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ABSTRACT: Raman spectroscopy is a noninvasive technique to
identify materials by their unique molecular vibrational finger-
prints. However, distinguishing and quantifying components in
mixtures present challenges due to overlapping spectra, especially
when components share similar features. This study presents
“RamanFormer”, a transformer-based model designed to enhance
the analysis of Raman spectroscopy data. By effectively managing
sequential data and integrating self-attention mechanisms, Raman-
Former identifies and quantifies components in chemical mixtures
with high precision, achieving a mean absolute error of 1.4% and a
root mean squared error of 1.6%, significantly outperforming
traditional methods such as least squares, MLP, VGG11, and ResNet50. Tested extensively on binary and ternary mixtures under
varying conditions, including noise levels with a signal-to-noise ratio of up to 10 dB, RamanFormer proves to be a robust tool,
improving the reliability of material identification and broadening the application of Raman spectroscopy in fields, such as material
science, forensics, and biomedical diagnostics.

1. INTRODUCTION
Raman spectroscopy is a powerful analytical technique for
material identification. It can be utilized to measure the inelastic
scattering of light by molecular vibrations in a material. The
characteristic vibrational modes of molecules give rise to a
unique Raman spectrum which can be used as the “fingerprint”
of the material. Moreover, the chemical composition of the
material can be identified. Hence, Raman spectroscopy can be
utilized for the identification of the unknown materials.
Moreover, this technology is a fast, label-free, and noninvasive
tool.1,2

The advantages of Raman scattering lead to its use in various
fields. It has a wide range of application areas including material
identification, food analysis, disease diagnosis, and forensic
analysis.3−6 As an example for food analysis, a study7 utilizes
surface-enhanced Raman scattering (SERS) to analyze food
colorants which are food blue, tartrazine, sunset yellow, and acid
red. Another study8 classifies milk samples from different species
by using Raman spectroscopy. Additionally, Raman scattering
offers significant utility in forensic analysis, primarily because it is
a noncontact and nondestructive method. For example, Gasser
et al.9 design a hyperspectral Raman imager technique to detect
and classify explosives at a distance of 15 m. Dies et al.10 utilize
SERS to detect illicit drugs, such as cocaine. Doty and Lednev11

employ Raman spectroscopy with partial least-squares discrim-

inant analysis (PLSDA), to differentiate human and animal
blood.

On the other hand, Raman spectroscopy can also be utilized
for disease diagnosis. For instance, Kim et al.12 design a chip
fabrication method for SERS analysis to detect prenatal diseases
from amniotic fluids. Lim et al.13 exploit SERS analysis as well, to
identify cells infected with different influenza viruses. Further,
they demonstrate that their approach can be utilized to detect
newly emerging influenza viruses. Mineral identification is
among a wide range of applications in which Raman spectros-
copy serves as a powerful tool for material analysis. The
majority14,15 of public and comprehensive Raman data sets
consist of mineral spectra, while the research on mineral
classification includes the works by Sang et al.,16 Liu et al.17 and
Liu et al.18

Mixture analysis on the Raman spectrum is an open research
direction, where the aim is identifying and quantifying the
components in a given mixture spectrum. In this study, an
approach for the identification and quantification of the
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components in a Raman mixture is proposed. For this purpose,
we introduce RamanFormer, which is a transformer-based19

approach for Raman mixture analysis. To summarize, our
contributions can be listed as follows:

1. Introduction of RamanFormer, a novel transformer-based
model specifically designed for the analysis of Raman
spectroscopy mixtures, representing a significant advance-
ment in the field of spectroscopy.

2. Comprehensive evaluation of the model’s performance
across various data samples, including binary and ternary
chemical mixtures, showcasing its superior performance
over traditional and contemporary methods in terms of
root mean squared error (RMSE) and mean absolute
error (MAE).

3. Demonstration of RamanFormer’s robustness in chal-
lenging scenarios, such as those involving components
present in low amounts and conditions of varying noise
levels, highlighting its practical applicability in real-world
spectroscopic analysis.

4. Empirical evidence of the model’s adaptability and
resilience, proving its capability to accurately identify
and quantify components in mixtures under diverse
conditions.

