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Chemoresistance is a significant factor associated with poor outcomes of osteosarcoma patients. The present study aims to identify
Chemoresistance-regulated gene signatures and microRNAs (miRNAs) in Gene Expression Omnibus (GEO) database. The results
of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) included positive regulation of transcription,
DNA-templated, tryptophan metabolism, and the like. Then differentially expressed genes (DEGs) were uploaded to Search Tool
for the Retrieval of Interacting Genes (STRING) to construct protein-protein interaction (PPI) networks, and 9 hub genes were
screened, such as fucosyltransferase 3 (Lewis blood group) (FUT3) whose expression in chemoresistant samples was high, but with
a better prognosis in osteosarcoma patients. Furthermore, the connection between DEGs and differentially expressed miRNAs
(DEMs) was explored. GEO2R was utilized to screen out DEGs and DEMs. A total of 668 DEGs and 5 DEMs were extracted from
GSE7437 and GSE30934 differentiating samples of poor and good chemotherapy reaction patients. The Database for Annotation,
Visualization, and Integrated Discovery (DAVID) was used to perform GO and KEGG pathway enrichment analysis to identify
potential pathways and functional annotations linked with osteosarcoma chemoresistance.The present studymay provide a deeper
understanding about regulatory genes of osteosarcoma chemoresistance and identify potential therapeutic targets for osteosarcoma.

1. Introduction

Osteosarcoma is one of themost common primarymalignant
bone tumors in children and adolescents. The worldwide
morbidity rates of osteosarcoma are approximately with an
average incidence of 3.1 per million for each stage and 4.4
per million for groups <25 years old. Additionally, there
is a bimodal age distribution: individuals aged 25–60 years
and elderly individuals, respectively. In America the Annual
age-standardized incidence of osteosarcoma has reached
stabilization from 1976 to 2005 [1–5].

Many factors are associatedwith tumor genesis, including
high birth weight [6], pubertal hormones [7], and germline
genetic variants [8, 9].The common subtypes are osteoblastic,
chondroblastic, and fibroblastic osteosarcomas, which may
account for 70–80% of total cases [10]. The standard therapy
consists of neoadjuvant chemotherapy (NACT), surgical
removal of the primary tumor, and adjuvant chemotherapy.
Before the 1970s, no more than 20 percent of patients were
alive after 5 years when excision was major therapeutic
measure for osteosarcoma [11, 12], while it increased to
60–70 percent for children and young adults with localized
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disease after the chemotherapy was used as adjuvant therapy
for surgical resection [13, 14]. The current predicament of
osteosarcoma treatment is the five-year survival rate does
not exceed 25% for patients aged 2–68 with poor initial
response tending to have adverse outcomes [15].Therefore, to
improve and modify chemotherapy regimens, an increasing
number of pharmacogenomics studies on osteosarcoma have
been going on for some time, such as drug reactions and
toxicity.

Multidrug resistance protein 1 (MDR1) that is encoded
by gene ATP-binding cassette, subfamily B (MDR/TAP),
member 1 (ABCB1) has been shown to serve as a plausible
factor in doxorubicin resistance, which was validated to be
linkedwith poor outcomes inmany osteosarcoma studies [16,
17], but whether there would be more valuable biomarkers
remained to be explored. In recent years, microarray technol-
ogy has substantially promoted the advance of understanding
the mechanisms underlying diseases. Additionally, the rapid
development of bioinformatics enables us to comprehensively
screen out the hub genes associated with chemoresistance
by the process of high-throughput microarrays. MicroRNAs
(miRNAs), a group of highly conserved short noncoding
small RNAs including generally 18–25 nucleotides in length,
can suppress the translation of mRNA and cleave it by the
modality of base-pairing to the target genes’ 3󸀠 untranslated
region [18–20].

