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Abstract: Dementia is a disease in which memory, thought, and behavior-related disorders progress
gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s
disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to
treat as its incidence continues to increase worldwide. Many studies have been performed concerning
the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-
5) are attracting attention as pharmacological treatments to improve the symptoms. This review
discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation
of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the
results of the animal behavior analysis experiments utilizing the Morris water maze were compared
through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive
function. According to the selection criteria, 997 publications on ROCK and 1772 publications on
PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed
good improvement in cognitive function tests, and what is expected of the synergy effect of the two
drugs was confirmed in this review.

Keywords: Alzheimer’s disease; cGMP; ERM; LIMK; meta-analysis; MLC; Morris water maze; PDE-5
inhibitor; ROCK inhibitor; vascular dementia

1. Introduction

Dementia refers to a significant decrease in an individual’s cognitive level accompanied
by memory, thought, and behavior-related disorders caused by brain damage due to injury
or disease, and it hinders the patient’s social function [1]. Although dementia usually
occurs in the elderly, it is not an inevitable consequence of aging. It is currently the seventh
leading cause of death among all diseases and a major cause of disability among the elderly
worldwide. Dementia has a physical, psychological, social, and economic impact, not only
on patients with dementia but also on their acquaintances, families, and society at large.

There are two main types of dementia: Alzheimer’s disease (AD) and vascular de-
mentia (VD). AD is a neurodegenerative disease and accounts for 60–70% of patients with
dementia [2]. AD causes abnormal accumulation of amyloid-beta (Aβ) as amyloid plaque
and tau protein and the formation of neurofibrillary tangles (NFT), resulting in gradual loss
of brain function [3]. In the early stages, patients experience mild cognitive impairment,
indifference, and depression [4]. As the disease progresses, disturbances in language,
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execution skills, short-term memory, and long-term memory become more pronounced; in
the latter stages of severe illness, daily life activities become difficult without dependence
on caregivers [5–10].

The other type of dementia, VD, is caused due to issues with the brain blood supply,
which usually worsens cognitive performance and gradually decreases due to minor
strokes [11]. VD also exhibits mild cognitive impairment, acute or subacute progressive
cognitive impairment, depending on severity, and is often accompanied by AD [12].

Currently, more than 55 million people worldwide live with dementia, and nearly
10 million new patients are identified every year. In 2020, the prevalence of AD in the United
States was estimated at 5.3% in the 60–74 year age group, 13.8% in the 74–84 year age group,
and 34.6% in the ≥85 year age group [13]. The prevalence of VD in the United States was
2.43% in all patients > 71 years, and it was found that it doubles every 5.1 years [14,15].
In addition, dementia caregivers spend an average of 47 h per week on patient care, with
direct and indirect costs of caring for patients ranging from $18,000 to $77,500 in the United
States [16].

Several considerations have been proposed to treat AD [17]. The goal of treatment for
AD patients is to improve the loss of memory and cognition, or slow the loss as much as
possible. Anticholinesterases, such as Donepezil, attempted to improve AD by increasing
cholinergic synaptic transmission in synaptic gaps. As an antioxidant treatment to protect
neurons from oxidative stress, there is also a method of slowing the late-stage progression
of AD by administering Alpha-tocopherol (vitamin E) and Idebenone. The most recently
FDA-approved AD drug, aducanumab, is a monoclonal antibody that targets AB to reduce
the accumulation of AB. However, there is still controversy over the instability [18,19].

2. Pathophysiology of Dementia

AD is characterized by NFTs of extracellular Aβ plaque and highly phosphorylated
tau [20]. According to the amyloid hypothesis, extracellular Aβ deposition is the underlying
cause of AD. It is supported by the fact that patients with disorders in expressing the gene
for amyloid precursor protein (APP) exhibit early Alzheimer’s symptoms [21–23]. APP is a
transmembrane glycoprotein that is the precursor of amyloid β (Aβ), a 40–42 amino acid
peptide that is the principal constituent of senile plaques and cerebrovascular deposits in
AD [24–27]. The Aβ is toxic to neurons and can cause neurodegenerative mechanisms. The
tau hypothesis explains that tau protein abnormalities cause the initiation of the disease.
Highly phosphorylated tau forms an NFT inside the nerve cell body, decomposes the
microtubules, and causes the collapse of the neuron’s transport system along with the de-
struction of the cell skeleton [28,29]. Another hypothesis suggests that neuroinflammation
causes AD, which has been discussed intensively [30,31]. The accumulation of Aβ and
NFT increases the expression of microglia and astrocyte, which are glial cells responsible
for nerve immunity in the brain, which, after exposure to amyloid-beta, secretes cytokine,
interleukin, nitric oxide, and other cytotoxic reactions in patients, exacerbate AD [31–33].