5. Exploration of the potential of advanced machine learning
architectures, like transformers, in spectroscopy, paving
the way for future advancements in various applications
including material science, food safety, forensics, and
medical diagnostics.

2. RELATED WORK
Raman spectrum analysis is an extensively studied area in the
literature. Here, we specifically focus on the optimization-based
algorithms, where we partition these methods as machine
learning and deep learning methods for processing Raman
signals.

2.1. Machine Learning and Deep Learning Methods
for Raman Signal Analysis. 2.1.1. Machine Learning
Methods for Processing Raman Signals. Many supervised
learning algorithms are used for Raman spectrum analysis.20 For
instance, some studies utilize methods based on discriminant
analysis, such as linear discriminant analysis (LDA)21,22 and
PLSDA.23,24 Furthermore, some papers exploit artificial neural
network (ANN) based models such as multilayer perceptron
(MLP)25,26 and convolutional neural network (CNN).27,28

Moreover, some studies employ regression analysis-based
methods, e.g., multiple linear regression (MLR),29 principal
component regression (PCR),30 and partial least squares
(PLS).22 Besides, Li et al.31 and Li et al.32 utilize k-nearest
neighbor on Raman spectra for the detection of cancer types of
breast and colon, respectively. Zivanovic et al.33 and Banaei et
al.34 use the random forest approach for the identification of
molecular colocalization and interactions of the drug molecules,
and cancer diagnostic, respectively. Additionally, some studies
employ support vector machine (SVM) on Raman signals for
various fields such as the food industry and medicine.21,35,36

2.1.2. Deep Learning Methods for Processing Raman
Signals. In general, Raman signal processing involves essential
steps, such as data preprocessing, feature extraction (or
selection), and data modeling. While classical machine learning
techniques are commonly applied in Raman spectroscopy, these
intricate processes can be performed by a singular neural
network, given an adequate amount of training data. Depending

on the output types, deep learning applications for Raman
spectroscopy can be divided into four main parts: preprocessing,
classification, regression, and spectral highlighting.37

As an example of preprocessing, Wahl et al.38 propose a one-
step automatic Raman spectral preprocessing method using
CNN. First, the authors create synthetic spectra by randomly
adding signal peaks, baselines, and background noise. Then, they
train a CNN model to map a set of input Raman spectra to the
corresponding ideal spectrum. Furthermore, Valensise et al.39

apply a 1-D CNN model to subtract the nonresonant
background (NRB) from broadband coherent anti-Stokes
Raman scattering (B-CARS) spectra. This model is called
SpecNet, which consists of five convolutional layers, followed by
three fully connected layers.

Similar to the preprocessing phase, 1-D CNNs also hold
considerable importance in the classification of Raman spectra.
For instance, in the differentiation of human and animal blood,
Dong et al.28 utilize a streamlined network adapted from the
LeNet-5 architecture, incorporating only two convolutional
layers for feature extraction, succeeded by a fully connected layer
for classification. Consequently, the authors attain an accuracy
of 96.33%. In another study, a 1-D CNN is used to detect
prostate cancer from Raman spectra of extracellular vesicles.40

To assess the disease activity of ulcerative colitis (UC),
Kirchberger-Tolstik et al.41 also use a 1-D CNN and achieve
an average sensitivity of 78% and an average specificity of 93%
for the four Mayo endoscopic scores. To detect microbial
contamination, Maruthamuthu et al.42 use a 1-D CNN to
distinguish the Raman spectra of Chinese hamster ovary (CHO)
cells from 12microbe species. In addition, a new approach called
“deep learning-based component identification” (DeepCID) is
introduced by Fan et al.43 Authors show that DeepCID achieves
an accuracy of 98.8% for all 167 components. Fu et al.44 propose
a lactose-dominated drug (LLD) quantity model which is based
on the non-negative least-squares (NNLS) algorithm and
DeepCID.

