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OBJECTIVE—Cellular stress and proinflammatory cytokines
induce phosphorylation of insulin receptor substrate (IRS) pro-
teins at Ser sites that inhibit insulin and IGF-1 signaling. Here, we
examined the role of Ser phosphorylation of IRS-2 in mediating
the inhibitory effects of proinflammatory cytokines and cellular
stress on �-cell function.

RESEARCH DESIGN AND METHODS—Five potential inhib-
itory Ser sites located proximally to the P-Tyr binding domain of
IRS-2 were mutated to Ala. These IRS-2 mutants, denoted IRS-
25A, and their wild-type controls (IRS-2WT) were introduced into
adenoviral constructs that were infected into Min6 cells or into
cultured murine islets.

RESULTS—When expressed in cultured mouse islets, IRS-25A

was better than IRS-2WT in protecting �-cells from apoptosis
induced by a combination of IL-1�, IFN-�, TNF-�, and Fas ligand.
Cytokine-treated islets expressing IRS25A secreted significantly
more insulin in response to glucose than did islets expressing
IRS-2WT. This could be attributed to the higher transcription of
Pdx1 in cytokine-treated islets that expressed IRS-25A. Accord-
ingly, transplantation of 200 islets expressing IRS25A into STZ-
induced diabetic mice restored their ability to respond to a
glucose load similar to naïve mice. In contrast, mice transplanted
with islets expressing IRS2WT maintained sustained hyperglyce-
mia 3 days after transplantation.

CONCLUSIONS—Elimination of a physiological negative feed-
back control mechanism along the insulin-signaling pathway that
involves Ser/Thr phosphorylation of IRS-2 affords protection
against the adverse effects of proinflammatory cytokines and
improves �-cell function under stress. Genetic approaches that
promote IRS25A expression in pancreatic �-cells, therefore, could
be considered a rational treatment against �-cell failure after islet
transplantation. Diabetes 59:2188–2197, 2010

I
slet transplantation is the only treatment of type-1
diabetes that achieves insulin-independence (1).
Still, islet allografts lose function over time with an
increasing proportion of subjects returning to insu-

lin dependence after each year of transplantation (1). This
outcome is mainly attributed to inflammatory reactions

capable of inflicting severe �-cell damage and impaired
�-cell function through the release of cytokines and free
radicals (2). IGF-1, a mediator of cell growth and differen-
tiation (3), has been implicated in the regulation of �-cell
function (4–6). It stimulates angiogenesis and promotes
re-epithelialization of transplants (7), prevents cytokine-
mediated �-cell death (8), and increases insulin secretion
(9). Conversely, �-cell–specific deletion of the IGF-1 re-
ceptors leads to hyperinsulinemia, glucose intolerance
(10), and defective insulin secretion (11). These activities
can be attributed to the antiapoptotic functions of IGF-1
(3,12).

IGF-1 action is mediated by the IGF-1 receptor (IGF-1R)
and its homologue, the insulin receptor (IR), that function
as receptor Tyr-kinases. Key substrates for these receptors
are the insulin receptor substrate (IRS) proteins, IRS-1 and
IRS-2, which integrate many of the pleiotropic effects of
insulin and IGF-1 on cellular functions. IRS proteins,
mainly IRS-2, play a critical role in �-cells (13). Decreased
IRS-2 expression causes �-cell apoptosis (13,14), and mice
lacking IRS-2 develop diabetes 8–10 weeks after birth due
to reduced �-cell mass and impaired �-cell function (13).
Conversely, increased IRS-2 expression promotes �-cell
survival (15) and prevents diabetes in Irs2�/� mice (16).

Both IRS-1 and -2 have a pleckstrin homology domain
flanked by a P-Tyr binding (PTB) domain that mediates the
interactions of IRS proteins with the juxtamembrane do-
mains of insulin receptor and IGF-1R (17,18). IRS proteins
undergo phosphorylation on multiple Tyr residues at their
COOH-terminal region, which serves as a docking site for
SH2-containing proteins that further propagate the insulin
and IGF-I signals (19).