VD is associated with several cerebrovascular risk factors [34]. Some factors involved
in cerebrovascular disease include sex, age, vascular risk factors, some disorders, genetic fac-
tors, and inflammation. The representative diseases include arteriosclerosis, cerebral amy-
loid angiopathy, cerebral autosomal dominant arteriopathy with subcortical infarcts and
leukoencephalopathy, basal ganglia calcification, and other intracerebral vasculopathies.
Other risk factors include stroke, psychological stress or life history, and fat diet intake.
Additionally, several small thromboembolic strokes or strokes at major locations, such as
the frontal lobe, sagittal, or temporal lobe, can cause cognitive disorders.

A mechanism of ischemic VD involves a major vascular disease in which blood flow
in the brain decreases because of arterial stenosis. However, this has not been sufficiently
investigated clinically, and the large vessel disease associated with VD is unclear. However,
small changes in blood vessels cause damage to brain tissue and are potentially responsible
for cognitive impairment. Another possible mechanism influencing small blood vessel
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changes is incomplete ischemia and selective tissue necrosis, causing selective neurological
necrosis due to decreased functioning of neuroglial cells and microvessels [35–37].

3. Rho-Associated Protein Kinase (ROCK) and Dementia

ROCK is the downstream effector protein of RhoA, a GTP-binding protein [38,39].
It belongs to the AGC (PKA/PKG/PKC) family of serine-threonine-specific protein ki-
nase. It plays an important role in vasoconstriction, and its isoforms include ROCK1 and
ROCK2 [39–42]. ROCK1 is commonly expressed in all tissues but less in the brain and
skeletal muscles. ROCK2 is more abundant in the brain, muscles, heart, lungs, and pla-
centa [43–47]. ROCK is related to hypoxia exposure, endothelial dysfunction, vascular
smooth muscle cell (VSMC) proliferation, reactive oxygen species (ROS), and inflammatory
cell migration. It is the main regulator of actin organization [48,49]. It phosphorylates
various substrates, including Lin-11/Isl-1/Meg-3 (LIM) kinase (LIMK), Myosin light chain
(MLC), and MLC phosphatase (MLCP). ROCK influences amyloid-beta production, NFT
formation, and neuroinflammatory regulation, affecting AD incidence [50–53].

3.1. ROCK and AD

Mutation of presenilin (PSEN) was confirmed in cases of early-onset AD [54]. The
APP is cleaved by both β-secretases and γ-secretase enzymes to form Aβ, and PSEN is
a component of γ secretase. Therefore, mutation of PSEN leads to an increase in the
Aβ42:Aβ40 ratio due to an increase in the expression of Aβ42, which promotes early
Aβ deposition [55]. ROCK contributes to these secretases cleaving APP to increase Aβ

production. The increase in Aβ levels further suggests a positive feedback role for ROCK,
though the specific basic mechanism for this remains unclear [56].

In addition, hyperphosphorylation of tau, a characteristic of AD, seems to be associ-
ated with ROCK. Although no specific mechanism has been identified, ROCK activation
activates tau kinase and inhibits tau phosphatase, increasing the expression of P-tau and
oligomeric tau. It also reduces the microtubule-binding of tau and increases the formation
of NFTs in neurons [57].

3.2. ROCK and Vascular Remodeling

ROCK is involved in vascular remodeling, which starts with RhoA. Downstream tar-
gets of ROCK include MLCP, LIMK, Ezrin/Radixin/Moesin (ERM) intermediate filaments,
and other factors affecting intracellular processes that are important for cell contraction,
movement, proliferation, and morphology (Figure 1). RhoA binds to GTP from the G-
protein-receptor. When the cytoplasmic concentration of ROCK and Ca2+ increases through
guanine nucleotide exchange factors, the increased ROCK phosphorylates MLC [58]. The
increase in MLC phosphorylation results in the contraction of the smooth muscle by
combining myosin crossbridge and actin filaments. LIM phosphorylated by ROCK then
phosphorylates cofilin to inhibit actin decomposition activity. Cofilin is an actin-binding
protein associated with the rapid depolymerization of actin microfibers. It regulates the as-
sembly and decomposition of actin filaments. The ERM family crosslinks the protoplasmic
membrane and the actin filament to prevent actin-binding according to the folding of the
ERM protein.