Autoencoders and ResNets are widely utilized for the
classification of Raman spectra as well as 1-D CNNs. For
example, Houston et al.45 use a locally connected neural network
(LCNN) to create an accurate and robust two-stage
classification model in the case of negative outliers. In this
model, while the LCNN is designed to train data, an automatic
encoder is used for outlier detection. Furthermore, Ho et al.46

propose a mesh with 25 convolutional layers for rapid bacterial
identification. The antibiotic therapy identification accuracy of
their model was 97.0 ± 0.3%. For pathogen classification, Yu et
al. combine Raman spectroscopy with a generative adversarial
network (GAN)47 to achieve high accuracy when the training
data set is limited.48

Due to the limited size of the data set, other researchers
observe the utility of employing transfer learning during the
training of classification models for Raman spectroscopy. For
example, Thrift and Ragan49 employ a CNN-based mono-
molecule SERS measurement method that transfers information
from the Rhodamine 800 (R800) domain to the methylene blue
(MB) domain. They show that SERSmeasurementmethods can
be quite satisfactory, even with only 50 new MB training
samples. In addition, Zhang et al.50 pretrain a CNN model on a
source data set consisting of Bio-Rad and RRUFF databases.
Subsequently, they accomplish a 4.1% improvement in
classification accuracy using solely 216 new spectra from the
target data set.
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2.2. Raman Mixture Analysis. Studies on Raman mixture
analysis can be categorized into two groups based on the
methodology. The first group contains studies that identify the
components in a mixture without quantification of the
components. For example, Pan et al.51 propose a deep neural
network-based approach for ternary mixtures that contain oleic
acid, palmitic acid, and retinyl palmitate. Wang et al.52 introduce
a CNN-based method for the identification of chemical mixture
components such as methanol, ethanol, and propylene glycol. In
another study,53 an approach based on similarity analysis and
sparse non-negative least squares is proposed to identify the
components in liquid and powder mixtures. Zhao et al.54

introduce an approach called ConInceDeep, which combines
continuous wavelet transform and Inception model55 to predict
the binary existence of components in a mixture. Moreover, Fan
et al.43 propose a CNN-based approach to determine the
presence of components in a mixture where an individual model
is employed for each component.

On the other hand, the second group of studies focuses on the
quantification of the components in a mixture as well as the
detection of their presence. For instance, Keren et al.56 utilize
the least-squares method for mixture analysis on living subjects
such as mice. Similarly, Zhang et al.57 exploit a modified reverse
searching method and non-negative least squares for identi-
fication and quantification of the components in a mixture,
respectively. Zeng et al.58 propose a mixture analysis approach
based on a non-negative elastic net to quantify the components
in mixtures that are measured or generated using the spectra of
the components. Li et al.59 introduce a CNN-based approach for
spectral unmixing of a mixture of various dyes for mRNA
biomarker detection. In another study,60 a CNN-based
approach is proposed to identify and quantify the components
in SERS (surface-enhanced Raman spectroscopy) spectra of
mixtures that contain chemicals widely used in agricultural
production. Furthermore, a recent study61 introduces a Python
package to generate Raman mixture data sets, where several
algorithms are evaluated on these data sets for predicting the
concentrations of mixture components.

3. METHODOLOGY
Our predictive model is based on a transformer,19 which is a
deep neural network architecture designed to capture intricate

patterns in the input. Transformers are initially proposed for
NLP tasks. However, now they have been extensively utilized
across various domains, including computer vision,62 chem-
istry,63 and life sciences,64 thanks to their success in numerous
tasks. The main distinctive point that differentiates them from
previous approaches is their self-attention mechanism. This
mechanism is designed to enable the model to capture
dependencies between words that are far apart in the sequence,
making it effective for tasks that require an understanding of
long-range dependencies, such as language translation and text
summarization.

3.1. Preliminary: Transformer Layer. Transformer19

models have revolutionized the field of natural language
processing (NLP) by introducing a novel architecture that
eschews recurrent layers in favor of self-attention mechanisms
and feed-forward neural networks. At the heart of the
transformer architecture are the transformer layers, which are
composed of several key components: the attention layer, feed-
forward layers, layer normalization, and the Gaussian error linear
unit (GELU) activation function. Further, in our proposed
method, we employ three transformer encoder layers.
3.1.1. Attention Mechanism. The attention mechanism is

the core component of transformer models, enabling the model
to dynamically focus on different parts of the input sequence
when an output sequence. The mechanism is mathematically
represented as

