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Abstract: A dual broadband terahertz bifunction absorber that can be actively tuned is proposed.
The optical properties of the absorber were simulated and numerically calculated using the finite-
difference time-domain (FDTD) method. The results show that when the conductivity of vanadium
dioxide is less than 0y = 8.5 x 103 S/m, the absorptance can be continuously adjusted between
2% and 100%. At vanadium dioxide conductivity greater than ¢y = 8.5 x 103 S/m, the absorption
bandwidth of the absorber can be switched from 3.4 THz and 3.06 THz to 2.83 THz and none,
respectively, and the absorptance remains above 90%. This achieves perfect modulation of the
absorptance and absorption bandwidth. The physical mechanism of dual-broadband absorptions
and perfect absorption is elucidated by impedance matching theory and electric field distribution. In
addition, it also has the advantage of being polarization insensitive and maintaining stable absorption
at wide angles of oblique incidence. The absorber may have applications in emerging fields such as
modulators, stealth and light-guided optical switches.
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1. Introduction

In recent years, terahertz (THz) waves have attracted a great deal of attention because
of their promising applications in wireless communications [1], sensors [2] and imaging [3].
As research into terahertz technology has advanced, various functional metamaterial
devices have been proposed and theoretically investigated, such as fiber optic filters [4,5],
absorbers [6—10], polarization converters [11] and hyperbolic metamaterials [12]. Among
them, metamaterial perfect absorbers (MPAs) are widely used in the THz range due to their
widespread applications in imaging [13,14], stealth technologies [15,16] and so on [17-19]
and play a very important role within. In 2008, Landy et al. used a classical three-layer
structure as a metamaterial perfect absorber (MPA) so that the incident wave was perfectly
absorbed by the metamaterial absorber [20], and since then, various single-band [21-24],
double-band [25-28] and multi-band absorbers [29,30] have been proposed. However,
the absorption bandwidth of these MPAs are relatively narrow, and their electromagnetic
responses cannot be adjusted after the structure has been determined, which limits their
practical application. In order to achieve active tuning of the absorber in the terahertz
band, we use the phase transition material vanadium dioxide (VO,) as the material for
tuning the absorption. Many studies in recent years have shown that VO, has significant
optical change properties in the terahertz band and that the phase transition of VO, from
the insulator to the metal phase is around 340 K. It can be triggered by electrical [31-33],
thermal [34,35] or optical excitation [36,37], with changes of several orders of magnitude in
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electrical conductivity during this time. Additionally, the phase transition from insulator to
metal is accompanied by a steady increase in the conductivity of VO,. Therefore, utilizing
vanadium dioxide as an absorber material is an effective way to realize the active tuning of
absorbers [38—41].

In this work, a tunable dual-broadband terahertz absorber based on VO, metamaterial
is proposed. It consists of four vanadium dioxide fillet cavities, a TOPAS dielectric spacer
layer, vanadium dioxide film, a silica dielectric layer and gold film from top to bottom.
All materials are homogeneous [42]. The theoretical study of the absorber uses FDTD
and impedance matching theory. The simulation results show that the efficiency and
bandwidth of absorption can be changed by tuning the conductivity of vanadium dioxide.
Moreover, the absorber is insensitive to the polarization of incident light and is able to
maintain absorption stability at large angles of oblique incidence. The absorber provides
a new scheme for tunable dual-broadband absorbers with broad application prospects in
modulators, stealth and photoconductive light switches.

