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Heart Rhythm Complexity 
Impairment in Patients with 
Pulmonary Hypertension
Cheng-Hsuan Tsai1, Hsi-Pin Ma2, Yen-Tin Lin3, Chi-Sheng Hung1, Mi-Chia Hsieh2, 
Ting-Yu Chang2, Ping-Hung Kuo1, Chen Lin4, Men-Tzung Lo4, Hsao-Hsun Hsu5,  
Chung-Kang Peng   6 & Yen-Hung Lin   1

Pulmonary hypertension is a fatal disease, however reliable prognostic tools are lacking. Heart rhythm 
complexity analysis is derived from non-linear heart rate variability (HRV) analysis and has shown 
excellent performance in predicting clinical outcomes in several cardiovascular diseases. However, 
heart rhythm complexity has not previously been studied in pulmonary hypertension patients. 
We prospectively analyzed 57 patients with pulmonary hypertension (31 with pulmonary arterial 
hypertension and 26 with chronic thromboembolic pulmonary hypertension) and compared them to 
57 age- and sex-matched control subjects. Heart rhythm complexity including detrended fluctuation 
analysis (DFA) and multiscale entropy (MSE) and linear HRV parameters were analyzed. The patients 
with pulmonary hypertension had significantly lower mean RR, SDRR, pNN20, VLF, LF, LF/HF ratio, 
DFAα1, MSE slope 5, scale 5, area 1–5 and area 6–20 compared to the controls. Receiver operating 
characteristic curve analysis showed that heart rhythm complexity parameters were better than 
traditional HRV parameters to predict pulmonary hypertension. Among all parameters, scale 5 had 
the greatest power to differentiate the pulmonary hypertension patients from controls (AUC: 0.845, 
P < 0.001). Furthermore, adding heart rhythm complexity parameters significantly improved the 
discriminatory power of the traditional HRV parameters in both net reclassification improvement 
and integrated discrimination improvement models. In conclusion, the patients with pulmonary 
hypertension had worse heart rhythm complexity. MSE parameters, especially scale 5, had excellent 
single discriminatory power to predict whether or not patients had pulmonary hypertension.

Pulmonary hypertension is a progressive and debilitating diseases caused by complex and heterogeneous patho-
geneses1,2. Pulmonary artery hypertension (PAH) and chronic thromboembolic pulmonary hypertension 
(CTEPH) are important subgroups of pulmonary hypertension which share similar hemodynamic physiology3,4. 
Both diseases are characterized by progressive precapillary vessel arteriopathy with progressive elevated pulmo-
nary vascular resistance5,6, and patients with these diseases have a poor prognosis if untreated7,8. The major causes 
of death include right heart failure, sudden cardiac death and respiratory failure9,10.

Changes in linear heart rate variability (HRV) have been reported to be associated with pulmonary hyper-
tension and its cardiovascular outcomes11–13. In addition, changes in linear HRV have been shown to be partially 
reversible after treatment with subcutaneous treprostinil14. This suggests that the deterioration in linear HRV in 
patients with pulmonary hypertension may be associated with hemodynamic abnormalities.

In addition to traditional linear HRV parameters, new methods using non-linear HRV analysis have been 
developed in recent years which have focused on measuring complexity instead of variability beneath heart rate 
dynamics15,16. Two of the most frequently used methods to estimate heart rhythm complexity are detrended 
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fluctuation analysis (DFA) and multiscale entropy (MSE). In previous studies, both DFA and MSE have shown 
better predictive ability for clinical outcomes in many diseases compared with traditional HRV analysis17–20. 
However, studies of heart rhythm complexity in patients with pulmonary hypertension are lacking. In this study, 
we aimed to evaluate changes in heart rhythm complexity in patients with pulmonary hypertension and the 
potential clinical applications.