ROCK is also related to endothelial NOS (eNOS): it is the upstream negative regulator
of eNOS, and its expression reduces eNOS expression [59]. eNOS has a protective function
in the cardiovascular system due to nitric oxide (NO) production. NO catalyzes the conver-
sion of guanosine triphosphate to cGMP by activating the enzyme soluble guanylate cyclase
(sGC). This cGMP acts on vascular relaxation and contributes to vascular remodeling. NO
production of eNOS inhibited by ROCK ultimately reduces the cGMP of VSMCs, thereby
constricting blood vessels. In animal experiments of the VD model, an increase in ROCK
expression was shown [60].
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Figure 1. The RhoA/ROCK pathway and PDE-5 pathway contribute to smooth muscle contraction. 
ROCK prevents dephosphorylation of phosphorylated MLC and contributes to smooth muscle con-
traction by activating the LIMK2/cofilin pathway and the ERM pathway. PDE-5 decomposes in-
creased cGMP from eNOS/NO, contributing to the contraction of VSMC. cGMP: cyclic Guanosine 
monophosphate; eNOS: endothelial nitric oxide synthase; ERM: ezrin/radixin/moesin; GTP: guano-
sine triphosphate; LIMK: Lin11-Isl1-Mec3 kinase; MLC: myosin light chain; NO: nitric oxide; PDE-
5: phosphodiesterase-5; ROCK: rho-associated protein kinase. 
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conversion of guanosine triphosphate to cGMP by activating the enzyme soluble guanyl-
ate cyclase (sGC). This cGMP acts on vascular relaxation and contributes to vascular re-
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to various signals, including infection, traumatic brain damage, toxic metabolites, or au-
toimmune. Neuroinflammation is a common feature observed in many neurodegenera-
tive disorders and is an important factor in neurodegenerative progression. The involve-
ment of local innate immune responses contributes greatly to central nervous system 
(CNS) damage [61]. 

Activation of the RhoA/ROCK pathway increases the permeability of inflammatory 
factors in response to inflammatory stimuli (Figure 2). The RhoA/ROCK pathway, 
through G-protein-receptors, is upregulated by chemokine-like MCP-1 and increases res-
olution from occludin, claudin-5, ZO-1 Ser/Thr phosphorylation, and tight junctions (TJ) 

Figure 1. The RhoA/ROCK pathway and PDE-5 pathway contribute to smooth muscle contrac-
tion. ROCK prevents dephosphorylation of phosphorylated MLC and contributes to smooth muscle
contraction by activating the LIMK2/cofilin pathway and the ERM pathway. PDE-5 decomposes
increased cGMP from eNOS/NO, contributing to the contraction of VSMC. cGMP: cyclic Guanosine
monophosphate; eNOS: endothelial nitric oxide synthase; ERM: ezrin/radixin/moesin; GTP: guano-
sine triphosphate; LIMK: Lin11-Isl1-Mec3 kinase; MLC: myosin light chain; NO: nitric oxide; PDE-5:
phosphodiesterase-5; ROCK: rho-associated protein kinase.

3.3. ROCK and Neuroinflammation

Neuroinflammation is an inflammation of nerve tissue and can begin as a response
to various signals, including infection, traumatic brain damage, toxic metabolites, or au-
toimmune. Neuroinflammation is a common feature observed in many neurodegenerative
disorders and is an important factor in neurodegenerative progression. The involvement
of local innate immune responses contributes greatly to central nervous system (CNS)
damage [61].

Activation of the RhoA/ROCK pathway increases the permeability of inflammatory
factors in response to inflammatory stimuli (Figure 2). The RhoA/ROCK pathway, through
G-protein-receptors, is upregulated by chemokine-like MCP-1 and increases resolution from
occludin, claudin-5, ZO-1 Ser/Thr phosphorylation, and tight junctions (TJ) to increase
the barrier [62]. In addition, intracellular adhesion molecule 1 (ICAM-1) and vascular cell
adhesion protein 1 (VCAM-1) increase inflammatory cell penetration in the CNS from
RhoA/ROCK activation. Studies have shown that ROCK activation promotes neutrophil
penetration in inflammation through NADPH oxidase activation and ROS generation.
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Figure 2. Improvement of the inflammatory response and recruitment of inflammatory cells due to
various factors in the ROCK and PDE family. CyPA: cyclophilin A; ICAM-1: intercellular adhesion
molecule 1; MCP-1: monocyte chemoattractant protein 1; NF-κB: nuclear factor kappa-light-chain-
enhancer of activated B cells; NO: nitric oxide; PDE-5: phosphodiesterase-5; PKA: protein kinase A;
ROCK: rho-associated protein kinase; ROS: reactive oxygen species; VCAM-1: vascular cell adhesion
molecule 1.

ROCK also directly increases the inflammatory response. Section 3.2 mentions eNOS
and NO, which also inhibit chemokine and nuclear factor kappa B (NF-κB). Therefore, an
increase in ROCK leads to a decrease in eNOS, resulting in an increase in the inflammatory
response. In addition, the activated RhoA induces activation of p38 mitogen-activated
protein kinase (p38 MAPK), which induces up-regulation of IL-4, IL-10, and INF-γ produc-
tion [63,64]. ROCK2 also serves to phosphorylate the transcription factor IRF4 required for
IL-17 and IL-21 generation and IL-17 T cell differentiation [65]. A study has shown that
upon applying ischemic injury to the brain, the microglial proliferation contributing to
neuroinflammation increases [66].

