical data were compared using χ2 tests or Fisher’s exact test.

To determine the predictors of in-hospital death, univariable and multivariable logistic

regression analyses were performed. Univariable parameters assessed included age, gender,

sPESI, other comorbidities not accounted for in sPESI, serum sodium and bicarbonate val-

ues. Univariables with P<0.1 were included in the multivariable modelling analysis. Only

predictors with a correlation coefficient �0.7 with either sPESI, sodium or bicarbonate were

included. The area under the receiver operating characteristic (ROC) curve (AUC or C-statis-

tic) was used to assess the discrimination performance of each model in predicting in-hospi-

tal death and these were compared using the DeLong test [15]. The prognostic performance

of adding sodium and bicarbonate to sPESI were examined using net reclassification (four-

risk category model) and integrated discrimination improvement with sodium and bicarbon-

ate analyzed both as continuous and as dichotomous variables, with optimum levels derived

from the Youden index [16]. The validation data were not accessed until the final model,

derived in the derivation data, was selected and fixed. This model was the only model evalu-

ated in the validation cohort.

A decision curve analysis was performed to compare the clinical usefulness and net benefits

of model 1 (sPESI) and model 2 (sPESI + sodium + bicarbonate) with regards to the risk of in-

hospital death [17]. The benefits of these models were compared to the clinical practice of

either admitting all patients or discharging all patients.

We performed two additional analyses to assess the validity of our study. Multiple imputa-

tions (20 imputations) were used to account for missing data [18]. Secondly, we performed a

population-linkage analysis to verify the mortality outcome of our PE cohort was comparable

to the rest of the state (New South Wales) population admitted with acute PE within the same

study time period. A censored date of 31 December 2013 was pre-defined for the linkage anal-

ysis of all-cause mortality. Cox proportional hazards regression analysis was used to compare

survival curves adjusted for age and sex.

In order to compare the performance of the derived model with the original sPESI, the per-

formance of each model in predicting 30-day mortality of our total PE patient cohort was sepa-

rately analyzed using multivariable modelling and ROC curve analyses as described above.
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All analyses were performed on de-identified data using SPSS v22 (IBM, USA) or Stata

v14.1 (StataCorp LP, USA). A two-tailed probability value<0.05 was considered statistically

significant.

Ethical considerations

The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki. The

involved institutional committees granted ethics approval: Concord Hospital PE cohort

(CH62/6/2008-009) and population-linkage analysis (2013/09/479). The committees also

granted a waiver of the requirement for consent from the individual for use of their health

information. All patient data was de-identified and analyzed anonymously.

Results

The derivation cohort consisted of 693 patients, with mean age 67.3±16.5years and 44.7% male

patients. A history of cardiovascular disease, malignancy, and deep vein thrombosis was pres-

ent in 39.0%, 22.1% and 18.8% of patients respectively. The mean sPESI on admission was 0.9

±0.9. Day-1 serum sodium and bicarbonate levels were recorded in 95.7% and 95.8% of

patients with mean values of 138.6±3.9 mmol/L and 24.6±3.7 mmol/L respectively. Low

sodium (<135 mmol/L) and low bicarbonate (<24 mmol/L) were identified in 13.1% and

40.2% of patients respectively. None of these parameters differed significantly between the der-

ivation and validation cohorts (Table 1).

Patients with low sodium were older, more likely to have pre-existing cardiovascular dis-

ease, prior stroke, and malignancy, and more likely to die in-hospital than those with sodium

�135 mmol/L (Table A in S1 File). In contrast, there were no significant differences between

patients with low bicarbonate and those with bicarbonate�24mmol/L with respect to baseline

comorbidities. There was weak evidence of increased in-hospital death in those with low bicar-

bonate (5.2% vs 2.5%, P = 0.09) (Table B in S1 File).