2. Materials and Methods
Design and Simulation

As shown in Figure 1a,b, the schematic diagram of the designed metamaterial absorber,
each cell is composed of four vanadium dioxide fillet cavities, a TOPAS dielectric spacer, a
vanadium dioxide film, a silicon dioxide (SiO,) layer and gold film from top to bottom. The
thicknesses of the vanadium dioxide fillet cavities, the TOPAS, vanadium dioxide thin-films,
the silicon dioxide layer and the gold are t1 = 0.3 pm, t2 = 14 um, t3 = 0.81 um, t4 = 10 pm
and t5 = 0.4 um, respectively. Figure 1c is a top view of the unit, and the geometric
parameters of the vanadium dioxide fillet cavity are L = 21 um, d = 19 um, w = 5.5 um.
The composite dielectric constant of the TOPAS is e = 2.35 4 0.01i. TOPAS is a transparent,
easy to produce thermoplastic copolymer with constant refractive index and negligible
absorption coefficient in the terahertz range, which is widely used in terahertz devices.
The conductivity of gold and the relative permittivity of SiO, are ¢ = 4.56 x 10’ S/m and
e = 3.8, respectively. The performance of the designed absorber is theoretically studied by
using the FDTD method (Lumerical Solutions, Vancouver, BC, Canada). In the simulations,
the boundary conditions in the x and y directions are set as periodic boundaries and the
boundary conditions in the z direction are set as perfectly matched layers. The absorption
can be defined as A(w) = 1 — R(w) — T(w), where R(w) = |S11(w)|? is the reflectance.
As the thickness of the gold film is greater than the penetration depth of the THz wave,
transmittance is T(w) = 0. The optical permittivity of VO, in the THz range can be
described by the Drude model [43,44]:

w; (o)

S((U) = €00 — m (1)

where e = 12 is the permittivity at the infinite frequency, v = 5.75 x 10'® rad/s is the
collision frequency and the plasma frequency at o can be given by wg = U(VOz)wf, (00) /09
with 0p = 3 x 10° S/m and w,(0p) = 1.4 x 10'° S/m. In this paper, the conductivity of

vanadium dioxide in the insulator phase and the metal phase are assumed to be 0y = 0S/m
and op = 2 x 10° S/m, respectively.
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Figure 1. (a) Schematic diagram of the whole proposed 3D structure. (b) Schematic of a unit cell.
(c) Top view of a unit cell.

3. Results

Figure 2 shows the absorption, reflection and transmission spectra of the absorber
at the vanadium dioxide conductivity oy = 8.5 x 10°> S/m. Due to the symmetry of the
structure, the linear and elliptic angle polarization have no effect on absorption. In the
linear angle polarization, the absorptance for the transverse electric (TE) and transverse
magnetic (TM) polarizations are consistent. It follows that the absorber is polarization
insensitive. The absorber exhibits outstanding absorptance and absorption bandwidth
as the terahertz waves are confined to the surface by the vanadium dioxide, producing a
localized surface plasma resonance. The absorption bandwidth of 90% absorptance under
normal incidence is between 1.85 and 5.25 THz and 8.56 and 11.6 THz, up to 3.4 THz and
3.06 THz, respectively. There are four perfect absorption peaks, with Peak 1 =2.95 THz,
Peak 2 = 4.4 THz, Peak 3 = 9.1 THz and Peak 4 = 11.3 THz. Since there is a sufficiently thick
gold film at the bottom of the absorber, the transmittance is 0.
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Figure 2. Absorption, reflection and transmission spectra.