Cyclophilin A (CyPA) is a protein belonging to the immunophilin family. When ROS
is induced in a hypoxic state, it stimulates CyPA secretion along with ROCK activity. CyPA
secreted from VSMCs binds to basigin, a receptor outside the cell, to regulate the cell signal
pathway [67] and acts as a chemical inducer for inflammatory cells [68,69].
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4. Phosphodiesterase-5 (PDE-5) and Dementia

The PDE superfamily consists of 11 subtypes, PDE1-PDE11, and classification is based
on sequence homogeneity [70]. PDE-1, PDE-2, PDE-3, PDE-10, and PDE-11 hydrolyze
cGMP and cAMP; PDE-4, PDE-7, and PDE-8 preferentially cleave cAMP; and PDE-5, PDE-
6, and PDE-9 preferentially cleave cGMP. PDE- 5 is an enzyme that hydrolyzes cyclic
nucleotides, cAMP, and cGMP. cAMP is used for intracellular signaling to deliver cAMP-
dependent pathways. cGMP regulates ion channels, glycogen degradation, and apoptosis
and relaxes vascular smooth muscle tissue. In addition, the cGMP signaling pathway
regulates several psychological processes, including vascular tension, visual signal trans-
mission, energy metabolism, kidney function, bowel movement, fat decomposition, oocyte
maturation, cerebellar motion regulation, transcription, cell growth, and anti-inflammatory
function [71–79].

4.1. PDE-5 and AD

The relationship between PDE-5 and AD focuses on the NO pathway. The NO/sGC/
cGMP signaling pathway appears abnormally in the AD brain [80–83]. In aging wild mice,
eNOS deficiency showed an increase in Aβ production [84,85], and the depletion of iNOS
in AD mice with APP mutation resulted in elevated levels of Aβ and hyperphosphorylation
of tau [86]. This hyperphosphorylation of tau is thought to be because Akt inhibits glycogen
synthase kinase-3 beta (GSK-3β), mediating tau phosphorylation due to the activation of
the P13K/Akt pathway of NO. Therefore, the decrease in NO due to PDE-5 leads to an
increase in tau phosphorylation. PDE-5 is upregulated in the cerebrospinal fluid (CSF) of
patients with AD, and cGMP levels are decreased [87].

4.2. PDE-5 and Vascular Remodeling

PDE-5 breaks down cGMP produced from NO/sGC/GTP signals. cGMP acts on blood
vessels and contributes to vascular relaxation. When the cGMP in the VSMCs is reduced by
PDE-5, the blood flow to the brain may reduce due to vasoconstriction (Figure 1).

4.3. PDE-5 and Neuroinflammation

cGMP regulates intracellular inflammatory responses. Monocyte chemoattractant
protein-1 (MCP-1) is a chemokine that contributes to the inflammatory response by re-
cruiting monocyte, memory cells, and dendritic cells at the inflammatory site [82,88]. NO
reduces the expression of MCP-1 mRNA, and the reduction of NO increases the expression
of MCP-1 mRNA [89]. The regulation of the expression of MCP-1 may reduce the decom-
position of IκB inhibiting NF-κB, thereby reducing the inflammatory reaction. PDE-5 may
decompose cGMP in the initial steps of this process, contributing to neuroinflammation.

Astrocyte is a neuroglial cell of the brain and spinal cord. It is involved in blood-brain
barrier formation and function [90], neurotransmission [91], nutrition to nerve tissue, the
balance of extracellular ions, and regulation of cerebral blood flow [92]. The central immune
role of astrocytes is controlled through the cGMP/PKG pathway through NO [93]. Protein
kinase G (PKG) phosphorylates many targets by cGMP and is involved in functions such
as smooth muscle relaxation. cGMP inhibits the expression of major histocompatibility
complex II (MHC-II) derived from interferon-γ (INF-γ) in astrocytes and the expression
of matrix metallopeptidase 9 (MMP-9) and tumor necrosis factor-α (TNF-α) induced by
lipopolysaccharide (LPS) [93,94]. PDE-5 can lead to neuroinflammation by increasing
the expression of INF-α, MMP-9, and TNF-α derived from astrocytes in the brain by
decomposing cGMP.

5. Inhibition of ROCK and PDE-5 Pathway for Neuroprotection

Overexpression of ROCK has been shown to cause an increased inflammatory re-
sponse, increased oxidative stress, high oxidation of tau, and cognitive decline due to
β-amyloid accumulation. In such a situation, ROCK inhibitors are a good choice for treat-
ing dementia. Fasudil is a typical ROCK inhibitor with potential neuroprotective effects
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that can cause neurogenesis and increased neuronal viability [95,96]. Inhibition of ROCK2
leads to nerve survival and axon stability [95,97]. Like Fasudil, a representative ROCK
inhibitor, Y-27632 is a good option for dementia treatment. The resulting ROCK inhibition
has been shown to reduce TNF-α mediated monocyte migration [98,99]. ROCK-suppressed
macrophages showed reduced chemotaxis for MCP-1/CCL2.