The rates of in-hospital death did not differ across the 13 years of the registry (P = 0.81) or

between the derivation and validation cohorts (3.6% versus 2.7% respectively, P = 0.37). Of the

25 patients in the derivation cohort and 20 patients in the validation cohort who died in-hospi-

tal, 22 (88%) and 13 (65%) died due to PE. The rates of in-hospital death due to PE did not dif-

fer significantly between the derivation and validation cohorts (P = 0.08).

Predictors of in-hospital death—Derivation cohort

Univariable predictors of in-hospital death included older age, increasing sPESI score, lower

sodium and bicarbonate levels. Multivariable analysis demonstrated that in-hospital death was

independently associated with sPESI (odds ratio [OR] per-1-point, 1.75; 95% confidence inter-

val [CI] 1.13–2.70), sodium (OR per-1 mmol/L increase, 0.83; 95% CI 0.76–0.90), and bicar-

bonate (OR per-1 mmol/L increase, 0.87; 95% CI 0.77–0.98) (Table 2).

Fig 1a and 1b demonstrates the improvement associated with adding sodium and bicarbon-

ate to sPESI (model 2) in predicting in-hospital death following acute PE in the derivation

cohort. The AUC for sPESI (model 1) (AUCsPESI) was 0.71 (95% CI 0.62–0.80). Model 2

increased the AUC (AUCsPESI+sodium+bicarbonate) to 0.86 (95% CI 0.79–0.93) (AUCsPESI versus

AUCsPESI+sodium+bicarbonate, P = 0.001) for predicting in-hospital death (Table C in S1 File).

Model validation

The validation cohort was comprised of 733 patients, with baseline characteristics presented in

Table 1. Fig 1c shows model 2 ROC curve for predicting in-hospital death in the validation
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cohort. Model 2 C-statistics for the derivation and validation cohorts were similar at 0.86 (95%

CI 0.79–0.93) and 0.85 (95% CI 0.78–0.92) respectively (Table C in S1 File).

New model net reclassification performance

The addition of sodium and bicarbonate as continuous variables to sPESI was associated with

a net reclassification improvement (NRI) for the derivation cohort estimated at 0.613

(P = 0.0007) and an integrated discrimination improvement (IDI) of 0.067 (P = 0.001)

(Table 3). The event NRI was 0.39 and the non-event NRI was 0.22.

Table 1. Baseline characteristics of derivation cohort and validation cohort*.

Characteristic Derivation

(n = 693)

Validation

(n = 733)

Age, years 67.3 ± 16.5 67.8 ± 16.3

Male, no. (%) 310 (44.7) 319 (43.5)

CVD, no. (%) 270 (39.0) 276 (37.7)

Peripheral vascular disease, no. (%) 72 (10.4) 71 (9.7)

Stroke, no. (%) 20 (2.9) 20 (2.7)

Hypertension, no. (%) 180 (26.0) 174 (23.7)

Diabetes, no. (%) 91 (13.1) 100 (13.6)

Dyslipidemia, no. (%) 78 (11.3) 74 (10.1)

Current smoking, no. (%) 58 (8.4) 59 (8.0)

CRD, no. (%) 79 (11.4) 95 (13.0)

Pulmonary hypertension, no. (%) 11 (1.6) 13 (1.8)

DVT during admission, no. (%) 130 (18.8) 154 (21.0)

Malignancy, no. (%) 153 (22.1) 148 (20.2)

Chronic kidney disease, no. (%) 44 (6.3) 35 (4.8)

Hemodynamic and biochemistry parameters on admission

Systolic blood pressure, mmHg† 140.2 ± 24.0 140.0 ± 25.0

Heart rate, beats/min‡ 87.9 ± 21.1 88.6 ± 21.2

Oxyhemoglobin saturation, %§ 95.6 ± 3.7 95.3 ± 4.6

sPESIǁ 0.9 ± 0.9 0.9 ± 0.9

Day-1 Na<135mmol/L, no. (%) 87/663 (13.1) 80/715 (11.2)

Day-1 Na, mmol/L 138.6 ± 3.9 138.6 ± 4.0

Day-1 HCO3<24mmol/L, no. (%) 267/664 (40.2) 301/714 (42.2)