Results
Patient characteristics.  The clinical, echocardiographic and hemodynamic data and information on pul-
monary hypertension-specific medications are presented in Table 1. The patients with pulmonary hypertension 
had a significantly lower body mass index (BMI), lower prevalence of hypertension and higher tricuspid regur-
gitation peak gradient (TRPG) than the controls. In medication, the control group had significantly higher rates 
of beta blocker, calcium channel blocker (CCB) and angiotensin II receptor blocker (ARB) or angiotensin-con-
verting enzyme inhibitors (ACEI) use. Other parameters were compatible between the two groups except for data 
on hemodynamics and medications for pulmonary hypertension which were only available in the patients with 
pulmonary hypertension. The mean pulmonary arterial pressure, pulmonary capillary wedge pressure, cardiac 
output and pulmonary vascular resistance in the patients with pulmonary hypertension were 46 ± 15 mmHg, 
13 ± 4 mmHg, 4.1 ± 1.5 L/min and 723 ± 419 dyn·s·cm−5, respectively.

Holter data.  In linear analysis, the patients with pulmonary hypertension had significantly lower mean RR, 
standard deviation of R-R intervals (SDRR), percentage of absolute differences in normal RR intervals greater 
than 20 ms (pNN20), very low frequency (VLF), low frequency (LF) and low frequency/high frequency (LF/
HF) ratio compared to the controls (Table 2). In heart rhythm complexity parameters including MSE and DFA, 

Pulmonary 
hypertension (N = 57)

Control 
(N = 57) P Value

Age, years 55 ± 16 57 ± 10 0.305

Male, n(%) 23 (40%) 31 (54%) 0.133

BMI 24 ± 4 26 ± 4 0.011

CAD, n(%) 3 (5%) 1 (2%) 0.309

DM, n(%) 6 (11%) 8 (14%) 0.568

HTN, n(%) 11 (19%) 27 (47%) 0.001

Medication

Beta blocker, n(%) 4 (7%) 28 (49%) <0.001

ACEI or ARB, n(%) 5 (9%) 12 (21%) <0.001

CCB, n(%) 10 (18%) 22 (39%) 0.012

Biochemistry

Glucose AC, mg/dL 105 ± 23 98 ± 15 0.110

Creatinine, mg/dL 1.0 ± 0.5 0.9 ± 0.2 0.329

TG, mg/dL 109 ± 57 117 ± 53 0.525

T -Chol, mg/dL 164 ± 49 179 ± 38 0.125

Echocardiogram

LVEF, % 68 ± 15 70 ± 6.0 0.240

TRPG, mmHg 73 ± 30 23 ± 5 <0.001

Hemodynamic data

Mean PAP, mmHg 46 ± 15 — —

PCWP, mmHg 13 ± 4 — —

Cardiac output, L/min 4.1 ± 1.5 — —

PVR, dyn·s·cm−5 723 ± 419 — —

PAH specific medication — —

sildenafil, n(%) 24 (42%) — —

macitentan, n(%) 4 (7%) — —

riociguat, n(%) 7 (12%) — —

bosentan, n(%) 2 (4%) — —

iloprost, n(%) 1 (2%) — —

treprostinil, n(%) 1 (2%) — —

Table 1.  Clinical data of the patients. Data were presented as mean ± standard deviation or number 
(percentage). Abbreviation: BMI = body mass index; CAD = coronary artery disease; DM = diabetes 
mellitus; HTN = hypertension; ACEI = angiotensin-converting enzyme inhibitors; ARB = angiotensin 
receptor blockers; CCB = calcium channel blocker; TG = triglyceride; T-Chol = total cholesterol; LVEF = left 
ventricular ejection fraction; TRPG = tricuspid regurgitation peak gradient; PAP = pulmonary arterial pressure; 
PCWP = pulmonary capillary wedge pressure; PVR = pulmonary vascular resistance; PGE1 = prostaglandin E1.
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DFAα1, MSE slope 5, scale 5, area under the MSE curve for scale 1–5 (area 1–5) and 6–20 (area 6–20) were sig-
nificantly lower in the pulmonary hypertension group compared to the control group. The value of DFAα2 was 
comparable between the two groups (Table 2). The entropies of different time scales of MSE curves were signifi-
cantly different between the patients with and without pulmonary hypertension (Fig. 1).