=
i
k
jjjjjj

y
{
zzzzzzQ K V

QK
d

VAttention ( , , ) softmax
T

k (1)

where Q, K, and V represent the query, key, and value matrices,
respectively, derived from the input embeddings. The term dk
represents the dimensionality of the key vector K, which is used
to scale the dot product, thus helping in stabilizing the gradients
during training.
3.1.2. Feed-Forward Layers. Following the attention

mechanism in each transformer layer is a feed-forward network
(FFN), which applies two linear transformations with a GELU
activation in between:

= + +x xW b W bFFN( ) GELU( )1 1 2 2 (2)

Figure 1. Diagram illustrates the sequential composition of layers in the proposed model for robust spectral analysis and precise component ratio
prediction. Here, N stands for the number of samples (eq 5).
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where x is the input.W1,W2, b1, and b2 are the weights and biases
of the two linear layers, respectively.
3.1.3. Layer Normalization. Layer normalization is applied

within the transformer layers to stabilize the activations across
the network. It normalizes the inputs across the features for each
data point in a mini-batch and is evaluated as follows:

=
+

+
i
k
jjjjjj

y
{
zzzzzzx

x
Layer Norm( )

2 (3)

where μ and σ2 are the mean and variance of the input, ϵ is a
small constant added for numerical stability, and γ and β are
learnable parameters for scaling and shifting, respectively.
3.1.4. Gaussian Error Linear Unit. The GELU is a nonlinear

activation function that has been shown to improve the
performance of transformer models. It is defined as

=x x xGELU( ) ( ) (4)

where Φ(x) is the cumulative distribution function of the
standard normal distribution. The GELU function allows the
model to capture nonlinearities in the data, contributing to the
overall expressive power of the transformer.

Transformer layers, through the integration of attention
mechanisms, FFNs, layer normalization, and GELU activation
functions, provide a powerful framework for modeling
sequential data. These components work in harmony to enable
the transformer model to capture complex dependencies and
relationships in the data, making it highly effective for a wide
range of learning tasks.

3.2. Proposed Method: RamanFormer. As shown in
Figure 1, our model consists of particular layers to achieve a
successful mixture analysis. In the “patchify layer”, we extract
nonoverlapping patches of 128 units in length from the Raman
spectra data. These patches then undergo a linear trans-
formation using a 128 × 256 weight matrix, followed by a ReLU
activation to introduce nonlinearity, since nonlinearity is crucial
to enable a neural network to approximate nonlinear functions
effectively.

Our model includes three transformer encoder layers, which
are responsible for obtaining meaningful hidden representations
from the input data. Within the transformer encoder layers, our
model operates at a dimensionality of 256. The core element of a
transformer encoder is the self-attention mechanism, which
provides the model to learn the long-term dependencies of the
input. We employ eight self-attention heads to capture various
aspects of the data’s dependencies, while the feed-forward
dimension is set to 1024, ensuring effective feature representa-
tion.

After the transformer encoder layers, data are fed into
convolution layers, which provide capturing spatial hierarchies
in the input. In our model, the convolution layers comprise 1-D
filters (256 and 512 filters of size 9) with a stride of 2. To account
for boundary effects, padding is applied with a width of 4 units.
After each convolution layer, batch normalization and GELU
activation are applied, where batch normalization is used to
normalize the data and stabilize the training process, and GELU
is employed to obtain a more stable training process due to its
smooth nature.

The features obtained from these layers undergo global
average pooling, which aggregates information across the
temporal dimension, thereby compactly representing crucial
details while mitigating noise. This pooled representation is then
propagated through linear layers with ReLU activations, further

enhancing the model’s capacity to capture complex patterns.
These layers reduce the dimensions of data from 512 to 256 and
subsequently to M, where M is the number of distinct
components. In this study, we chooseM as 3, since the mixtures
in our data set consist of three components, at most. Hence, the
last layer produces predicted component ratios as the final
output. The model’s training employs an L1 loss function, as
shown in eq 5, quantifying the absolute disparity between
predicted and actual ratios:

= | |
=

L
N

y y1

i

N

i i
1 (5)

where yi and ŷi are the true and predicted values for the ith
sample, respectively, and N is the number of samples.