IRS proteins contain �70 potential Ser/Thr phosphory-
lation sites for kinases such as PKA, PKC, Akt, S6K, JNK,
IKK�, MAPK, and AMPK {reviewed in refs (20,21)}. Insulin-
induced Ser/Thr phosphorylation of IRS proteins dissoci-
ates them from the IR, prevents their Tyr phosphorylation,
and inhibits their interactions with downstream effectors
(22). This serves as part of a physiological negative
feedback control mechanism, used by insulin and IGF-1 to
turn off their own signaling cascades. However, proinflam-
matory cytokines and other inducers of insulin/IGF-1
resistance take advantage of this mechanism. By activat-
ing a number of IRS kinases, they uncouple the IRS
proteins from insulin receptor or IGF-1R and inhibit their
biological activities (23). Accordingly, mutation of se-
lected inhibitory Ser sites of IRS-1, located in close prox-
imity to its PTB domain, renders this mutant less prone to
the action of IRS kinases. As a result, the mutated IRS-1
can better propagate insulin and IGF-1 actions (24,25).

In the present study, we sought to determine whether an
IRS-2 protein, mutated at five potential inhibitory Ser sites
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(IRS-25A), improves �-cell survival and function. Our re-
sults indicate that IRS-25A confers upon �-cells protection
from the adverse effects of proinflammatory cytokines and
other stress responses both in culture and in vivo. Thus,
elimination of negative feedback control mechanisms
along the insulin/IGF-1 signaling pathway improves �-cell
function under stress. This suggests that IRS-25A expres-
sion could be a new modality for treatment of �-cells
before transplantation.

RESEARCH DESIGN AND METHODS

Supplementary material is also available in the online appendix at http://
diabetes.diabetesjournals.org/cgi/content/full/db09-0890/DC1.
Mice. Male C57BL/6J (age 9–10 weeks) mice were housed under standard
light/dark conditions and were given access to food and water ad libitum.
Experiments were approved by the Animal Care and Use Committee of the
Weizmann institute of Science.
Cell culture. Chinese hamster ovary (CHO) cells that overexpress the insulin
receptor (CHO-T cells) were grown in F-12 medium. Min6 insulin-secreting
cells (26) were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 2 mmol/l glutamine. Both cell lines were supplemented
with 10% FBS, 100 units/ml penicillin, and 100 �g/ml streptomycin.
Cytokines. Cytokine mixture (1X Cytomix) consisted of 3 nmol/l TNF-�, 3
nmol/l INF-�, 1.5 nmol/l IL-1�, and FasL (1.25% v/v). Their biological activities
were 10 units/ng (TNF-�, INF-�) and 200 units/ng (IL-1�).
Isolation of murine islets. Murine islets were isolated as described (27). In
brief, digested pancreata were filtered through 1,000-�m and 500-�m sieves,
and islets �75 and �250 �m were handpicked under a stereoscope. Islets
were cultured in suspension in RPMI 1,640 medium, 5 mmol/l glucose, 10%
fetal calf serum (FCS), 50 units/ml penicillin, 50 �g/ml streptomycin, and 40
�g/ml Gentamicin. For Western blot analysis, islets (50–60 islets per treat-
ment) were cultured in 35 mm Extracellular Matrix Protein (ECM) coated
plates (Novamed, Jerusalem).
Construction of Myc-tagged IRS-2WT and IRS-25A and transfection of