Day-1 HCO3, mmol/L 24.6 ± 3.7 24.3 ± 3.5

Day-1 eGFR, mL/min/1.73m2¶ 78.7 ± 34.9 77.0 ± 29.3

Outcome

In-hospital death, no. (%) 25 (3.6) 20 (2.7)

* Plus-minus values are means ± standard deviation. There were no significant differences between the two groups.
† Number of patients with admission systolic blood pressure recorded in the derivation and validation cohorts were 630/693 and 676/733 respectively.
‡ Number of patients with admission heart rate recorded in the derivation and validation cohorts were 630/693 and 676/733 respectively.
§ Number of patients with admission oxyhemoglobin saturations recorded in the derivation and validation cohorts were 610/693 and 646/733 respectively.
ǁ Number of patients with sPESI calculated in the derivation and validation cohorts were 610/693 and 646/733 respectively.
¶ Number of patients with admission eGFR recorded in the derivation and validation cohorts were 662/693 and 713/733 respectively.

CVD, cardiovascular disease (included coronary artery disease, heart failure, valvular heart disease and arrhythmias); CRD, chronic respiratory disease

(included asthma, chronic obstructive pulmonary disease and interstitial lung disease); DVT, deep vein thrombosis; eGFR, estimated glomerular filtration

rate; HCO3, serum bicarbonate; Na, serum sodium; sPESI, simplified Pulmonary Embolism Severity Index; The sPESI incorporates age >80 years, history

of malignancy, chronic cardiopulmonary disease, heart rate�110 beats/minute, systolic blood pressure <100 mmHg and oxyhemoglobin saturation <90%.

https://doi.org/10.1371/journal.pone.0179755.t001
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Based on ROC curve analyses, sodium <135 mmol/L and bicarbonate <23 mmol/L

provided the best sensitivity and specificity for predicting in-hospital mortality. Incorporat-

ing dichotomized sodium and bicarbonate values to the sPESI led to a NRI for the deriva-

tion cohort estimated at 0.483 (P = 0.008) and an IDI of 0.071 (P = 0.0009) (Table D in S1

File).

A sPESI >0 had a sensitivity, specificity, positive predictive value, and negative predictive

value of 92.0%, 40.9%, 5.5%, and 99.3% respectively for predicting in-hospital death in the der-

ivation cohort. The corresponding values were 100%, 27.0%, 5.0%, and 100% for the new

model (sPESI >0 or sodium<135 mmol/L or bicarbonate <23 mmol/L) for predicting in-

hospital death.

Decision curve analysis

A decision curve analysis compared the clinical utility of the clinical risk prediction models:

model 1 (sPESI) and model 2 (sPESI + sodium + bicarbonate). Fig 2a illustrates the net clinical

benefit of using the models to risk stratify patients (y-axis) over varying thresholds of risk for

in-hospital death (x-axis), relative to assuming no patients will die in-hospital (admit none)

and assuming all patients will die (admit all). The decision curve analysis demonstrated that

model 2 provided a superior net clinical benefit compared to sPESI across a large range of in-

hospital death risk. Fig 2b demonstrates the reduction in unnecessary admissions resulting

from the use of model 2 to guide clinical decisions.

Table 2. Predictors of in-hospital death after acute PE (derivation cohort).