Logistic regression analysis to predict pulmonary hypertension.  In univariate logistic regression, 
lower linear HRV parameters including mean RR, VLF and LF/HF ratio, and lower heart rhythm complexity 
including DFAα1, MSE slope 5, scale 5, area 1–5 and area 6–20 were significantly associated with the presence of 
pulmonary hypertension. These parameters were further analyzed using multivariate logistic regression, which 
showed that lower mean RR, DFAα1 and scale 5 were significantly associated with pulmonary hypertension 
(Table 3). Then, these 3 parameters including mean RR, DFAα1 and MSE scale 5 were adjusted by age, sex, BMI, 
HTN, DM, beta blocker, CCB and ARB or ACEI use in different models. In the five models with different adjust-
ments, only DFAα1 and MSE scale 5 remained as independent predictors of pulmonary hypertension (Table 4).

Comparisons of all linear HRV and heart rhythm complexity parameters to differentiate the 
patients with and without pulmonary hypertension.  Receiver operating characteristic (ROC) curve 
analysis showed that MSE scale 5 had the greatest discriminatory power to predict the presence of pulmonary 
hypertension among all linear and heart rhythm complexity parameters (area under the curve [AUC] 0.845).

Pulmonary hypertension (N = 57) Control (N = 57) P Value

Time Domain Analysis

Mean RR, ms 756.150 (681.840~841.155) 832.450 (718.585~887.660) 0.003

SDRR, ms 64.862 (53.032~81.562) 73.578 (64.042~87.078) 0.043

pNN20, % 0.249 (0.149~0.356) 0.314 (0.199~0.399) 0.016

pNN50, % 0.035 (0.009~0.071) 0.027 (0.011~0.062) 0.899

Frequency Domain Analysis

VLF, ms2 303.870 (157.780~529.665) 445.050 (337.525~664.040) 0.001

LF, ms2 87.675 (40.313~172.665) 122.490 (75.639~195.215) 0.045

HF, ms2 55.431 (18.293~147.955) 33.234 (24.493~73.112) 0.214

LF/HF ratio 1.235 (0.887~2.735) 3.292 (1.877~4.391) <0.001

Detrended fluctuation analysis

DFAα1 0.963 (0.795~1.147) 1.262 (1.044~1.331) <0.001

DFAα2 1.109 (1.038~1.172) 1.122 (1.070~1.154) 0.411

Multiscale entropy

Slope 5 0.003 (−0.054~0.060) 0.046 (−0.008~0.077) 0.008

Scale 5 1.054 (0.862~1.234) 1.436 (1.247~1.557) <0.001

Area 1–5 4.183 (3.116~4.772) 5.155 (4.355~5.651) <0.001

Area 6–20 16.872 (14.003~19.771) 21.216 (18.912~22.756) <0.001

Table 2.  Holter Parameters in patients with pulmonary hypertension and control. Data were presented 
as Values are median (25th–75th percentile). Abbreviation: SDRR = standard deviation of normal RR 
intervals; pNN20 = percentage of the absolute change in consecutive normal RR interval exceeds 20 ms; 
pNN50 = percentage of the absolute change in consecutive normal RR interval exceeds 50 ms; VLF = very low 
frequency; LF: low frequency; HF = high frequency; DFA = detrended fluctuation analysis.

Figure 1.  The entropy over different time scales in patients with (blue) and without (orange) pulmonary 
hypertension. *p < 0.001.
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The AUCs of other linear and non-linear HRV parameters including mean RR, SDRR, pNN20, pNN50, VLF, 
LF, HF, LF/HF ratio, DFAα1, DFAα2, slope 5, area 1–5, and area 6–20 were 0.660, 0.610, 0.630, 0.493, 0.681, 
0.609, 0.432, 0.748, 0.745, 0.545, 0.644, 0.777 and 0.794, respectively (Fig. 2). In addition, the AUCs of clinical 
parameters including BMI, coronary artery disease, diabetes mellitus and hypertension were 0.355, 0.526, 0.489 
and 0.341, respectively.

The advantage of adding DFA or MSE parameters to the linear parameters to discriminate the 
presence of pulmonary hypertension.  MSE parameters including scale 5, area 1–5 and area 6–20 sig-
nificantly improved the discriminatory power of mean RR, pNN20, VLF, LF and LF/HF ratio in both net reclas-
sification improvement (NRI) and integrated discrimination improvement (IDI) models. DFAα1 significantly 
improved the discriminatory power of mean RR, pNN20, VLF and LF in both NRI and IDI models and LF/HF 
ratio in IDI model (Table 5).