In the present study, we analyzed the data of GSE87437
and GSE30934 submitted by Serra Mand and Kobayashi E. et
al., respectively, to get 668 differentially expressed genes
(DEGs) and 5 differentially expressed miRNA (DEMs)
between samples of poor and good chemotherapy reaction
patients inGEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/).
To further understand the function of genes, Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes pathway
(KEGG), Protein-Protein Interaction (PPI) networks, and
the connections among DEGs and DEMs were performed
in sequence. We selected chemoresistance development
related key genes and provided theoretical foundations for
modifying and improving osteosarcoma treatment methods.

2. Materials and Methods

2.1. Microarray Data. The dataset of GSE87437, gene expres-
sion array, and GSE30934, miRNA expression array, included
10 and 8 samples from poor chemotherapy reaction patients
and 11 and 16 samples fromgood ones, respectively.Moreover,
the former dataset was based on GPL570 platform ([HG-
U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0
Array) and the latter one was based on GPL10312 platform
(3D-Gene Human miRNA Oligo chip v12-1.00).

2.2. Identification of DEGs. GEO2R, an R-associated web
application, was applied to filtrate DEGs between good
chemotherapy reaction samples and poor chemotherapy
reaction samples. In total, 21 samples in GSE87437 and
24 samples in GSE30934 were divided into two groups,
respectively, and the concrete grouping schemes were
already shown in microarray data. The 𝑃 < 0.05 and
| log FC| ⩾ 1 were considered as cutoff criterion. All

results of DEGs were downloaded in text format, hierarchi-
cal clustering analysis being conducted later in Morpheus
(https://software.broadinstitute.org/morpheus/).

2.3. GO and Pathway Enrichment Analysis of DEGs. The
online tool, Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, https://david.ncifcrf.gov/) pro-
vided comprehensive information for list of genes by GO
and KEGG pathway analyses. In addition, GO enrichment
analysis included three different aspects: biological process
(BP), molecular function (MF), and cellular component (CC)
[21]. KEGG enrichment analysis was associatedwith genomic
information’s functional interpretation and practical appli-
cation [22]. The screened DEGs were uploaded to DAVID
V6.8 to perform GO and KEGG pathway analysis with the
criterion of 𝑃 < 0.05, the results of which were downloaded
in text format.

2.4. PPI Networks Construction andModule Analysis. To ana-
lyze the connection among proteins, DEGs were uploaded to
Search Tool for the Retrieval of Interacting Genes (STRING,
https://string-db.org/), a database covering 9,643,763 pro-
teins from 2,031 organisms, and the result whose minimum
interaction score was 0.4 was visualized in Cytoscape [23, 24].
Furthermore, the Molecular Complex Detection (MCODE)
was used to screen out significant modules based on the
constructed PPI networks with the criteria of degree cutoff
= 2, node density cutoff = 0.1, node score cutoff = 0.2, 𝑘-core
= 2, and max. depth = 100 and hub genes were exported. The
functional enrichment analysis of genes in each module was
performed inDAVID. Besides, the genes in eachmodulewere
uploaded toDAVID andKEGGpathway enrichment analysis
was conducted with the condition of 𝑃 < 0.05.

2.5. Survival Analysis of Hub Genes. The series matrix of
GSE21257 that contained osteosarcoma patients’ prognos-
tic information was downloaded from GEO database. The
patients were split into two groups, high expression and low
expression, according to the expression level of a specific hub
gene.Thedatawas processed by graphpad prism software and
then exported the results.

2.6. Prediction of miRNA Targets. DEMs were acquired by
the parallel method of DEGs mentioned above. miRWalk1.0
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk/index
.html), an integrated miRNA target prediction platform
including 10 databases (DIANAmT, miRanda, miRDB,
miRWalk, RNAhybrid, PICTAR4, PICTAR5, PITA, RNA22,
and Targetscan), was utilized to explore the correlation
between DEMs and DEGs. Besides, different colors were
used to indicate the degrees of connections. For example, red
color represented strong correlation.

3. Results

3.1. Identification of DEGs. A total of 668 DEGs were
obtained fromGSE87437 in the poor chemotherapy response
samples and compared with those of good response with the
criteria of 𝑃 < 0.05 and | log FC| ⩾ 1.0, comprising 422

http://www.ncbi.nlm.nih.gov/geo/geo2r/
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Table 1: Key differentially expressed genes (DEGs) obtained from
GSE87374.