Variables Odds ratio (95% CI) P value

Univariable analysis

Age, per 1-year increase 1.03 (1.00–1.06) 0.04

Male 1.35 (0.61–3.01) 0.46

sPESI, per 1-point increase 2.06 (1.39–3.04) <0.001

Valvular heart disease 1.95 (0.25–15.4) 0.53

Atrial fibrillation 1.53 (0.56–4.17) 0.41

Hypertension 0.70 (0.26–1.91) 0.49

Diabetes 0.87 (0.26–3.07) 0.87

Dyslipidemia 0.32 (0.04–2.40) 0.27

Current smoking 0.45 (0.06–3.36) 0.43

Day-1 Na, per 1mmol/L increase 0.81 (0.74–0.88) <0.001

eGFR, per 1mL/min/1.73m2 increase 0.99 (0.98–1.01) 0.40

Day-1 HCO3, per 1mmol/L increase 0.84 (0.74–0.94) 0.004

Multivariable analysis*

sPESI, per 1-point increase 1.75 (1.13–2.70) 0.01

Day-1 Na, per 1mmol/L increase 0.83 (0.76–0.90) <0.001

Day-1 HCO3, per 1mmol/L increase 0.87 (0.77–0.98) 0.03

* Age was not included in the multivariable logistic regression analysis as age is a variable used to calculate

the sPESI.

CI, confidence interval; HCO3, serum bicarbonate; Na, serum sodium; sPESI, simplified Pulmonary

Embolism Severity Index.

The sPESI incorporates age >80 years, history of malignancy, chronic cardiopulmonary disease, heart rate

�110 beats/minute, systolic blood pressure <100 mmHg and oxyhemoglobin saturation <90%.

https://doi.org/10.1371/journal.pone.0179755.t002
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Fig 1. Impact of adding serum sodium and bicarbonate to sPESI for prediction of in-hospital

mortality. The area under the ROC curve (AUC) for sPESI (model 1) (a) for predicting in-hospital death in the

derivation cohort was 0.71 (95% CI 0.62–0.80). The AUC for the model sPESI + day-1 Na + day-1 HCO3

(model 2) (b) (Na and HCO3 as continuous variables) for predicting in-hospital death in the derivation cohort

was 0.86 (95% CI 0.79–0.93). In the validation cohort the AUC for model 2 (c) was 0.85 (95% CI 0.78–0.92).

sPESI, simplified Pulmonary Embolism Severity Index; Na, serum sodium; HCO3, serum bicarbonate; ROC,

Predicting in-hospital death after pulmonary embolism
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Imputation and population-linkage analyses

Of the 693 patients that formed the derivation cohort, sodium and bicarbonate were not

recorded in 30 (4.3%) and 29 (4.2%) patients respectively. In addition, data on admission sys-

tolic blood pressure, heart rate, and oxyhemoglobin saturation were missing in 63 (9.1%), 63

(9.1%), and 83 (12.0%) patients respectively. Using multiple imputations method to account

for missing data, with the variables in Table 2, multivariable logistic regression analysis of the

derivation cohort showed comparable odds ratios for sPESI (OR per-1-point, 2.03; 95% CI

1.86–2.22), sodium (OR per-1 mmol/L increase, 0.84; 95% CI 0.83–0.86), and bicarbonate (OR

per-1 mmol/L increase, 0.88; 95% CI 0.86–0.90) for predicting in-hospital death (Table E in S1

File). Using the imputed data, model 2 yielded similar improvements in the AUC for predict-

ing in-hospital death, raising the C-statistic from 0.73 (95% CI 0.71–0.75) for model 1 to 0.87

(95% CI 0.85–0.88) for model 2 (P<0.0001) (Fig A and Table F in S1 File).

There were a total of 36,195 patients (excluding the Concord Hospital cohort) admitted

with acute PE state-wide during the study period. There was no difference in the age and sex-

adjusted survival after presentation with acute PE between the Concord Hospital cohort and

the rest of state-wide cohort (OR 1.04, 95% CI 0.96–1.14, P = 0.34) (Fig B in S1 File) suggesting

that the Concord Hospital cohort was representative of the state-wide PE cohort.

Performance of models in predicting 30-day mortality post-acute PE

Amongst the total 1,426 PE patients, 65 (4.6%) died within 30 days of admission. The indepen-

dent predictors of 30-day mortality were sPESI (OR per-1-point, 1.97; 95% CI 1.52–2.55),

receiver operating characteristics. The sPESI incorporates age >80 years, history of malignancy, chronic

cardiopulmonary disease, heart rate�110 beats/minute, systolic blood pressure <100 mmHg and

oxyhemoglobin saturation <90%.

https://doi.org/10.1371/journal.pone.0179755.g001

Table 3. Reclassification of patients (derivation cohort).