Discussion
The three major findings of this study are: (1) the patients with pulmonary hypertension had both worse HRV 
and heart rhythm complexity compared to those without pulmonary hypertension; (2) MSE scale 5 had the great-
est single discriminatory power to detect the presence of pulmonary hypertension among all HRV and clinical 
parameters; (3) the combination of linear HRV and heart rhythm complexity parameters improved the discrimi-
natory power to predict pulmonary hypertension.

Patients with pulmonary hypertension have a poor prognosis, even after using pulmonary hypertension- 
specific drugs21. The major causes of death are right heart failure and sudden death, which account for about 60% 
of all cases of mortality22,23. Unlike in left heart failure, ventricular tachycardia or fibrillation is relatively rare in 
patients with pulmonary hypertension. Instead, severe bradycardia and pulseless electrical activity are the most 

Univariate logistic regression Multivariate logistic regression

β (95% C.I) P OR (95% C.I) P

Mean RR 0.995 (0.991~0.998) 0.004 0.994 (0.989~0.999) 0.017

SDRR 0.987 (0.970~1.004) 0.121

pNN20 0.097 (0.09~1.037) 0.054

pNN50 6.334 (0.122~329.362) 0.360

VLF 0.998 (0.997~0.999) 0.008

LF 1.000 (0.998~1.001) 0.942

HF 1.003 (0.999~1.006) 0.138

LF/HF ratio 0.691 (0.544~0.877) 0.002

DFAα1 0.022 (0.004~0.139) <0.001 0.022 (0.002~0.200) 0.001

DFAα2 0.127 (0.003~5.870) 0.291

Slope 5 <0.001 (<0.001~0.087) 0.007

Scale 5 0.003 (<0.001~0.028) <0.001 0.004 (<0.001~0.037) <0.001

Area 1–5 0.356 (0.223~0.566) <0.001

Area 6–20 0.697 (0.599~0.810) <0.001

Table 3.  Univariate and multivariate logistic regression model to predict the presence of pulmonary 
hypertension. *In multivariate logistic regression, the VLF, LF/HF ratio, slope 5, area 1–5 and 
area 6–20 were excluded from the model. Abbreviation: SDRR = standard deviation of normal RR 
intervals; pNN20 = percentage of the absolute change in consecutive normal RR interval exceeds 20 ms; 
pNN50 = percentage of the absolute change in consecutive normal RR interval exceeds 50 ms; VLF = very low 
frequency; LF = low frequency; HF = high frequency; DFA = detrended fluctuation analysis.

Mean RR* DFAα1* Scale5*
β (95% C.I) P value β (95% C.I) P value β (95% C.I) P value

Model 1 0.994 (0.989~0.999) 0.017 0.022 (0.002~0.200) 0.001 0.004 (<0.001~0.037) <0.001

Model 2 0.995 (0.990~1.000) 0.070 0.013 (0.001~0.145) <0.001 0.002 (<0.001~0.023) <0.001

Model 3 0.996 (0.991~1.001) 0.126 0.009 (0.001~0.110) <0.001 0.002 (<0.001~0.025) <0.001

Model 4 0.995 (0.989~1.000) 0.070 0.007 (<0.001~0.102) <0.001 0.001 (<0.001~0.014) <0.001

Model 5 0.995 (0.989~1.001) 0.103 0.005 (<0.001~0.088) <0.001 0.001 (<0.001~0.021) <0.001

Table 4.  Heart rhythm complexity to predict pulmonary hypertension after adjustment. Model 1 unadjusted. 
Model 2 adjusted by age and sex. Model 3 adjusted by age, sex, BMI. Model 4 adjusted by age, sex, BMI, HTN 
and DM. Model 5 adjusted by age, sex, BMI, HTN, DM, beta blocker, CCB and ARB or ACEI use. *Independent 
predictors of pulmonary hypertension in multivariate logistic regression model including mean RR, VLF, 
LF/HF ratio, DFAα1, slope 5, scale 5, area 1–5 and area 6–20 after stepwise subset selection. Abbreviation: 
DFA = detrended fluctuation analysis.
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common causes of sudden cardiac death in PAH22. A possible predisposing factor for arrhythmia in PAH is mod-
ulation of autonomic activity9,22,24. Elevated levels of serum norepinephrine and its association with pulmonary 
vascular resistance25 support the hypothesis of increased sympathetic activity in patients with PAH.