Gene symbol Log FC 𝑃 value
ZNRD1 1.4 0.01504282
CDK1 1.31 0.03504221
MYH7B 1.19 0.03527194
GPR68 1.18 0.03724459
CAT −1.15 0.03367398
FUT3 1.69 0.00007205
IMPG2 1.11 0.04785566
GPR180 −1.03 0.00511768
ANPEP 1.32 0.0354653

upregulated genes and 246 downregulated genes. The key
DEGs are displayed in Table 1.

3.2. Hierarchical Clustering Analysis of DEGs. Hierarchical
clustering analysis was conducted throughMorpheus, a web-
based online tool, with the series matrix data of the DEGs.
The heat map is shown in Figure 1 (top 50 upregulated and 50
downregulated genes).

3.3. GO Term Enrichment Analysis. In order to under-
stand the function of the identified DEGs deeply, GO and
KEGG analyses were performed in DAVID, respectively.
The result of GO analysis showed that DEGs were enriched
in biological process (BP), including positive regulation of
transcription and DNA-templated, positive regulation of
sequence-specific DNA binding transcription factor activity,
nitric oxidemediated signal transduction, positive regulation
of transcription from RNA polymerase II promoter, and
regulation of phosphatidylinositol 3-kinase signaling. As
for molecular function (MF), the DEGs were enriched in
estrogen response element binding, Rac guanyl-nucleotide
exchange factor activity, calcium ion binding, zinc ion
binding, and phosphatidylinositol-4,5-bisphosphate 3-kinase
activity. Besides, Cellular Component (CC) analysis showed
that the DEGs were enriched in proteinaceous extracellular
matrix, cell surface, P granule, integral component of plasma
membrane, and endocytic vesicle membrane, as shown in
Figure 2.

3.4. KEGG Pathway Analysis. KEGG pathway analysis
showed that DEGs were mainly involved in tryptophan
metabolism, oxytocin signaling pathway, glyoxylate and
dicarboxylate metabolism, cAMP signaling pathway, and
dopaminergic synapse (Figure 2).

3.5. PPI Networks and Modules Selection. The PPI networks
of DEGs were composed of 432 nodes and 428 edges
(Figure 3). Then the networks were imported into Cytoscape
software, analyzed by using plug-ins MCODE. Eventually,
3 significant modules were selected (Figure 4), and the
KEGGpathwaywasmainly associatedwith ribosome biogen-
esis in eukaryotes, calcium signaling pathway, arachidonic
acid metabolism, proteoglycans in cancer, and linoleic acid
metabolism (Figure 4).
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Figure 1: Heat map of the top 100 DEGs (50 upregulated genes
and 50 downregulated genes). Red: up-regulation; Blue: down-
regulation.

3.6. Hub Genes and Survival Analysis. 9 hub genes were
screened out, including zinc ribbon domain containing 1
(ZNRD1), myosin heavy chain 7B (MYH7B), G protein-cou-
pledreceptor 68 (GPR68), catalase (CAT), fucosyltransferase
3 (Lewis blood group) (FUT3), interphotoreceptor matrix
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Figure 2: GO and KEGG pathway analysis of DEGs associated with osteosarcoma. (a) Top 5 significantly enriched biological processes in
DEGs. (b) Top 5 significantly enriched cell component in DEGs. (c) Top 5 significantly enriched molecular function in DEGs. (d) Top 5
significantly enriched KEGG pathway in DEGs.

proteoglycan 2 (IMPG2), G protein-coupled receptor 180
(GPR180), alanyl aminopeptidase, membrane (ANPEP), and
cyclin dependent kinase 1 (CDK1) (Table 1). Next, survival
analysis of these genes in GSE21257 which contained patients’
survival prognostic information showed that osteosarcoma
patients with high mRNA expression of FUT3 meant a better
overall survival (OS) despite its high expression in poor
chemotherapy response samples (Figure 5). Additionally, the
survival prognostic information of GPR180 and CDK1 was
not included in GSE21257.