Established model -sPESI* sPESI + day-1 serum sodium and bicarbonate*

<2% risk 2–5% risk 5–10% risk �10% risk Total no.

Patients who died, no.

<2% risk 0 0 2 0 2

2–5% risk 1 2 2 5 10

5–10% risk 1 1 3 4 9

�10% risk 0 1 0 1 2

Total no.† 2 4 7 10 23

Patients who were alive, no.

<2% risk 210 41 6 0 257

2–5% risk 136 63 29 10 238

5–10% risk 32 45 17 11 105

�10% risk 6 8 11 12 37

Total no.† 384 157 63 33 637

* The established model was sPESI (simplified Pulmonary Embolism Severity Index) as a continuous variable. The sPESI incorporates age >80 years,

history of malignancy, chronic cardiopulmonary disease, heart rate�110 beats/minute, systolic blood pressure <100 mmHg and oxyhemoglobin saturation

<90%. Both day-1 serum sodium and bicarbonate were labelled as continuous variables. The net reclassification improvement was estimated at 0.613

(P = 0.0007). The event NRI was 0.39 and the non-event NRI was 0.22.
† The total number of patients (n = 660) included in the reclassification analysis did not match the total derivation cohort (n = 693) due to missing day-1

serum sodium and bicarbonate data for 33 patients.

https://doi.org/10.1371/journal.pone.0179755.t003
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Fig 2. Decision curve analysis and predicted impact on admissions resulting from model 2 to guide

clinical management. Net clinical benefit of each of the models across a range of threshold levels of risk of

in-hospital death (a). Net reduction in admissions as a result of the use of model 2 to guide clinical

management compared to admitting all patients with acute PE (b). Model 1 represents sPESI, model 2

represents sPESI + Na + HCO3. sPESI, simplified Pulmonary Embolism Severity Index; Na, serum sodium;

HCO3, serum bicarbonate.

https://doi.org/10.1371/journal.pone.0179755.g002
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sodium (OR per-1 mmol/L increase, 0.86; 95% CI 0.82–0.91), and bicarbonate (OR per-1

mmol/L increase, 0.90; 95% CI 0.83–0.97). The AUC for sPESI for predicting 30-day mortality

was 0.74 (95% CI 0.69–0.79) which increased to 0.83 (95% CI 0.78–0.88) with the addition of

sodium and bicarbonate (P = 0.002).

Discussion

The present study has derived and internally validated a novel risk prediction model for in-

hospital death in patients admitted with predominantly sub-massive acute PE by incorporating

admission sodium and bicarbonate levels with the sPESI. To our knowledge, this is the first

model shown to predict in-hospital death after acute PE. Our model performed significantly

better than the sPESI alone in predicting in-hospital death and is capable of reclassifying

patients to a more accurate level of risk. The model performed equally well in our validation

cohort, giving an unbiased estimate of the predictive capacity of the new model.

Clinical factors such as demographic characteristics and comorbidities have been used to

create risk prediction scores such as the PESI [6] and sPESI [7]. However, the use of biomark-

ers in acute PE for risk stratification is not routine. We and others have shown the importance

of a range of biomarkers including serum sodium and arterial base deficit in predicting prog-

nosis after acute PE [8–10]. During an acute PE, low bicarbonate may occur as a result of meta-

bolic acidosis from systemic hypoperfusion, and from metabolic compensation following

respiratory alkalosis arising from hyperventilation as a response to hypoxia [19, 20]. The

mechanism behind low sodium in patients with PE is not well understood and may reflect

neurohormonal activation similar to the mechanisms operational in heart failure and pulmo-

nary hypertensions [21, 22]. The acute deleterious impact of PE on the right ventricle may

thus similarly contribute to the lowering of serum sodium. Hormones such as vasopressin are

likely to play a role in the development of hyponatremia [23], though the mechanism remains

poorly understood.