These architecture details outline a comprehensive frame-
work designed to extract, transform, and analyze spectral data,
enabling an accurate prediction of component ratios.

3.3. Model Training. The proposed deep learning model is
trained using a data set containing Raman spectra and
corresponding ground truth component ratios. The training
process involves the following steps:

1. Data Augmentation: During training, each input spectrum
is augmented by adding a small amount of random noise.
This enhances the model’s robustness and generalization
to noisy spectra. Given a clean signal x, the additive noise
model applies Gaussian noise n with mean μ and standard
deviation σ, resulting in a noisy signal y as follows:

= +y x n n N, ( , ) (6)

2. Optimizer and Learning Rate Schedule: The stochastic
gradient descent optimizer with momentum and weight
decay is used for parameter optimization. A cosine
annealing learning rate schedule is applied to reduce the
learning rate during training gradually.

3. Evaluation: We comprehensively evaluate our proposed
model using a leave-one-out cross-validation (LOOCV)
method due to limited data availability. We use MAE and
RMSE metrics to evaluate the outputs of our algorithm
given in eqs 7 and 8, respectively:

= | |
=n

y yMAE
1

i

n

i i
1 (7)

=
=n

y yRMSE
1

( )
i

n

i i
1

2

(8)

We also utilized the signal-to-noise ratio (SNR) to
assess the performance of our method against noise. Let
Psignal and Pnoise be the signal power and noise power,
respectively. SNR is defined in eq 9 as follows:

=
i
k
jjjjj

y
{
zzzzz

P

P
SNR 10log10

signal

noise (9)

4. RAMAN SPECTROSCOPY SETUP AND RAMAN
SPECTRAL MIXTURE DATA SET

We used a commercially available USB Raman spectrometer
(QE Pro Raman+) for recording the Raman spectra. The laser
excitation of the sample at 785 nm and Raman signal collection
after excitation are performed by using a Raman fiber optic
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probe, which is equipped with excitation and collection fibers.
The laser is coupled to the excitation fiber tip through the SMA-
SMA connectors. It is then directed toward the chemical holder
cuvette upon reflection off a dichroic mirror and is focused on
the cuvette via a lens. The generated Raman signal is collected by
the same lens, spectrally filtered, and coupled to the collection
fiber tip. The collection fiber tip is then connected to the USB
spectrometer.

We collect a Raman data set of 37 samples in total, to identify
and quantify the components in a given mixture, where the data
set contains three chemicals and their various binary and ternary
mixtures. We choose methanol (Tekkim TK.911022.02501),
isopropyl alcohol (Tekkim TK.090250.02501), and ethanol-
amine (Fisher Chemical E/0701/08), i.e., easily accessible
chemicals in laboratories. For Raman spectroscopy, we prepare
the chemicals and their mixtures in cuvettes (ISOLAB
I.098.02.002.100) that are typically used in spectrophotometers.
First of all, we measured the Raman spectra of individual
chemicals to determine the spectral characteristics of the
chemicals. We also collect the spectrum of the empty cuvette
to account for the spectral lines emitted from the chemical
holder, which is made of polystyrene. We then prepare
numerous mixtures of two chemicals with alternating ratios,
from methanol, isopropyl alcohol, and ethanolamine, to expose
the proposed transformer-based algorithmwith a spectrally wide
range of samples.

We further examine the mixtures of chemicals that are
prepared by using three chemicals to evaluate how the algorithm
performs for differentiating the components of ternary mixtures.
For this purpose, we prepare a 1:1:1 mixture of methanol,
isopropyl alcohol, and ethanolamine, as well as the three-
chemical mixtures with varying volume amounts. Figure 2 shows

an exemplary spectrum of a mixture and the three main
components in the data set, namely, methanol, isopropyl
alcohol, and ethanolamine. Table 1 summarizes the component

ratios of mixtures in our data set. It is important to note that for
all measurements performed on mixtures 120 mW excitation
laser power at 785 nm is used with an acquisition time of 5 s.