3.7. MiRNA–DEG Pairs. After the differentially expressed
analysis for the data of GSE30934, a total of 5 DEMs were
obtained between the poor chemotherapy response samples
compared with that of good response with the criteria
of 𝑃 < 0.05 and | log FC| ⩾ 1.0 (Table 2). Next, bas-
ing onmiRWalk1.0 database (http://zmf.umm.uni-heidelberg
.de/apps/zmf/mirwalk/index.html), the relationship between
miRNAs andDEGswas acquired and different kinds of colors
were on behalf of the number of miRNA–DEG pairs in
different database which stand for the degrees of connection.
For example, red color represented to a strong correlation
(Figure 6). After comparing the targets with hub genes, we
found that ZNRD1 was the potential target of hsa-miR-543,
while CAT was the potential target of hsa-miR-518f. Both
hsa-miR-543 and hsa-miR-518f matched the regulated gene
in expression trends.

4. Discussion

In the present study, we observed whether there were
more valuable genes like ABCB1 which could help improve
and modify chemotherapy regimens in osteosarcoma. To
find out the specific chemotherapy response-associated

Table 2: Key differentially expressed genes (DEGs) obtained from
GSE30934.

miRNA ID Log FC 𝑃 value
hsa-miR-543 −3.429933 0.00192
hsa-miR-409-5p −2.70517 0.00729
hsa-miR-518f 1.448711 0.02332
hsa-miR-154 −2.619116 0.03838
ebv-miR-BART1-3p −1.358071 0.04733

DEGs, we analyzed the osteosarcoma gene expression array
of GSE87437 in GEO2R, where a total number of 668
DEGs were obtained between good and poor chemother-
apy response samples. Besides, to further understand the
potential biological functions, we conducted GO, KEGG, and
STRING analyses. Subsequently, on the foundation of PPI
networks, the selection of 9 hub genes and their survival
prognosis were completed. In terms of the increasingly
prominent role of miRNA in cancer, DEMs of osteosarcoma
miRNAexpression array ofGSE30934was screened out in the
sameway and criteria like DEGs, andDEGs-miRNAnetwork
was constructed to show relationship between them [25].

Our results showed that many genes and miRNAs
may have functions in the development of chemoresis-
tance in osteosarcoma and have the potential to become
treatment targets. Here, we exclusively focused on 9 hub
genes and two miRNAs. Firstly, 9 hub genes consisted of
ZNRD1, MYH7B, GPR68, CAT, FUT3, IMPG2, GPR180,
ANPEP, and CDK1. Our data showed that the expression of
ZNRD1 was upregulated in chemoresistance osteosarcoma
samples. Previous studies demonstrated that methotrexate-
resistant, vincristine-resistant, multidrug resistant pheno-
types of gastric cancer cells could be regulated by the

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk/index.html
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Figure 3: PPI network constructed by STRING database for the DEGs.

inhibition of ZNRD1/Inosine monophosphate dehydroge-
nase 2 (IMPDH2), upregulated DARPP-32/downregulated
ZNRD1, overexpressed miR-508-5p/ZNRD1/ABCB1 activi-
ties, respectively [26–28], but further researches of ZNRD1
in osteosarcoma chemoresistance remained to be conducted.
Similar to ZNRD1, MYH7B was also found upregulated in
chemoresistance osteosarcoma samples. At present, MYH7B
was mainly involved in pathway of cardiomyocytes, such
as mitochondrial apoptosis pathway [29] but studies about
cancer were rare. GPR68, a kind of pH-sensing protein,

was associated with tumor cell biology, such as tumor
aggressiveness by triggering the intracellular signaling cas-
cade to promote the development of microenvironment of
extracellular acidification [30, 31]. As shown in Table 1,
likewise, we found the expression of GPR68 was upregu-
lated in chemoresistance samples. Daglioglu C validated that
pH-responsive Fe3O4@SiO2(FITC)-BTN/QUR/DOXmulti-
functional nanoparticles could potentiate the chemothera-
peutic efficacy of DOX against multidrug resistance as well
as counteract the survival ability of chemoresistant lung
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Pathway ID Term Count % P value