We hypothesized that the addition of the biomarkers serum sodium and bicarbonate, two

commonly measured parameters, to the sPESI would better predict acute mortality after PE

compared to the sPESI alone. In the present study, the addition of sodium and bicarbonate to

the sPESI significantly improved the ROC-derived C-statistic to greater than 0.8 for predicting

in-hospital death.

The C-statistic for sPESI in predicting 30-day mortality was 0.74 in the present study which

is comparable to that reported by Jimenez et al [7]. While originally conceived as a predictor of

30-day mortality, we demonstrate that the sPESI can also predict in-hospital mortality. Despite

the high sensitivity of the sPESI in predicting in-hospital mortality, our derived model has a

higher sensitivity and is able to reclassify low risk patients appropriately to lower levels of risk

and identify patients at the highest risk of in-hospital death compared to sPESI alone.

Implications of model on clinical practice

When faced with a patient with acute pulmonary embolism, one of the pertinent decisions is

whether the patient warrants admission for monitoring and commencement of anticoagula-

tion. Our risk prediction model may allow more appropriate allocation of resources, facilitat-

ing earlier discharge of the lowest risk patients for outpatient management. The identification

of patients who are at very low risk of early mortality may lead to health resource savings and

more appropriate inpatient resource allocation to higher risk patients. The availability of

direct-acting anticoagulants coupled with accurate risk stratification of patients presenting to

hospital with acute PE may have a significant impact on workflow with substantial cost
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savings. The ability of this model to facilitate safe early discharge and outpatient management

of low risk patients will need assessment in a prospective study.

Our decision curve analysis illustrates the clinical benefit of the new model over a range of

in-hospital mortality risk thresholds. If the threshold risk for in-hospital death before a clini-

cian would admit a patient ranged between 1% and 5%, decisions based on our derived model

would result in greater net clinical benefit (un-necessary admission of a patient who would not

die in hospital) than either the sPESI alone or the clinical practice of admitting all patients. If,

for example, a clinician uses a threshold risk of 2% for in-hospital death before deciding to

admit a patient with acute PE, the use of our model to guide clinical decisions would result in

43 fewer admissions per 100 presentations without discharging any patients who would have

otherwise died in-hospital. The corresponding net reduction in admissions at threshold risks

of 1% and 5% are 28 and 65 per 100 presentations respectively.

Limitations

The main limitation of our study is its retrospective single-center design, and thus our findings

will need external validation. It is notable the rate of in-hospital death in our cohort is relatively

low compared to other cohorts that have been reported previously [5, 24]. By using a popula-

tion-linkage method, we demonstrated that the age and sex-adjusted mortality outcome of our

study cohort was similar to the rest of the state-wide PE cohort. Though the derivation and val-

idation cohorts were not chosen at random, we believe this selection method minimized the

potential impact of any improvements in PE management over time. Although there were

some missing data, these were small and we showed that our findings were not altered when a

multiple imputations method was utilized.

Biomarkers such as troponin and brain natriuretic peptide have also been shown to be

important in risk stratification of pulmonary embolism [25]. These biomarkers were not

included in our model as these parameters were not routinely assessed in the majority of

patients in our cohort. Additionally, the presence of ECG changes or evidence of right ventric-

ular strain on imaging was not assessed in this study and the utility of these clinical findings as

additions to our model is an area for future exploration. Finally, as our study cohorts were

comprised of patients who were admitted to hospital with acute PE, the results of our study

may not be generalizable to patients with PE who are diagnosed and managed in the

community.

Conclusion

Despite optimal medical therapy, PE continues to be an important cause of acute death. The

addition of readily available biomarkers, namely serum sodium and bicarbonate, to the sPESI,

accurately predicts in-hospital mortality after acute PE. An accurate risk prediction model can

help identify patients who may benefit from less or more intensive therapy after presentation

with acute PE and facilitate approporiate allocation of health care resources.
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