CHO-T cells. Myc-IRS-2WT and Myc-IRS-25A were generated as we described
(24). Site-directed mutagenesis of S303, 343, 362, 381, and S480 of IRS-2 into
Ala was performed using a Quick-Change site-directed mutagenesis kit
(Stratagene) according to manufacturer’s instructions. To generate stable
clones, CHO-T cells were transfected with the above constructs, together with
pBabe-Puro, encoding puromycin resistance. After 24 h, the transfected cells
were subjected to selection with 10 �g/ml puromycin.
Generation of adenoviruses. Adenoviral constructs were generated as we
described (24) according to the protocol provided by AdEasy vector system
(Quantum). Briefly, cDNA encoding Myc-IRS-2 (WT or 5A) was ligated into the
shuttle plasmid pAdTrack-CMV, which contains a green fluorescent protein
(GFP) cassette driven by an independent promoter that serves as a tracing
marker. The recombinant pAdTrack-CMV was cotransformed with pAdEasy-1
containing the adenovirus genome, into Escherichia coli strain BJ5183, where
homologous recombination took place. Positive colonies were identified by
restriction analysis. The recombinant pAdEasy-1-CMV-IRS-2 plasmids (WT or
5A) were transfected into HEK293 cells and viruses were amplified. Viruses
were stored at �80°C at a viral titer of �1010 PFU/ml.
Infection with adenoviral constructs. Murine islets were infected 24 h after
isolation with adenoviral constructs (MOI 600) for the indicated times. Min6
cells were infected at MOI of 200 for 1.5 h in serum-free medium. Treatments
were applied up to 72 h after infection.
Western blot analysis. CHO-T cells or murine islets were washed and
harvested in buffer A (25 mmol/l Tris-HCl [pH 7.4], 10 mmol/l sodium
orthovanadate, 10 mmol/l sodium pyrophosphate, 100 mmol/l sodium fluoride,
10 mmol/l EDTA, 10 mmol/l EGTA, and 1 mmol/l phenylmethylsulfonyl
fluoride). Supernatants (12,000 g) of cell extracts (50–150 �g CHO-T cells;
15–30 �g murine islets) were resolved by SDS-PAGE and Western blotted with
the indicated antibodies.
Islets immunohistochemistry. Approximately 100 islets embedded in 1%
agarose gel were fixed for 16 h in 4% paraformaldehyde and were then
transferred to PBS until being embedded in paraffin. Graft-bearing kidneys
were formalin-fixed, and serial sections (5 �m each) were immunostained
with the indicated antibodies as described (28).
Caspase activity. Apoptosis of Min6 cells (25,000 cells per well) and
mouse islets (10 islets per well) was determined by Caspase-3/7 activity kit
(Enzolyte-Caspase-3–RH110, AnaSpec Ltd.) according to the manufacturer
instructions using fluorescent microplate reader Ex/Em 	 496 nm/520 nm.
Glucose-stimulated insulin secretion. Islets were isolated and infected
with adenoviral constructs as indicated. Groups of five islets were incubated

for 1 h in Krebs-Ringer bicarbonate HEPES buffer (KRBH) at 37°C with 2.5
mmol/l glucose followed by incubation for 1 h in KRBH with 2.5 mmol/l or 20
mmol/l glucose. Insulin concentration in the culture mediums was determined
using Mercodia mouse insulin ELISA kit.
Islet transplantation. Mice were made diabetic by an intraperitoneal
injection of streptozotocin (STZ; 175 mg/kg) and were transplanted 5 days
later when their fasting blood glucose levels were �400 mg/dl. Islets used for
transplantation were isolated from naive mice. Islets either remained unin-
fected or were infected with adenoviral constructs expressing IRS2WT or
IRS25A (and GFP). Twenty-four h thereafter, 200 islets were washed, mounted
on a 0.2-ml tip, and released into the renal subcapsular space of the kidneys
of recipient mice through a puncture in the capsule, which was immedi-
ately sealed with 1-mm3 absorbable gelatin sponge (Surgifoam, Ethicon;
Somerville, NJ).
Glucose tolerance test. Mice were fasted overnight with water access ad
libitum. Mice were then injected intraperitoneally with glucose (1 mg/g body
wt). Glucose levels were monitored using MediSense Optium Blood Glucose
test strips (Abbott Laboratories, IL) on blood drawn at timed intervals from a
tail vein.
Quantitative real-time PCR. Islet RNA was extracted using the PerfectPure
RNA kit (5Prime, MD), and first-strand cDNA was generated by cDNA Reverse
Transcription kit (Applied Biosystems, CA). Quantitative detection of specific
mRNA transcripts was carried out by real-time PCR using ABI-PRISM 7900HT
instrument (Applied Biosystems, CA). Data were normalized for the content of
actin mRNA.
Statistical analysis. Data are presented as mean 
 SEM. Data were
analyzed by Student t test within a three-way ANOVA [factors were
cytokine, treatment, and date of experiment (random factor)] at a mini-
mum P � 0.05 threshold.