Heart rate variability is a validated and non-invasive tool to evaluate cardiac autonomic function26. Folino 
et al. reported decreased HRV and increased ventricular ectopy in patients with PAH27, and Bienias and Witte 

Figure 2.  Analysis of the discrimination power of the two group by receiver operating characteristic curve 
analysis. The areas under the curve of mean RR, SDRR, VLF, LF, LF/HF ratio, DFAα1, MSE slope 5, scale 5, area 
1–5 and area 6–20 were 0.660, 0.610, 0.681, 0.609, 0.748, 0.745, 0.644, 0.845, 0.777 and 0.794, respectively.

Parameters AUC R square NRI
NRI 
p-value IDI

IDI 
p-value

Mean RR

0.66 0.08

+DFAα1 0.781 0.232 0.877 <0.001 0.16 <0.001

+Scale5 0.857 0.354 1.018 <0.001 0.311 <0.001

+Area1-5 0.793 0.229 0.596 0.001 0.162 <0.001

+Area6-20 0.813 0.264 0.877 <0.001 0.223 <0.001

pNN20

0.63 0.034

+DFAα1 0.821 0.269 0.982 <0.001 0.257 <0.001

+Scale5 0.844 0.33 0.947 <0.001 0.319 <0.001

+Area1-5 0.772 0.216 0.667 <0.001 0.189 <0.001

+Area6-20 0.801 0.253 0.842 <0.001 0.246 <0.001

VLF

0.681 0.068

+DFAα1 0.768 0.199 0.772 <0.001 0.139 <0.001

+Scale5 0.851 0.336 0.947 <0.001 0.294 <0.001

+Area1-5 0.8 0.231 0.526 0.003 0.182 <0.001

+Area6-20 0.799 0.259 0.807 <0.001 0.212 <0.001

LF

0.609 <0.001

+DFAα1 0.75 0.175 0.877 <0.001 0.182 <0.001

+Scale5 0.852 0.353 1.123 <0.001 0.376 <0.001

+Area1-5 0.789 0.251 0.702 <0.001 0.254 <0.001

+Area6-20 0.797 0.248 0.807 <0.001 0.274 <0.001

LF/HF ratio

0.748 0.088

+DFAα1 0.751 0.174 0.211 0.255 0.067 0.006

+Scale5 0.861 0.365 0.982 <0.001 0.279 <0.001

+Area1-5 0.82 0.284 0.702 <0.001 0.188 <0.001

+Area6-20 0.806 0.266 0.807 <0.001 0.177 <0.001

Table 5.  AUC, NRI, and IDI models of linear parameters before and after adding DFAα1 and MSE parameters 
to discriminate patients with or without pulmonary hypertension. pNN20 = percentage of the absolute 
change in consecutive normal RR interval exceeds 20 ms; VLF = very low frequency; LF = low frequency; 
HF = high frequency; AUC = areas under the curve; NRI = net reclassification improvement; IDI = integrated 
discrimination improvement; MSE = multiscale entropy; DFA = detrended fluctuation analysis.
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et al. also reported worse linear HRV in patients with pulmonary hypertension23,24. In the current study, we 
demonstrated similar results which highlight the prominent autonomic dysregulation in patients with pulmonary 
hypertension. In addition to linear HRV analysis, heart rhythm complexity analysis derived from non-linear HRV 
analysis has been studied as a better predictor of outcomes in many diseases compared with linear analysis. Data 
obtained from the DIAMOND-CHF trial showed that heart rhythm complexity impairment was the strongest 
electrocardiographic risk predictor, exceeding the value of traditional linear HRV analysis28. However, non-linear 
HRV analysis has never been reported in patients with pulmonary hypertension. To the best of our knowledge, 
non-linear HRV analysis has only been reported in one animal model experiment, in which Gonçalves et al. 
demonstrated decreases in both linear and non-linear HRV parameters in a rat model of monocrotaline-induced 
pulmonary hypertension29.