hsa03008 Ribosome biogenesis in eukaryotes 2 40 2.50E − 02

Pathway ID Term Count %

hsa04270 Vascular smooth muscle contraction 2 25 6.71E − 02

hsa04022 cGMP-PKG signaling pathway 2 25 9.27E − 02

hsa04020 Calcium signaling pathway 2 25 9.97E − 02
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hsa00590 Arachidonic acid metabolism 4 26.67 1.43E − 04

hsa05205 Proteoglycans in cancer 4 26.67 4.33E − 03
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Figure 4: The top 3 modules from the PPI network. (a) module 1, (b) module 2, (c) module 3, (d) the enriched pathways of module 1, (e) the
enriched pathways of module 2, and (f) the enriched pathways of module 3.

carcinoma A549/DOX cell lines [32]. GPR68 has become
an attractive target for drug development [33]. Several
previous studies demonstrated that decreased CAT was
highly associated with chemoresistance; for example, Xu et
al. showed that intervention against miR-551b/CAT/reactive
oxygen species (ROS)/Mucin-1 (MUC1) pathway might help
overcome acquired chemoresistance [34]. Tumor microenvi-
ronment (TME) was characterized by hypoxia, acidosis, and
dense extracellular matrix, providing tumors with resistance
to various therapies, which could be effectively changed
by the intravenous injection of human serum albumin

(HAS)-chlorine e6 (Ce6)-CAT-paclitaxel (PTX) nanopar-
ticles, enzyme-loaded therapeutic albumin nanoparticles.
Meanwhile, H2O2 could relieve tumor hypoxia by generating
oxygen within TME triggered by CAT of those nanoparticles,
which made CAT a potential treatment target in various
tumors [35]. Similarly, our data showed that CAT was
downregulated in chemoresistance samples, which might
exacerbate local microenvironment to strengthen tumor
chemoresistance through the way of hypoxia, subsequent
acidosis, and the like. High expression of FUT3 was proved
to participate in the development of invasion, metastasis, and



BioMed Research International 7

ZNRD1 

Survival time (days) 

Expression score comparison:
Low expression (n = 27) = 12 deaths
High expression (n = 26) = 11 deaths 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.7770

(a)

MYH7B 

Expression score comparison:
Low expression (n = 27) = 12 deaths
High expression (n = 26) = 11 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.9012

(b)

IMPG2 

Expression score comparison:
Low expression (n = 27) = 13 deaths
High expression (n = 26) = 10 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.7076

(c)

FUT3 

Expression score comparison:
Low expression (n = 27) = 14 deaths
High expression (n = 26) = 9 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.0301

(d)

CAT 

Expression score comparison:
Low expression (n = 27) = 12 deaths
High expression (n = 26) = 11 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.6088

(e)

GPR68 

Expression score comparison:
Low expression (n = 27) = 13 deaths
High expression (n = 26) = 10 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.4394

(f)

ANPEP 

Expression score comparison:
Low expression (n = 27) = 12 deaths
High expression (n = 26) = 11 deaths 

Survival time (days) 

100

80

60

40

20

0

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0 2000 4000 6000 8000

n = 53

P = 0.9961

(g)

Figure 5: The survival prognostic value of hub gene in osteosarcoma from the GSE21257.

resistance to therapy by increased fucosylation activity in oral
squamous cell carcinoma (OSCC), and the function could
be blocked by inhibition of fucosylation [36]. In our study,
FUT3 was also observed upregulated in chemoresistance
samples, but it was found to be associated with a better
survival prognosis (Figure 4). There were some reasons to

explain that. In spite of its protumor action, death pathways
were proved to be relied on fucosylation, and FUT3 was
demonstrated to play an important role in natural killer-
induced cytotoxicity after the recognition of sialyl Lewis X
with the help of C-type lectin receptors [37, 38]. Therefore,
the relationship between FUT3 and tumor was so complex
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Figure 6: The network of miRNA–DEG pairs.