We calculated the reflectance R(w) = |S11(w)|* and transmittance T(w) = 0 of
the absorber at different vanadium dioxide conductivities using the s-parameters. Ac-
cording to the formula for the absorption, A(w) = 1 — R(w) — T(w), we can obtain the
absorption spectrum of the absorber for different vanadium dioxide conductivities. The
absorption spectrum of the conductivity of vanadium dioxide varying from ¢y = 0S/m to
0p = 8.5 x 10> S/m is shown in Figure 3a. As the conductivity increases, the absorptance
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can be dynamically adjusted from 2% to 100%. The main reason for this phenomenon
is that it undergoes an optical transition from dielectric to metal when the conductivity
increases from ¢y = 0S/m to 0y = 8.5 x 10> S/m. The greater the conductivity, the better
the metal behavior and the higher the absorptance. As shown in Figure 3b, when the
conductivity increases from ¢y = 8.5 x 103 S/m to 0y = 8.0 x 10* S/m, the absorption
bandwidth can be switched from 3.4 THz and 3.06 THz to 2.83 THz and none, respectively.
The metal behavior of vanadium dioxide increases as its conductivity increases. Only the
upper three-layer structure achieves absorption performance, and the lower layer structure
does not work, so the absorption bandwidth decreases. The real and imaginary parts of the
relative permittivity of the VO, for different conductivities are shown in Figure 3c,d. The
results show that the variation in the imaginary part is much greater than the variation in
the real part for the different conductivities. This results in a significant variation in the
absorptance and absorption bandwidth [25,43,44].
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Figure 3. (a) Absorption spectrum of VO, increasing from oy = 0S/m to 0y = 8.5 x 10® S/m and
(b) o9 = 8.5 x 103 S/m to gy = 8.0 x 10* S/m. (c) Real parts and (d) imaginary parts of permittivity
with different conductivities of VO,.

The absorption mechanism of this dual-broadband absorber can be well explained by
impedance matching theory. When the effective impedance Z, = Z/Zy = 1 of the absorber
matches the effective impedance of the free space, the reflectance is minimized, and the
absorptance and relative impedance can be obtained as follows:

o 2 _ 2
A(w):l—R(w):l—‘§+§g = —‘ZJ 2)
_ (14 S1(w)) — Sxn?(w)
o= i\/(1 = S11(w)) = Sa1%(w) ®

where Zj and Z are the effective impedance of the free space and the absorber, Z, = Z/Zy is
the relative impedance and S11(w) and Sy; (w) represent the reflectance and transmittance
of the absorber, respectively. The gold film on the bottom of the absorber makes terahertz
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waves impenetrable, so T(w) = |Sy|? is zero. Figure 4a,b shows the real and imaginary
parts of the relative impedance of vanadium dioxide at different conductivities. The
results show that when the conductivity of VO, is 0y = 8.5 x 10° S/m, the real part
gradually reaches 1 and the imaginary part gradually reaches 0 in the frequency ranges
of 1.85-5.25 THz and 8.54-11.6 THz, respectively. It follows that the impedances of the
absorber and free space gradually match, which can absorb the incident wave to the
maximum extent.

Oyo S/m)

ZII- 6 8 lIO 12 é -+ 6 8 10
Frequency (THz) Frequency (THz)
Figure 4. (a) Real parts and (b) imaginary parts of the relative impedance with different conductivities
of V02 .

Furthermore, we also investigated the relationship between the reflectance and ab-
sorptance of this absorber and the thickness of the vanadium dioxide film. Figure 5a,b
shows the reflectance and absorptance of vanadium dioxide at a fixed conductivity of
00 = 8.5 x 10° S/m. The results show that when the thickness of the vanadium dioxide
film increases from 0.01 pm to 0.81 pum, the two broad absorption bands are red-shifted.
As shown in Figure 5a, the reflectance of Peak 1 and Peak 3 gradually decreases, and the
effective impedance of the absorber better matches the free space, resulting in increased
absorptance of Peak 1 and Peak 3, as shown in Figure 5b. The reflectance of Peak 2 and
Peak 4 are stronger and stronger, which causes a gradual mismatch between the effective
impedance of the absorber and the free space, so the absorptance of Peak 2 and Peak 4
drops, as shown in Figure 5b. By comparing the reflectance and absorptance of the absorber
with the thickness of the vanadium dioxide film, it is found that the absorber performs best
at the thickness of 0.81 um.
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Figure 5. (a) Reflection spectrum and (b) Absorption spectrum of vanadium dioxide films of
different thicknesses.