RESULTS

Generation of IRS-25A. Mutations to Ala of inhibitory Ser
sites of IRS-1 that conform to consensus PKC phosphory-
lation sites RXXS/T� (�, mostly hydrophobic), located
proximal to the PTB domain of IRS-1, improve insulin
signaling in rat hepatoma Fao cells (24,25). To study
whether similar mutations improve the function of IRS-2,
five potential inhibitory serines (S303, S343, S362, S381,
and S480) were mutated to Ala. To determine whether
these sites are subjected to phosphorylation, tandem mass
spectrometric analysis (MS/MS) was carried out. We found
that S303 and S343 are subjected to phosphorylation in
response to insulin treatment of Min6 �-cell line (not
shown). Phosphorylation of the other three sites (S362,
S381, S480) could not be determined due to low yields of
peptides containing these residues.
Tyr phosphorylation of IRS-25A and activation of its
downstream effectors. The effects of mutation of inhib-
itory Ser sites on IRS-2 function were initially studied in
CHO cells that coexpress the insulin receptor and either
IRS-2WT or IRS-25A. Both IRS-2WT and IRS-25A underwent
rapid insulin-induced Tyr-phosphorylation (Fig. 1A, B),
indicating that the 5A mutations did not affect the confor-
mation of IRS-25A, leaving it as equipotent substrate to the
insulin receptor. Still, IRS-25A better maintained its Tyr
phosphorylated active conformation after 60 min of insulin
treatment, compared with IRS-2WT. These results suggest
that mutation of potential inhibitory Ser sites protects
IRS-25A from the action of insulin-stimulated IRS-2 Ser/
Thr-kinases that otherwise induce the dissociation of
IRS-2 from insulin receptor (22). Indeed, IRS-25A main-
tained stronger coupling with the insulin receptor, as
evidenced by the higher amounts of insulin receptor
associated with IRS-25A immunoprecipitates, compared
with IRS-2WT (Fig. 1B).

The phosphorylation of downstream effectors of IRS-2
was studied as well. We found that, in response to
insulin, p85�, the regulatory subunit of PI3K, better
couples to IRS-25A compared with IRS-2WT (Fig. 1B).
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Accordingly, protein kinase B (PKB) was activated to a
greater extent (Fig. 1C), while ERK1/2 and S6K1 were
also better activated, though to a lesser extent (Fig.
1D,E).
Infection of murine islets with adenoviral constructs
expressing Myc-IRS-2WT or Myc-IRS-25A. Next, Min6
cells and murine islets were infected with adenoviral
constructs expressing Myc-IRS-2WT or Myc-IRS-25A. Ex-
pression of the IRS-2 proteins in Min6 cells results in
�1.5–2.0-fold increase in the protein level compared with
the endogenous IRS-2 protein (Fig. 2A). Maximal expres-
sion of the IRS-2 proteins occurred 48 h after infection
(Fig. 2B and D); therefore, this time period was selected
for all subsequent experiments. Calibration experiments
were carried out throughout this study to ensure that

IRS-25A and IRS-2WT are expressed to a similar level in
Min6 cells or isolated islets (Figs. 2C–E).