that little was known about its function in osteosarcoma
chemoresistance. IMPG-2, a genemainly associatedwith reti-
nal disease, was upregulated in chemoresistant osteosarcoma
samples in our study, but more studies involving IMPG-2
and cancer needed to be conducted [39]. Furthermore, our
data showed the decreased expression of GPR180 in poor
chemotherapy response samples. Homoplastically, Honda et
al. found that the methylation of GPR180 was probably to
encode tumor suppressors and serves as a novel prognostic
marker and therapeutic target inHepatoblastoma [40]. Based
on previous studies, whether the gene GPR180 could have
function in osteosarcoma by producing tumor suppressors
and its concrete role in chemoresistance remained to be
explored. The gene ANPEP encoded aminopeptidase N
(APN). A previous study [41] showed that ANPEP was
downregulated in prostate cancer (PC). On the contrary, our
study showed that ANPEP expression of good chemother-
apy response samples was approximately two times that in
chemoresistance osteosarcoma samples. However, the dif-
ference caused by the types of tumors or chemoresistance
needed to be further studied. In urothelial carcinoma, APN

could increase cytotoxicity of melphalan-flufenamide to play
anticancer effect by amplifying the intracellular loading of
melphalan [42]. The studies of chemoresistance associated
with ANPEP have not been conducted so far, but Viktorsson
et al. [42] offered researchers a new way for treatment,
which made ANPEP a significant therapeutic target. Several
researches in chemoresistance-associated fields have already
demonstrated that CDK1 participated in the development
of chemoresistance in pathways, such as GRP78/CDC2
[43]. Likewise, in our study, the expression of CDK1 was
increased. Hayashi et al. found increased DNA repair activity
in the G2-M transition promoted temozolomide (TMZ)
resistance and CDC2 inhibitor flavopiridol (FP) treatment
could resensitize TMZ-resistant clones in a p53-independent
manner in glioma cells [44]. Besides, the combination of ERK
inhibitor PD98059 and Taxol could improve the sensitivity of
taxol-resistant tumor cells with the decreased CDC2 activity
[45].

Compared with that of good response, 5 DEMs were
acquired in GSE30934 in poor chemotherapy response sam-
ples (Table 2). Among them, hsa-miR-543 and hsa-miR-518f
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were found to have a relation to ZNRD1 and CAT, respec-
tively. In our results, hsa-miR-543 was downregulated in
chemoresistant samples. Previous study in this field was lim-
ited. In other aspects, decreased expression of it was involved
in osteosarcoma angiogenesis which might be caused by
connective tissue growth factor (CTGF) in phospholipase C
(PLC)/protein kinase C (PKC𝛿) signaling pathway. Besides,
hsa-miR-543 was also proved to be linked with tumor staging
[46], cell proliferation, and the glycolytic pathway [47]. The
studies between chemoresistance-promoted gene ZNRD1
and hsa-miR-543 have not been conducted yet, but biological
functions mentioned above made hsa-miR-543 become an
important therapeutic target. Moreover, the role of hsa-miR-
518f in chemoresistance or the development of tumor was
rarely known. Hsa-miR-518e and hsa-miR-518b, homologues
of hsa-miR-518f, were demonstrated to be upregulated in
hepatocellular carcinoma (HCC) [48]. Besides, a previous
study showed that has-miR-518c-5p could regulate the growth
and metastasis of oral cancer [49]. Consequently, further
research to hsa-miR-518f was of great importance.

In summary, we identified 668 DEGs and 5 DEMs from
GEO2R between good chemotherapy response samples and
poor chemoresistance samples in osteosarcoma. And many
of them, such as ZNRD1, GPR68, CAT, FUT3, ANPEP,
CDK1, and hsa-miR-543, might be key genes related to
osteosarcoma chemoresistance. These findings provided a
series of promising treatment targets and enlightened us on
the further investigations of the molecular mechanisms.
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