To better explain the absorption mechanism of the dual-broadband absorption, we
analyze the electric field distribution at the absorption peak. Figure 6a,c shows the elec-
tric field distributions at Peak 1 and Peak 3 when the vanadium dioxide conductivity is
0p = 8.5 x 10> S/m. The charge is distributed on the inner and outer sides of the vanadium
dioxide in the form of “— + —+”, exhibiting the local plasmon resonance phenomenon.
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Similarly, as shown in Figure 6b,d, the electric fields at Peak 2 and Peak 4 exhibit local
plasmon resonance, and the charges are distributed as “+ — +—" on the inner and outer
sides of the vanadium dioxide. It can be seen that the localized plasmon resonance is the
main reason for the dual-broadband absorption of the absorber.
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Figure 6. Electric field distribution at (a) Peak 1 =2.95 THz. (b) Peak 2 = 4.4 THz. (c) Peak 3 =9.1 THz.
(d) Peak 4 = 11.3 THz.

The angle at which the absorber maintains stable absorption under oblique incidence
is an important parameter to measure whether the absorber can be applied in practice.
Therefore, we investigated the effect of the incident angles of THz waves on the absorp-
tance. Here, we set the conductivity of the vanadium dioxide to gy = 8.5 x 10> S/m
and the thickness of the vanadium dioxide film to 0.81 um. As shown in Figure 7a, the
incident wave angle of TE polarization is increased from 0" to 70°, the two broadband
absorptions are slightly blue-shifted and a stable absorption bandwidth is maintained in
the 0" to 60" range. The high-frequency absorption bandwidth becomes narrower when
the incident angle is greater than 60°. The variation of the two broadband absorptions
with the TM polarization angle is shown in Figure 7b. As the angle of incidence increases,
the two broadband absorptions gradually blue-shift. The broadband absorption at high
frequencies splits into two absorption peaks after incident angles greater than 60°, but the
absorptance can still remain above 90%. From the above discussion, we can conclude that
the structure is a tunable, polarization insensitive and a wide-angle dual-broadband perfect
THz wave absorber.

In recent years, many new metamaterial absorbers have been proposed one after
another. The comparisons of the absorption bandwidth, adjustable material, tunable
function and oblique incidence of the absorber with those of similar articles are shown
in Table 1. Our designed absorber can actively tune the absorptance and absorption
bandwidth using vanadium dioxide. Additionally, the width of the absorption bandwidth
and the oblique incidence angle for maintaining a stable absorptance are higher than those
in previous reports, so this metamaterial perfect absorber has broad application prospects
in modulators, stealth and light-guided optical switches.
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Figure 7. Absorption spectra of the absorber for (a) TE and (b) TM polarization at different oblique
incidence angles.
Table 1. Comparison of this work with similar articles.
Absorption Adjustable . Oblique Oblique
Reference Bandwidth (THz) Material Tunable Function Incidence (TE) Incidence (TM)
[17] 1.25 VO, Absorptance 40° 60°
[19] 0.70 BDS, STO Absorptance, frequency 40° 40°
[21] 0.88, 0.77 VO, Absorptance 50°, 20° 60°, 20°
[22] 2.32,2.03 VO, Absorptance Not given Not given
This work 3.40, 3.06 VO, Absorptance, bandwidth 70°, 60° 70°, 60°

4. Conclusions

In summary, we propose and study an actively tunable dual-broadband terahertz
perfect absorber, each cell of which is composed of four vanadium dioxide fillet cavities, a
TOPAS dielectric spacer, a vanadium dioxide film, a SiO; layer and gold film from top to
bottom. The absorption bandwidth can reach 3.4 THz and 3.06 THz with absorptance higher
than 90% and is insensitive to the polarization angle. The absorptance and absorption
bandwidth can be continuously adjusted by changing the conductivity of the vanadium
dioxide. In addition, this design enables stable broadband absorption of TE and TM
polarizations within oblique incidence angles of 70" and 60°, respectively. The absorber
may have a wide range of applications in THz devices such as modulators, cloaking devices
and light-guided optical switches.
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