To assess the yield of infected �-cells, we took advan-
tage of the fact that the adenoviral constructs also express
GFP driven by an independent promoter. As shown in Fig.
2F, a significant fraction of �-cells, mainly those localized
to the periphery of the islets, were stained for GFP.
Approximately 80% of the total cells within representative
islets sections were insulin-containing �-cells (Fig. 2G). Of
these, �50% were adenovirus-infected cells (GFP posi-
tive). The relatively high infection yield enabled us to
detect the effects of the IRS-2 proteins at the level of whole
islets. Still, the effects of both IRS-2WT and IRS-25A were
underestimated because not all �-cells incorporated these
constructs.
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FIG. 1. IRS-25A is better protected than IRS-2WT from a reduction in its P-Tyr content and can better activate its downstream effectors after
insulin treatment. CHO-T cells overexpressing IRS-2WT or IRS-25A by a stable transfection were deprived of serum for 16 h. The cells were then
incubated with 1 nmol/l insulin for the indicated times at 37°C. Total cell extracts (100 �g) (A), or protein samples (500 �g) subjected to
immunoprecipitation (IP) with IRS-2 antibodies (B), were resolved by SDS-PAGE and were immunoblotted (IB) with anti-pTyr or anti-IRS-2
antibodies (A) or with anti pTyr anti-IRS-2 or anti-p85� antibodies (B). Similarly, total cell extracts (100 �g) were immunoblotted with
antibodies to phosphorylated- and total extracellular signal–related kinase (C); phosphorylated- and total PKB (D); and phosphorylated- and
total p70S6K (S6K1) (E). Band densities were quantified by densitometry. Results normalized to protein content represent mean � SEM of three
independent experiments. Western blots of one representative experiment are displayed.
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Effects of IRS-25A on cytokine-induced apoptosis. To
study the ability of IRS-25A to confer resistance from
apoptosis induced by proinflammatory cytokines (29,30),
Min6 cells were incubated for 24 h with a “Cytomix (1X)”
composed of 3 nmol/l TNF�, 3 nmol/l INF-�, 1.5 nmol/l
IL-1�, and FasL (1.25% v/v). This treatment induced acti-
vation of Caspase-3 (Fig. 3A). Introduction of either IRS-
2WT or IRS-25A into Min6 cells reduced apoptosis to a
similar extent (�30–40%). However, when the experi-
ments were carried out in cultured murine islets, the
differences between IRS-2WT and IRS-25A became apparent
(Fig. 3B). Whereas IRS-2WT failed to exert any protective

effects, IRS-25A reduced �40% cytokine-induced apoptosis,
compared with islets infected with an empty vector con-
trol. Somewhat lower protection (25%) was obtained in
islets treated with cytokines without FasL (Fig. 3C). Total
Caspase activity in cytokine-treated noninfected (control)
islets was �2-fold higher in the presence of FasL (Fig. 3B
versus 3C). This indicates that FasL is an important
constituent in the induction of apoptosis. Also, cytokine-
induced FasL secretion cannot be ruled out. Of note,
infection per se of murine islets with adenoviral constructs
might impede islet function to a certain extent (31).
Therefore, Caspase-3 activity is higher in islets infected
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with an empty virus, compared with noninfected cells
(Figs. 3B and C). Still, in the absence of cytokines, islets
infected with IRS-25A do not differ significantly from islets
infected with an empty vector. Hence, IRS-25A does not
provide protection from the adverse effects of infection.

Effects of IRS-25A on insulin secretion. The effects of
IRS-2WT versus IRS-25A on glucose-stimulated insulin se-
cretion (GSIS) in isolated islets were evaluated next.
Consistent with previous findings (32), overexpression of
IRS-2WT increased GSIS 1.5-fold in cultured islets, when
compared with islets infected with an empty virus (Fig. 4).
The effects of IRS-25A were �2.8-fold greater than those of
IRS-2WT. The stronger effects of IRS-25A were restricted to
GSIS, as IRS-25A was equipotent to IRS-2WT in elevating by
�50% the glucose-independent insulin secretion, induced
by a combination of L-arginine and KCl (Fig. 5). The
decrease in GSIS in islets infected with empty adenoviral
constructs (compared with noninfected cells) could be
attributed to the adverse effects of infection per se on islet
function (31).