PDE-5 suppression is another possibility to improve dementia. PDE-5 inhibitors
increase the cGMP concentration by blocking the cGMP decomposition of PDE-5 described
above, and the increased cGMP expands blood vessels and improves blood flow through
smooth muscle tissue relaxation. Typical PDE-5 inhibitors include sildenafil, vardenafil,
and tadalafil. Subsequent animal studies with sildenafil demonstrated long-term retention
of an inhibitory avoidance response in mice. In an in vitro study using N9 microglia, it
was shown that cGMP accumulated because of regression of PDE-5 following sildenafil
treatment could contribute to inhibiting microglia activation. In addition, injection of PDE-
5 inhibitors into the ischemic stroke rat model with reduced cognitive function through
middle cerebral artery occlusion (MCAo) improved neurological deficits and anxiogenic
disorder and improved locomotion [100].

6. Meta-Analysis of ROCK Inhibitors and PDE-5 Inhibitors in Animal Experiments

In this study, a meta-analysis was performed to investigate the relationship between
cerebrovascular disease and drug effects of ROCK and PDE-5 inhibition in animal models. A
meta-analysis is a quantitative, formal, epidemiological study design used to systematically
assess previous research studies to derive conclusions about that body of research. It can be
performed when there are several scientific studies addressing the same problems, and each
study reports measurements that are expected to be somewhat error-prone. The efficacy of
ROCK inhibitors and PDE-5 inhibitors as drug treatments for dementia in animal models is
analyzed and presented here.

6.1. Methods
6.1.1. Search Strategy and Selection Criteria

Multiple comprehensive databases, such as PubMed, EMBASE, and the Cochrane
Library, were used to search studies on ROCK inhibitors and PDE-5 inhibitors. The
search was conducted on all manuscripts published so far without restriction on the
year of publication. MeSH keywords were searched and are specified in the attached
supplementary data: Keywords for ROCK inhibitors and PDE-5 inhibitors. The searched
publications were evaluated for quality using the Newcastle-Ottawa scale (Table 1), and
data were extracted from each study after completing the search.

Table 1. Newcastle-Ottawa quality assessment scale cohort studies.

Study Model Selection Comparability Outcome
ROCK Inhibitor 1 2 3 4 1a 1b 1 2 3

Yun AD ROCKI 2013 [101] AD * * * * * * * *
YU AD ROCKI 2020 [102] AD * * * * * * * * *
Yu AD ROCKI 2017 [103] AD * * * * * * * * *

Qing-fang AD ROCKI 2018 [104] AD * * * * * * * * *
Min-fang AD ROCKI 2020 [105] AD * * * * * * * *
Manish AD ROCKI 2018 [106] AD * * * * * * * * *

K.H. Reeta AD ROCKI 2017 [107] AD * * * * * * * * *
Jogender AD ROCKI 2013 [108] AD * * * * * * * *

Jiezhong Yu AD ROCKI 2018 [109] AD * * * * * * * * *
Ming ROCKI 2018 [110] VD * * * * * * * *

Lin Huan ROCKI 2008 [111] VD * * * * * * *
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Table 1. Cont.

Study Model Selection Comparability Outcome
ROCK Inhibitor 1 2 3 4 1a 1b 1 2 3

PDE-5 inhibitor
Cuadrado Cognitive PDE5I 2011 [112] AD * * * * * * * *

Cuadrado-Tejedor Cognitive PDE5I 2017 [113] AD * * * * * * * *
Garcia Cognitive PDE5I 2013 [114] AD * * * * * * * *

Gulisano Cognitive PDE5I 2018 [115] AD * * * * * * *
Puzzo Cognitive PDE5I 2009 [116] AD * * * * * * *

Mohamed Cognitive PDE5I 2021 [117] AD * * * * * * * *
Venkat Cognitive PDE5I 2019 [118] AD * * * * * * * *
Zhang Cognitive PDE5I 2018 [119] AD * * * * * * *

Zhu Cognitive PDE5I 2015 [120] AD * * * * * * *
Bhatia Cognitive PDE5I 2019 [121] VD * * * * * * *
Gulati Cognitive PDE5I 2014 [122] VD * * * * * * *

Gulati P Cognitive PDE5I 2014 [123] VD * * * * * * *

* Indication means that the publication corresponds to the part of the Newcastle-Ottawa quality assessment.
AD: Alzheimer’s disease, VD: vascular dementia, PDE5I: phosphodiesterase 5 inhibitor, ROCKI: rho-associated
kinase inhibitor.

6.1.2. Data Extraction

The Morris water navigation task, also known as the Morris water maze (MWM), is a
behavioral technique mostly used with rodents [124]. It is predominantly used in behavioral
neuroscience to study spatial learning and memory. The basic procedure involved in MWM
is that the mouse or rat is placed in a large circular pool and must find an invisible or
visible platform that allows it to escape the water using various cues. The time it takes
to escape is measured, and the maze is divided into quarters to help measure how long
the animal stays in the target area. Animal models of neurotrauma, cerebrovascular
disease, developmental disorders, metabolic disorders, AD, and other disorders with
neurocognitive disorders and cognitive complications have been demonstrated to differ
from healthy models using MWM [125–140]. In addition, as an evaluation of neurocognitive
treatment, it was confirmed that the performance of MWM improved following behavior,
pharmacological, and neurosurgical interventions [141–146].