The volume of one chemical in the mixtures shown in Table 1
is limited to 8.75% at the lowest. Therefore, it is very beneficial to
analyze cases where one chemical is dominant and the other
chemical is in very low amounts, especially for forensic and
pharmaceutical applications. For this aim, we also measure the
Raman spectra of isopropyl alcohol and ethanolamine mixtures
with alternating volume ratios of 1, 3, and 5%, which yields six

Figure 2. Raman spectra presented here showcase a specific ternary mixture and its individual components: (a) methanol (M), (b) isopropyl alcohol
(IPA), and (c) ethanolamine (E) and (d) Raman spectrum of a ternary mixture composed of M, IPA, and E. The respective ratios of these components
in the mixture are methanol at 78.75%, isopropyl alcohol at 8.75%, and ethanolamine at 12.50%.

Table 1. Component Ratios for the Mixtures in Our Training
Set, Which Are Controlled Series of Alternating Two- and
Three-Chemical Mixtures with Depicted Varying Volume
Amountsa

mixture of M
and IPA (%)

mixture of M
and E (%)

mixture of
IPA and E

(%) mixture of M, IPA, and E (%)

M IPA M E IPA E M IPA E

10 90 10 90 10 90 8.75 78.75 12.50
20 80 20 80 20 80 17.50 70 12.50
40 60 40 60 40 60 35 52.50 12.50
50 50 50 50 50 50 33.33 33.33 33.33
60 40 60 40 60 40 52.50 35 12.50
80 20 80 20 80 20 70 17.50 12.50
90 10 90 10 90 10 78.75 8.75 12.50

aM, IPA, and E represent methanol, isopropyl alcohol, and
ethanolamine, respectively.
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Figure 3. Prediction errors of methanol (M), isopropyl alcohol (IPA), and ethanolamine (E) in the mixtures of (a) isopropyl alcohol and
ethanolamine, (b) methanol and ethanolamine, and (c) methanol and isopropyl alcohol. Actual mixture percentages of M, IPA, and E are specified
under each bar plot, respectively.
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extra samples in turn. These mixtures are used only for the
evaluation of our algorithm in challenging scenarios; hence, they
are not included in the training step of our model. The
performances of our algorithm on challenging samples are
presented in Figures 3−7 and Tables 2 and 3.

5. RESULTS AND DISCUSSION
Upon training completion, the model is evaluated on a held-out
test data set. The predicted component ratios are compared to
the ground truth ratios, and various performance metrics are
computed. To evaluate the power of our proposed model, we
conduct comparative assessments against several established

models/methods, which are the least squares, ResNet50, MLP,
and VGG11, as demonstrated in Table 2.

The proposed transformer-based method yields encouraging
outcomes in its capability to predict component ratios from
Raman spectra. By combination of transformer encoders and
convolutional layers, the model adeptly extracts both low-band
and high-band characteristics of the Raman spectra, resulting in
holistic representations of mixtures and components. This
combination of distinctive layers effectively empowers the
model to thoroughly comprehend the complex relationship
between the spectral features and component ratios, thus
enhancing the prediction performance. Consequently, our
model emerged as the frontrunner in this comparative analysis,
surpassing all aforementioned methods in terms of both RMSE
and MAE metrics.

Furthermore, the prediction errors of methanol, isopropyl
alcohol, and ethanolamine are plotted in a sample-wise manner
in Figure 3. Although prediction errors for individual chemicals
are only relatively high compared to the mixtures, where
individual chemicals can be considered as some of the extreme
cases. Moreover, the prediction errors of each component in the
ternary mixture samples are plotted in Figure 4. The findings
indicate that our approach can successfully quantify the
components in the ternary mixtures with an average of 1.4%
error.

To further assess the performance of our approach, we
validate RamanFormer on challenging scenarios of mixtures,
where one chemical is dominant and the other chemical is
present in very low amounts, which are 1, 3, and 5%. The
prediction errors of the components in these mixtures are
plotted in Figure 5. Results show that our approach can make
more accurate predictions of the component ratios, in the case in
which ethanolamine is the dominant chemical in the mixtures.