As previously shown (33) and confirmed in Fig. 4,
incubation of murine islets with a combination of cyto-
kines inhibited (�55%) islets function assessed by GSIS
(None). Expression of IRS-25A in cytokine-treated islets
improved GSIS �4-fold, (compared with empty vector,
Fig. 4), while introduction of IRS-2WT improved GSIS only
2.6-fold. In fact, GSIS in cytokine-treated islets expressing
IRS-25A was 1.6-fold higher than GSIS in naïve islets. The
effects of IRS-25A could not be attributed to alterations in
cellular insulin content (not shown). These results support
our hypothesis that IRS-25A is less prone to Ser phosphor-
ylation by cytokine-activated IRS kinases than is IRS-2WT

and, as a result, can better protect pancreatic islets from
their adverse effects.
Effects of IRS-25A on Pdx1 gene transcription. IRS
proteins are upstream activators of Akt that promote
activation of Pdx1, a transcription factor that mediates
GSIS (34,35). Therefore, we examined whether IRS-25A

stimulates GSIS better than IRS-2WT because of its effects
on Pdx1. As shown in Fig. 6A, expression of IRS-2WT or
IRS-25A in naïve islets increased Pdx1 expression 2- and
3.8-fold, respectively. These effects were specific as the
IRS proteins did not affect actin gene transcription (not
shown). Preincubation of murine islets with cytokines
inhibited Pdx1 (but not actin) transcription in a time-
dependent manner, reaching 80% inhibition by 24 h (Fig.
6B). Still, IRS-25A, but not IRS-2WT, maintained its potency
to promote �2-fold Pdx1 transcription even in cytokine-
treated islets (Fig. 6C). These results suggest that IRS-25A

could mediate its beneficial effects through promoting the
expression of Pdx1.
Effects of IRS-25A on transplanted pancreatic islets.
To determine whether ex vivo introduction of IRS-25A into
pancreatic islets prior to their transplantation improves
the functionality of the transplanted �-cells, C57BL/6J
mice were rendered diabetic by a single high-dose injec-
tion of STZ. Mice were transplanted five days later when
their fasting blood glucose levels exceeded 400 mg/dl.
Islets used for transplantation were isolated from healthy
syngeneic mice and were infected with adenoviruses har-
boring either IRS2WT, IRS25A, or empty GFP control. As
shown in Fig. 7A, the transplanted islets remained as a
packed mass under the kidney capsule for 20 days after
transplantation. Most transplanted cells retained their
insulin content (Fig. 7A, middle) and expressed the adeno-
viral constructs, revealed by their GFP staining (Fig. 7A,
left). As expected, the grafted islets exhibited an overlap
between GFP expression and insulin-positive cells (Fig.
7A, right).
Fasting blood glucose levels. The effects of islet trans-
plantation were assessed by measuring the fasting blood
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islets for 16 h. Islets were then divided into groups of 10 per group, and
cell death was assayed using Caspase-3 activity. Results are mean �
SEM of four independent experiments. C: Groups of 40 islets were left
untreated or were infected with Adv-IRS-2WT, Adv-IRS-25A, or Adv-GFP
at MOI of 600, for 48 h. Thirty-two h after infection, “10X Cytomix”
without FasL was added to the islets for 16 h. Islets were then divided
into groups of 10 per group, and cell death was assayed using Caspase-3
activity. Results are means � SEM of at least four experiments. P <
0.05 compared with cells/islets overexpressing IRS-25A.
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glucose levels of the recipient diabetic mice. Blood glu-
cose levels of healthy naïve mice were lower than 120
mg/dl (Fig. 7B), while those of the diabetic mice exceeded
400 mg/dl. Diabetic mice transplanted with a subtherapeu-
tic mass of 200 islets expressing an empty/control adeno-
viral construct exhibited high fasting blood glucose levels,
three days after transplantation, while mice transplanted
with 200 islets expressing either IRS-2WT or IRS-25A

showed normal fasting blood glucose levels. These results
suggest that islets overexpressing either IRS-2WT or IRS-
25A are equipotent in restoring fasting normoglycemia in
STZ-treated diabetic mice.
Glucose tolerance tests. The ability of the transplanted
islets to restore normoglycemia in diabetic mice after
glucose injection was next evaluated. As shown in Fig. 7C,
STZ-treated diabetic mice, transplanted with suboptimal
doses of naïve islets or islets infected with GFP-control