Heart rhythm complexity derived from non-linear analysis including DFA and MSE based on fractal and 
chaos theories, respectively, focuses on measuring the complexity beneath seemingly stationary biological sig-
nals15,16. A normal healthy subject is capable of making adjustments to deal with a dynamic environment through 
highly complex multisystemic cooperation. In a diseased subject, the balance in the systems breaks down and 
the complexity decreases. Heart rhythm complexity analysis can quantify this complexity, and it has been stud-
ied in many different diseases with excellent results. It has been associated with the prognosis of heart failure20, 
outcomes of acute stroke17, primary aldosteronism30, severity of abdominal aorta calcification19, critical illnesses 
requiring extracorporeal life support18 and post-myocardial infarction heart function31. In the current study, 
heart rhythm complexity, and especially MSE scale 5, had a better discriminatory power for pulmonary hyper-
tension compared to linear HRV analysis. The DFAα1 and MSE scale 5 remained as independent predictors of 
pulmonary hypertension after clinical parameters adjustments. Furthermore, a combination of heart rhythm 
complexity and linear HRV analysis further significantly improved the predictive power of linear HRV parame-
ters to differentiate between the patients with and without pulmonary hypertension. Our results provide valuable 
evidence supporting an altered autonomic system and decreased heart rhythm complexity in patients with pul-
monary hypertension.

There are several limitations to this study. First, this is a small pilot study and the data were only derived from 
both PAH and CTEPH patients. Patients with other pulmonary hypertension groups such as group 2 (left heart 
disease related) or group 3 (pulmonary disease/hypoxia related) were not included in this study. The results of 
this study should be confirmed in larger clinical studies. Second, the baseline characteristics including BMI, prev-
alence of HTN and medication were different in control and pulmonary hypertension groups which may still be 
confounders in this study. Third, the baseline physical activity difference between these two group may influence 
the HRV parameters and may also be a confounder in this study. Fourth, this is a cross-sectional study without 
long-term follow-up data. Further studies are needed to evaluate the prognostic value of heart rhythm complexity 
in patients with pulmonary hypertension.

In conclusion, heart rhythm complexity could predict the presence of pulmonary hypertension in this study, 
and MSE scale 5 had the greatest single discriminatory power. In addition, heart rhythm complexity parameters 
including DFA and MSE significantly improved the discriminatory power of linear HRV parameters, which sup-
ports the advantage of combining linear and heart rhythm complexity parameters.

Methods
Patients.  We prospectively enrolled 57 Taiwanese patients with pulmonary hypertension, including 31 
patients with PAH (World Health Organization, WHO group 1) and 26 patients with CTEPH (WHO group 4). 
Patients with left heart disease (WHO group 2) and COPD (WHO group 3) were not enrolled in this study to 
prevent bias deprived from complexed and heterogenous disease mechanisms among different pulmonary hyper-
tension groups. The diagnosed and categorized of pulmonary hypertension were based on ESC guideline. For 
the control group, we enrolled 57 age- and sex-matched participants who admitted to our hospital and received 
coronary angiogram examination which revealed patent coronary artery. Patients with chronic pulmonary dis-
ease, chronic atrial fibrillation, prior myocardial infarction, left heart failure, cerebrovascular events, or peripheral 
artery disease were excluded.

All subjects in this study received echocardiography and 24-h ambulatory ECG Holter recording. All patients 
with pulmonary hypertension received right heart catheterization to confirm the diagnosis. The baseline charac-
teristics, medical history and biochemistry data were recorded at enrollment. Holter recordings were performed 
one month before or after (mostly one week before) right heart catheterization in the patients with pulmonary 
hypertension. In the control group, Holter recordings were performed within one week after coronary angiogram.

This study was approved by the Institutional Review Board of National Taiwan University Hospital, and all 
subjects provided written informed consent. All research was performed in accordance with relevant guidelines 
and regulations.

Echocardiography.  All subjects received standard transthoracic echocardiography (iE33 xMATRIX 
Echocardiography System, Philips, Amsterdam, Netherlands). The TRPG was determined from the peak flow 
velocity of tricuspid regurgitation (TRV) using a simplified Bernoulli equation: TRPG = 4 × TRV2, and LVEF 
(M-mode) was measured via a parasternal long axis view in accordance with the recommendations of the 
American Society of Echocardiography32.