In another set of experiments, the robustness of our method
was tested against noisy conditions. Initially, noise was
incorporated into the training data set to simulate a variety of
Raman signals characterized by different SNRs, achieved by
introducing noise with varying standard deviation levels into the
input signals. Figure 6 showcases the test error outcomes when
the model is trained across these diverse SNR values. This
visualization highlights the model’s ability to converge
effectively under varying noise levels in the training data,

Table 2. Comparison of Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE) for Component Ratio
Prediction Using LS,53,56−59 MLP,51 VGG11,51 and
ResNet5051 Techniques

method RMSE (%) MAE (%)

least squares53,56−59 3.6 3.1
MLP51 36.4 31.3
VGG1151 4.1 3.0
ResNet5051 3.2 2.9
RamanFormer (Ours) 1.6 1.4

Table 3. Variation of MAE and RMSE with Increasing
Standard Deviation of Noise in the RamanFormer Resultsa

standard deviation MAE (%) RMSE (%)

0.1 1.5 1.7
0.2 1.7 2.0
0.3 1.8 2.1
0.4 2.7 3.3
0.5 3.9 4.7
0.6 5.1 6.4
0.7 6.1 7.8
0.8 7.5 9.4
0.9 8.7 10.7
1.0 9.4 11.8

aAs the standard deviation escalates, both the mean absolute error
(MAE) and the root mean square error (RMSE) demonstrate a
progressive increase, signifying a decrement in predictive accuracy.

Figure 4. Prediction errors of methanol (M), isopropyl alcohol (IPA), and ethanolamine (E) in the ternary mixtures. Actual mixture percentages of M,
IPA, and E are specified under each bar plot, respectively.
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demonstrating its adaptability and robustness in handling noisy
spectroscopic data.

Subsequently, to rigorously assess the robustness of our
proposed methodology, noise was incorporated into the testing
data set. During this phase, the model underwent training using
data that had been deliberately disturbed with Gaussian noise,
exhibiting a standard deviation of 0.1. The objective was to
examine the model’s performance against variably noised test
samples. The prediction errors over a range of SNR values are
illustrated in Figure 7, providing a comprehensive evaluation of
the model’s resilience. The analysis reveals that the model
demonstrates consistent and reliable performance for test data
characterized by SNR values exceeding 7.5 dB. This observation
underscores the RamanFormer’s capacity to effectively handle
noise, indicating its substantial robustness and applicability in
the practical analysis of Raman spectroscopy data under noise-
influenced conditions.

Moreover, Table 3 presents the performance of the proposed
approach in terms of the MAE and RMSE for different standard
deviation values of the added noise. As the standard deviation of
the noise increases from 0.1 to 1.0, the table demonstrates a clear

trend: both the MAE and RMSE metrics exhibit a progressive
increase. This indicates that as the noise level in the test data
becomes more pronounced, the model’s ability to accurately
predict the component ratios diminishes. Specifically, at lower
noise levels (standard deviation of 0.1), the model shows
resilience with an MAE of 1.5% and an RMSE of 1.7%. These
errors are relatively minimal, suggesting that RamanFormer
maintains a high accuracy even in the presence of slight noise.

However, as the noise level escalates, the prediction errors
increase noticeably. For example, when the standard deviation
reaches 0.5, the MAE and RMSE jump to 3.9 and 4.7%,
respectively. Beyond this point, the errors continue to grow
more substantially, reaching an MAE of 9.4% and an RMSE of
11.8% at a standard deviation of 1.0. This pattern underscores
the natural consequence of higher noise levels, making it more
challenging for the model to decipher the underlying spectral
signatures of the components, thus affecting its predictive
performance.

Table 3 and Figure 7 provide quantitative insight into the
robustness of the RamanFormer model against noise. While it
demonstrates an expected decrease in performance with
increasing noise, the gradual nature of this degradation suggests
that RamanFormer is tolerant to noise to a certain degree. This

Figure 5. Prediction errors of methanol (M), isopropyl alcohol (IPA), and ethanolamine (E) in the binarymixtures of challenging scenarios, where one
chemical is dominant and the other chemical is present in very low amounts.

Figure 6. Demonstration that when exposed to a noisy training set
characterized by diverse signal-to-noise ratio (SNR) values, the model
exhibits the capability to achieve convergence even with a signal-to-
noise ratio (SNR) of 0 dB, though with a somewhat higher error.
Training instances are augmented with additive Gaussian noise as in eq
6, while evaluation of the error is conducted on the clean, untouched
test data.