vector, exhibited a diabetic pattern of glucose tolerance
(�400 mg/dl). Mice transplanted with islets infected with
IRS-2WT remained significantly hyperglycemic (�350 mg/
dl) even 90 min after glucose injection. In contrast, mice
transplanted with islets infected with IRS-25A exhibited
near-normal glucose clearance rate, with blood glucose
levels reaching normal level at 90 min. To evaluate the
beneficial effects of IRS-25A on a longer time scale, STZ-
induced diabetic mice were transplanted with a higher
number (300) of islets expressing the different IRS-2
constructs, or an empty control virus. As shown in Fig. 8,
islets expressing IRS-25A performed much better during
the first 2–4 days posttransplantation as measured by
postprandial blood glucose levels than islets expressing
IRS-2WT or an empty virus (control). By 8–90 days, all
transplanted islets were equipotent in restoring postpran-
dial normoglycemia. Hence, the beneficial effects of IRS-
25A were most pronounced at the time when the
transplanted islets faced the least vasculature. These re-
sults suggest that IRS-2 plays an important role in insulin
secretion and islet function at the early stages immediately
after transplantation.

DISCUSSION

In the present study, we provide evidence that elimination
of negative feedback-control mechanisms along the insulin
signaling pathway improves �-cells function under stress.
Such elimination is based upon introduction into �-cells of
IRS-2 proteins harboring mutations at five potential inhib-
itory Ser sites, the phosphorylation of which negatively
regulates IRS protein function. The mutated IRS-2 proteins
(IRS-25A) are less prone than native IRS-2 proteins to
phosphorylation by IRS kinases activated by proinflamma-
tory cytokines and other stress-inducers and can, there-
fore, better couple with their upstream activators (the
insulin and IGF-1 receptors) and their downstream effec-
tors. As a result, �-cells expressing IRS-25A can resist more
efficiently the action of proinflammatory cytokines. This is
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evident in cultured islets that express IRS-25A, which
secrete more insulin even when challenged with pro-
inflammatory cytokines. Moreover, glucose disposal was
better in diabetic mice transplanted with islets expressing
IRS-25A compared with islets expressing IRS-2WT or empty
vector.

Several lines of evidence support the above conclu-
sions. First, we showed that at least two of the five Ser
sites, S303 and S343, are subjected to in vivo phosphor-
ylation in response to insulin in Min6 cells. Second,
when expressed in CHO-T cells, IRS-25A better main-
tains its Tyr-phosphorylated active conformation com-
pared with IRS-2WT. This can be attributed to the ability
of IRS-25A to efficiently couple with the insulin and
IGF-1 receptors, which otherwise dissociate from the
IRS proteins once they are subjected to Ser phosphor-
ylation by IRS kinases activated after prolonged insulin
treatment (23). As a consequence, IRS-25A activates to a
greater extent its downstream targets PI3K, Akt, ERK,
and S6K1. In this respect, IRS-25A resembles IRS-17A, an
IRS-1 mutated at seven potential inhibitory Ser sites,
which better couples to the insulin receptor and better
propagates insulin signaling (24,25).

The superior ability of IRS-25A to prevent �-cell apopto-
sis, induced by a combination of cytokines, suggests that
the Ser sites mutated in IRS-25A serve as targets for
cytokine-activated IRS kinases. Indeed, IL-1�, TNF�, and
IFN� promote activation of PKC� (36), IKK (37), JNK (38),
p38 MAPK, and ERK (39), which phosphorylate IRS pro-
teins at “inhibitory” Ser sites (21,40). Cytokines are also

known inhibitors of glucose-stimulated insulin secretion
(41). Indeed, IRS-25A, unlike IRS-2WT, exerts a significant
protection and could almost eliminate the inhibitory ef-
fects of cytokines on GSIS.

The capability of IRS-25A to promote GSIS better than
IRS-2WT could be attributed to its ability to promote
transcription of Pdx1, a transcription factor which is
activated once its repressor FOXO1 is inhibited through
Akt phosphorylation and nuclear exclusion (42,43).
PDX1 promotes the expression of pro-insulin (44),
Glut2 (45), and glucokinase (46), all contributing to
increased insulin secretion. Indeed, we could show the
greater potency of IRS-25A to increase transcription of
Pdx1 in naïve islets and in islets treated with cytokines
that inhibit Pdx1 gene transcription (34). This could be
attributed to the ability of IRS-25A to couple more
efficiently with p85� and activate Akt/PKB. These find-
ings are consistent with observations that disruption of
Pdx1 in murine �-cells reduces insulin secretion and
causes progressive �-cell loss (34).