Two reviewers (D.H.L. and J.S.O.) independently extracted data according to a pre-
determined data extraction form. Duplicate data was removed using Endnote. Features
extracted from each study include the first author’s name, publication year, pathology
induction method of the disease group, drugs used in the experimental group receiving
pharmacotherapy, gender, age, pharmacotherapy method, drug dosage, disease classifi-
cation (AD or VD), MWM—mean value of time spent in the target quadrant (TSTQ), SD
values (%), and mice participating in the experiment (Tables 2 and 3).

Table 2. Baseline characters for the control group and experimental groups extracted from the
selected publications.

Study Model
Sex Age Treatment

Drug Injection Injected VolumeROCK Inhibitor Control
(Disease)

Experimental
(Treatment)

Yun AD ROCKI 2013 Ab1–42 Fasudil Male N.R stereotaxic, left
lateral ventricle 10 mg/kg

YU AD ROCKI 2020 APP/PS1
Ganoderma lucidum

Triterpenoids
(ROCKI)

Male 3 months gavage 1.4 g/kg

Yu AD ROCKI 2017 APP/PS1 Fasudil N.R N.R I.P 25 mg/kg/day
Qing-fang AD ROCKI 2018 APP/PS1 Fasudil N.R 8 months I.P 25 mg/kg/day
Min-fang AD ROCKI 2020 APP/PS1 Fasudil N.R 8 months N.R 25 mg/kg/day
Manish AD ROCKI 2018 ICV-STZ Fasudil N.R N.R I.C.V 3 mg/kg in 10 µL

K.H.Reeta AD ROCKI 2017 ICV-STZ Edaravone (ROCKI) Male N.R I.C.V 10 mg/kg
Jogender AD ROCKI 2013 ICV-STZ Clitoria ternatea

(ROCKI) Male N.R I.C.V 500 mg/kg
Jiezhong Yu AD ROCKI 2018 APP/PS1 Fasudil Male 8 months I.C.V 25 mg/kg/day



Biomedicines 2022, 10, 1348 9 of 20

Table 2. Cont.

Study Model
Sex Age Treatment

Drug Injection Injected VolumeROCK Inhibitor Control
(Disease)

Experimental
(Treatment)

Ming ROCKI 2018 BCAO Y-27632 Male N.R I.P 10 mg/kg
Lin Huan ROCKI 2008 BCAL Fasudil Male N.R I.P 10 mg/kg

PDE-5 inhibitor
Cuadrado Cognitive PDE5I 2011 Tg2576 Sildenafil Female 14–16

months I.P 15 mg/kg/day
Cuadrado-Tejedor Cognitive

PDE5I 2017 Tg2576 CM-414 (PDE5i) Female 14–16
months I.P 40 mg/kg/day

Garcia Cognitive PDE5I 2013 J20 Sildenafil Both 3 months oral gavage 15 mg/kg
Gulisano Cognitive PDE5I 2018 APPswe Vardenafil Both 9–10 months I.P 0.01 mg/kg

Puzzo Cognitive PDE5I 2009 APP/PS1 Sildenafil, Tadalafil Both 3 months I.P 3 mg/kg/day
Mohamed Cognitive PDE5I 2021 ICV-STZ Tadalafil Male 2 months I.C.V 20 mg/kg/day

Venkat Cognitive PDE5I 2019 Cholesterol
crystal Sildenafil Male 16–18

months
Internal carotid

artery 2 mg/kg/day

Zhang Cognitive PDE5I 2018 Multiple micro
infarction KJH-1002 (PDE5i) Male 9 weeks gavage 20 mg/kg

Zhu Cognitive PDE5I 2015 APP/PS1 Sildenafil Male 7 months I.P 6 mg/kg
Bhatia Cognitive PDE5I 2019 BCAO Tadalafil Both 8–9 weeks oral 10 mg/kg
Gulati Cognitive PDE5I 2014 BCAO Tadalafil Male N. R N. R 20 mg/kg

Gulati P Cognitive PDE5I 2014 BCAO Tadalafil Male N. R N. R 20 mg/kg

BCAO: bilateral carotid artery ligation, ICV: intracerebral vascular, ICV-STZ: intracerebral vascular -streptozotocin,
I.P: intraperitoneal, N.R: no record, PDE5I: phosphodiesterase 5 inhibitor, PS1: presenilin 1, ROCKI: rho-associated
kinase inhibitor.

Table 3. Time spent in the target quadrant (%) during the Morris water maze investigation ex-
tracted from each publication. The mean and standard deviation values and the populations of the
experimental and control groups are presented.