Figure 7. Evaluation of the RamanFormer model’s performance across
different levels of additive noise, as measured by varying signal-to-noise
ratios (SNR), showcasing its durability against noise in test data.
Notably, RamanFormer remains effective against noise up to a 10 dB
SNR threshold, after which error rates start to increase gradually.
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analysis is critical for understanding the practical limitations and
applications of the model, especially in real-world scenarios
where noise is an inherent part of spectroscopic data.

In summary, the exceptional outcomes of our study
emphasize the significant impact that our approach could have
in enhancing the field of component ratio prediction using
Raman spectroscopy. The ability of our model to outperform
traditional methods confirms the benefits of adopting innovative
strategies including the use of transformer encoders and
convolutional layers. Additionally, the findings reveal our
model’s proficiency in accurately quantifying mixture compo-
nents under various challenging conditions. Moreover, the
robustness of our approach against noise further validates its
applicability and reliability in practical spectroscopic analysis
scenarios.

6. CONCLUSIONS
This study introduces RamanFormer, a novel transformer-based
approach for the identification and quantification of compo-
nents in mixtures using Raman spectroscopy. Our model,
characterized by an effective combination of transformer
encoders and convolutional layers, is designed to effectively
reveal the intricate patterns and dependencies in Raman spectra,
thereby enabling an accurate prediction of component ratios.
The architecture of RamanFormer, which incorporates trans-
former encoder layers, convolution layers, and global average
pooling, demonstrates a sophisticated understanding of both
low-band and high-band characteristics of the spectral data.

The comprehensive evaluation of RamanFormer across
various data samples, including binary and ternary mixtures of
chemicals, highlights its superior performance over traditional
and contemporary approaches. Ourmodel not only outperforms
existing methods in terms of RMSE and MAE but also proves to
be robust in challenging scenarios, where components are
present in significantly low amounts. Moreover, the effectiveness
of RamanFormer under conditions of varying noise levels
underscores its practical applicability in real-world scenarios,
where noise is an inevitable factor.

This study makes several significant contributions to the field
of spectroscopy through the development, evaluation, and
comparison of RamanFormer, a transformer-based model
designed for Raman mixture analysis. First, the introduction of
RamanFormer represents a noteworthy advancement in spec-
troscopy, leveraging transformer technology to tackle the
complex challenge of mixture analysis. The model’s evaluation
on a data set, encompassing both binary and ternary mixtures,
highlights its adaptability and resilience, showcasing its ability to
handle different scenarios with precision. Furthermore, the
superior performance of RamanFormer demonstrated through a
comparative analysis with existing methods, underscores its
effectiveness in delivering accurate predictions of component
ratios. These contributions collectively yield the potential of
RamanFormer to revolutionize the approach to analyzing
Raman spectroscopy data, offering enhanced accuracy and
robustness.

Our findings indicate the potential of leveraging advanced
machine learning architectures, such as transformers, in the
realm of spectroscopy. By accurately identifying and quantifying
the components of mixtures, RamanFormer paves the way for
advancements in various applications, including materials
science, food safety, forensics, and medical diagnostics. Future
work may focus on further refining the model’s architecture to
enhance its performance, exploring its applicability to other

types of spectroscopic data, and extending its capabilities to
handle larger and more complex data sets.

In conclusion, RamanFormer represents a significant step
forward in the application of machine learning techniques to
Raman spectroscopy. Its success in accurately predicting
component ratios, coupled with its robustness to noise, holds
promising implications for the broader field of spectroscopic
analysis and beyond.

■ AUTHOR INFORMATION
Corresponding Author

Onur Can Koyun − Signal Processing for Computational
Intelligence Research Group (SP4CING), Informatics
Institute, Istanbul Technical University, 34469 Istanbul,
Turkey; orcid.org/0000-0002-4755-3935;
Email: okoyun@itu.edu.tr

Authors
Reyhan Kevser Keser − Signal Processing for Computational
Intelligence Research Group (SP4CING), Informatics
Institute, Istanbul Technical University, 34469 Istanbul,
Turkey
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