24-hour Holter recording and data pre-processing.  24-h ambulatory ECG Holter (Zymed DigiTrak 
Plus 24-Hour Holter Monitor Recorder and Digitrak XT Holter Recorder 24 Hour, Philips, Amsterdam, 
Netherlands) recordings were conducted in all subjects. All subjects maintained their daily activity during the 
examination. A stable 4-h segment of daytime RR intervals (between 9 AM and 5 PM) was selected. The selected 
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data were automatically annotated using an algorithm, and then examined by two experienced technicians. 
MATLAB program with self-writing code was used to derive HRV parameters for signal processing.

Linear analysis.  Traditional linear HRV including time and frequency domain analysis was conducted 
according to the recommendations of the North American Society of Pacing Electrophysiology and the European 
Society of Cardiology33. Time domain HRV parameters including mean RR, SDRR, pNN20 and pNN50 were cal-
culated to represent the sympathetic and parasympathetic modulation of heart beats. The frequency domain 
parameters, high frequency (HF; 0.15–0.4 Hz), low frequency (LF; 0.04–0.15 Hz), and very low frequency (VLF; 
0.003–0.04 Hz) were analyzed after Fourier transformation.

Non-linear analysis.  Non-linear HRV analysis focuses on the complexity of heart rate dynamics. Two 
non-linear methods, MSE and DFA, were conducted in this study based on fractal and chaos theories, respectively.

Detrended fluctuation analysis.  DFA provides a mathematical algorithm to uncover the fractal behavior 
beneath seemingly nonstationary RR dynamics by removing these trends from the integrated time series and 
quantifying the degree of self-affinity based on fractal theory15. DFA was performed by summing the detrended 
integrated time series in each scale. The log-log plots of fluctuations against time scales were constructed, and the 
slope (α exponent) of the plot represented the fractal correlation property of the time series. A crossover phe-
nomenon of α exponents of RR dynamics was observed in normal and diseased subjects. Therefore, short (α1; 
4–11 beats) and long (α2; 11–64 beats) time scales were calculated to better understand the fractal property of 
the heart rate dynamics.

Multiscale entropy analysis.  MSE analysis can be used to estimate the entropies of physiological signals 
in different time scales, and it can also be used to predict sequential changes over different time scales16. Since 
traditional entropy analysis can only evaluate the single entropy of a biological signal, MSE uses a coarse-graining 
process (i.e. averaging consecutive beats to form a new time series) to construct many different time scales. After 
this process, the estimated entropies over different time scales can be calculated, which represent the complexity 
of the physiological signals34. In this study, the entropy values of scale 5 (scale 5), the linear-fitted slope of scale 
1–5 (slope 5), the summation of entropy values of scales 1–5 (area 1–5) and 6–20 (area 6–20) were calculated as 
MSE parameters to quantify the complexity of the RR dynamics exhibited in short and long time scales.

Statistical analysis.  Data were expressed as mean ± standard deviation and median (25th and 75th per-
centiles) for normally distributed and non-normally distributed data, respectively. Comparisons of data 
between patients with and without pulmonary hypertension were made using the independent t-test and the 
Mann-Whitney U test. Differences between proportions were assessed using the chi-square test or Fisher’s exact 
test. Logistic regression analysis was used to validate associations between parameters and the presence of pulmo-
nary hypertension. Significant determinants in univariate logistic regression analysis (P < 0.05) including mean 
RR, VLF, LF/HF ratio, DFAα1, slope 5, scale 5, area 1–5 and area 6–20 were then tested in multivariate logistic 
regression analysis with stepwise subset selection to identify independent factors to predict the presence of pul-
monary hypertension. Then the independent HRV predictors of pulmonary hypertension in the multivariate 
regression model including mean RR, DFAα1 and MSE scale 5 were adjusted by clinical parameters including 
age, sex, BMI, HTN, DM, beta blocker, CCB and ARB or ACEI use in 5 logistic regression models. The AUC was 
used to assess the discriminatory power of the model to predict pulmonary hypertension. Furthermore, NRI and 
IDI were used to evaluate improvements in the predictive power after adding a single heart rhythm complexity 
parameter into a logistic regression model using only linear parameters35. The significance of NRI and IDI sta-
tistics was based on approximate normal distributions. All statistical analyses were performed using R software 
(http://www.r-project.org/) and SPSS version 25 for Windows (SPSS Inc., IL, USA). The significance level of the 
statistical analysis was set at 0.05.
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