Study Model Control (Disease) Experimental (Treatment)
ROCK Inhibitor Mean (%) SD (%) Number Mean (%) SD (%) Number

Yun AD ROCKI 2013 AD 27.75 2.06 20 45.74 4.90 20
YU AD ROCKI 2020 AD 21.47 4.51 6 27.14 2.17 6
Yu AD ROCKI 2017 AD 25.00 1.26 8 31.36 0.96 8

Qing-fang AD ROCKI 2018 AD 21.49 1.95 8 30.00 2.43 8
Min-fang AD ROCKI 2020 AD 20.38 1.65 8 38.52 4.26 8
Manish AD ROCKI 2018 AD 18.63 4.70 6 50.42 3.85 6

K.H.Reeta AD ROCKI 2017 AD 12.03 2.91 6 21.66 4.44 6
Jogender AD ROCKI 2013 AD 25.00 6.09 8 49.68 9.30 8

Jiezhong Yu AD ROCKI 2018 AD 36.95 3.30 9 46.70 3.06 8
Ming ROCKI 2018 VD 25.71 1.56 10 36.29 1.61 10

Lin Huan ROCKI 2008 VD 20.43 7.60 10 33.74 4.69 10
PDE-5 inhibitor

Cuadrado Cognitive PDE5I 2011 AD 16.02 4.09 10 49.65 9.35 10
Cuadrado-Tejedor Cognitive PDE5I 2017 AD 19.33 3.87 8 36.11 6.59 8

Garcia Cognitive PDE5I 2013 AD 26.92 2.24 10 37.79 13.12 10
Gulisano Cognitive PDE5I 2018 AD 21.00 1.02 10 30.67 1.21 9

Puzzo Cognitive PDE5I 2009 AD 22.61 1.58 12 32.93 1.46 11
Mohamed Cognitive PDE5I 2021 AD 10.92 2.67 12 21.79 3.66 12

Venkat Cognitive PDE5I 2019 AD 35.67 3.38 8 50.30 2.40 7
Zhang Cognitive PDE5I 2018 AD 27.66 1.55 8 37.29 2.07 8

Zhu Cognitive PDE5I 2015 AD 16.58 2.10 10 23.23 3.54 10
Bhatia Cognitive PDE5I 2019 VD 26.59 2.51 6 43.14 1.67 6
Gulati Cognitive PDE5I 2014 VD 25.45 1.03 8 34.39 1.29 8

Gulati P Cognitive PDE5I 2014 VD 35.06 1.26 8 46.03 1.41 8

AD: Alzheimer’s disease, VD: vascular dementia, PDE5I: phosphodiesterase 5 inhibitor, ROCKI: rho-associated
kinase inhibitor, SD: standard deviation.

6.1.3. Data Analysis

Meta-analysis was performed using a random effect model. The results were presented
according to the 95% confidence interval (CI). A heterogeneity test was performed using the
Cochran Q test, and a publication bias test was performed using the Egger’s test. Statistical
analysis was conducted using Revman (version 5) software.
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Because of the high heterogeneity, each group was sub-classified into a subgroup, and
a meta-analysis was performed.

6.2. Results

A total of 997 publications on ROCK inhibitors were identified through the search
formula. According to the screening criteria, 11 publications were finally selected (Figure 3)
after (1) removing duplicates; (2) removing articles with an irrelevant title; (3) removing
articles with an irrelevant abstract (excluded if it was based only traditional medicine,
herb extracts, alkaloids, flavonoids, no dementia model animal or patient, no cognition
assessment, no ROCK inhibitors, or there was no clinical trials); (4) evaluating the abstract
and full text for eligibility; (5) excluding articles that effect of ROCK inhibitors that failed
to demonstrate any effects in behavior test; and (6) articles containing quantitative data
of TSTQ of MWM test for meta-analysis. Of these, nine studies were on AD and two
on VD. For PDE-5 inhibitors, 1772 publications were searched and screened according to
the screening criteria (Figure 4). Finally, 12 publications were selected according to the
screening criteria. Nine of these focused on AD and three on VD. The date of the most
recent publication was 31 July 2021 [147].
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excluded. (2) Those with unrelated titles were excluded. Subsequently, (3) those with unrelated
abstracts were excluded, and the exclusion considerations for the abstracts were as follows: only
traditional medicine, herb extracts, alkaloids, and flavonoids. No dementia model animal or patient.
No cognition assessment. No ROCK inhibitors. No clinical trials. (4) The following text was checked
to exclude articles that did not study the effect of ROCK inhibitors on behavioral experiments.
(5) Studies included in the quantitative synthesis. (6) Finally, only studies using the Morris water
maze were left.
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Figure 4. The phosphodiesterase-5 inhibitor study was performed independently along with the flow
chart by two reviewers: (1) Duplicate articles were excluded. (2) Publications with unrelated titles
and abstracts were excluded. (3) According to the eligibility, publications that had no therapeutic
effect in the behavioral experiment were excluded. (4) Full-text articles that were not available for
meta-analysis, that had no animal, cognition, or Morris water maze test, were excluded.