The effects of IRS-25A on GSIS are specific, because it
does not fare much better than IRS-2WT when insulin
secretion is triggered independent of glucose stimula-
tion (by membrane depolarization induced by a combi-
nation of KCl and arginine). These results suggest that
IRS-25A promotes insulin secretion mainly through its
effects on PDX1. Indeed, PDX1 does not regulate glu-
cose-independent insulin secretion, and the magnitude
of insulin response to arginine stimulation is unchanged
in Pdx-1/� mice (46). IRS-25A did not modify cytokine-
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fected with adenoviral constructs. “0.2X Cytomix” was added
for an additional 24 h. The level of PDX-1 mRNA was analyzed by
real-time PCR. Data were analyzed by ABI PRISM SDS 7,000
software (Applied Biosystems). The data were normalized to
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induced iNOS and Fas mRNA expression (not shown),
suggesting that it presumably acts downstream of these
death inducers.

The ability of IRS-25A to improve islet functionality
better than IRS-2WT was also demonstrated in vivo.
Because overexpression of IRS-2WT improves islets
functionality (32), a suboptimal mass of 200 islets was
transplanted to enable comparison of the effects of
IRS-25A versus IRS-2WT. Interestingly, even with these
suboptimal doses, transplanted islets expressing either
IRS-2WT or IRS-25A were capable of maintaining normal
fasting blood glucose levels, suggesting that both IRS-2
proteins improve islets functionality when the challenge
to the islets is moderate. The differences between
IRS-2WT and IRS-25A became apparent only when the
transplanted islets were faced with a greater challenge
in the form of a glucose load. Under these conditions,
only mice transplanted with islets expressing IRS-25A

behaved like normal mice three days after transplanta-
tion, while mice transplanted with islets expressing
IRS-2WT behaved almost like diabetic animals. When
diabetic mice were transplanted with a higher number
of islets, the beneficial effects of IRS-25A on postprandial
blood glucose levels were most pronounced during the
first 2– 4 days after transplantation, a critical time when
the transplanted islets were poorly vascularized. These re-
sults suggest that IRS-25A can better confer upon trans-

planted islets protection from the stressful environment they
are facing immediately after transplantation.

Factors that negatively influence islet survival after
transplantation include prolonged hypoxia during the re-
vascularization process (47). The hypoxic conditions trig-
ger stress-activated kinases to reduce �-cell survival and
functionality. Being partially resistant to the action of
these kinases, IRS-25A provides the transplanted islets with
two advantages: it increases their intrinsic ability to per-
form GSIS by promoting the activity of Pdx1 and it
protects them from external insults mediated by stress-
activated kinases.

Different strategies were attempted to increase islet
survival after transplantation [Reviewed in refs (48,49)], so
far with limited success. Therefore, IRS-25A expression in
�-cells ex vivo could be considered as a new mode for
promoting �-cell survival. This strategy might be even
more effective in human islets, where the �-cells localize
to the islet periphery and, therefore, are more prone to
gene transfer by viral infection. The ability of IRS-25A to
confer upon �-cells protection from immunosuppressive
drugs that otherwise induce insulin resistance is another
aspect of relevance in this context. Still, the potential
caveats of insulin signaling pathway being hyperactivated
in cells expressing IRS-25A need to be addressed because
sustained hyperactivation of IRS-2 might contribute to
uncontrolled cell growth (50). Consequently, further stud-
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ies are required before this technique becomes suitable for
clinical implementation.
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27. Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR.
Tissue-specific knockout of the insulin receptor in pancreatic beta cells
creates an insulin secretory defect similar to that in type 2 diabetes. Cell
1999;96:329–339

28. Casellas A, Salavert A, Agudo J, Ayuso E, Jimenez V, Moya M, Muñoz S,
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