A total of 414 mice participated in the 23 finally selected studies. Both male and female
mice were included in these studies. Their age was widely distributed from 8 weeks to
18 months (Table 2).

Of these, 330 (79.8%) mice had AD, and 84 (20.2%) mice had VD. Methods that induced
AD included drug administration and genetic mutations. The intracerebroventricular strep-
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tozotocin (ICV-STZ) method, which induces AD in animals without transformation, shows
mitochondrial abnormalities [148], decreased glucose use, increased tau phosphorylation,
and neurochemical changes in the brain, such as the 3xTG-AD mouse [149]. AD was
induced in 64 (19.4%) mice through ICV-STZ injection. In addition to drug induction,
there is a model that mimics human AD with genetic mutations. Further, 235 (71.2%) mice
developed AD due to gene mutations. APP is a precursor molecule that produces Aβ and
is a major component of amyloid plaque found in the brain of AD patients. PSEN-1 (PS1)
plays an important role in Aβ generation by cleaving APPs and regulating their activity.
Tg2576 and J20 induced mutations in these APPs, and APP/PS1 induced mutations in both
APP and PS1 resulted in AD.

Mice with conditions imitating VD-induced arteriosclerosis with cholesterol crys-
tals, ischemic stroke with bilateral common carotid artery occlusion (BCAO), or bilateral
common carotid artery ligation had hypoxic damage to the brain.

ROCK inhibitors for pharmacological treatment of dementia (11 out of 23) include
Fasudil and Y-27632. Ganoderma lucidum triterpenoids, Edaravone, and Clitoria ternatea have
also been verified to inhibit the ROCK pathway. PDE-5 inhibitors (12 out of 23), including
sildenafil, tadalafil, vardenafil, CM-414, and KJH-1002 have also been verified in each
publication. The drugs were either stereotaxic, orally-administered, injected into the left
lateral ventricle, administered through gavage, or through intraperitoneal or intracerebral
vascular injection. Of all mice, a total of 205 (49.5%) mice were treated with either ROCK
inhibitors or PDE-5 inhibitors, 98 (23.7%) of which were treated with ROCK inhibitors, and
107 (25.8%) were treated with PDE-5 inhibitors.

Considering that the scales of all studies are not the same and the heterogeneity is
high, the analysis was divided into standardized mean difference (SMD, Figure 5) and
mean difference (MD, Figure 6).
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Figure 6. In the forest plot, the difference between the control group and the experimental group
of each subgroup was analyzed by mean difference (MD). Each subgroup is located at the top and
bottom with PDE-5 inhibitors and ROCK inhibitors. Because of the high heterogeneity, each group
was analyzed by dividing it into subgroups.

Mice, who received all treatments, had an average of 1.83% SMD (95% CI 1.43–2.24,
I2 64%) more cognitive improvement than before treatment. Among them, mice treated
with PDE-5 inhibitors had 1.80% SMD (95% CI 1.25–2.34 I2 61%) cognitive improvement be-
fore treatment, while mice treated with ROCK inhibitors had 1.87% SMD (95% CI 1.25–2.49
I2 66%) cognitive improvement than before treatment. The biggest SMD improvement
among publications with ROCK inhibitor treatment was found in the report of Yun AD
ROCKI 2013, showing a difference of 4.69% (95% CI 3.44–5.94) SMD. Conversely, the small-
est SMD difference was 0.97% (95% CI 0.26–2.19), as reported by K.H. Reeta AD ROCKI
2017. Among the reports receiving PDE-5 inhibitor treatment, the most obvious difference
in SMD was 3.28% (95% CI 1.98–4.57), which was reported by Mohamed Cognitive PDE5I
2021. On the other hand, the PDE-5 inhibitor treatment with the smallest SMD difference
was Garcia Cognitive PDE5I 2013, which reported 0.35% (95% CI 0.54–1.23).

Mice, who received all treatments, had an average of 11.78% MD (95% CI 9.66–13.89,
I2 73%) more cognitive improvement. Among them, mice treated with PDE-5 inhibitors
had 10.73% MD (95% CI 9.21–12.26 I2 16%) cognitive improvement, while mice treated
with ROCK inhibitors had 12.70% MD (95% CI 8.55–16.85 I2 84%) cognitive improve-
ment. The biggest MD improvement noted among publications on ROCK inhibitor treat-
ment was in the report Cuadrado Cognitive PDE5I 2011, showing a difference of 33.63%
(95% CI 13.63–53.63) MD. Conversely, the least MD difference was 6.65% (95% CI −1.42–14.72),
which was reported by Zhu Cognitive PDE5I 2015. Among the reports on PDE-5 inhibitor
treatment, the most obvious difference in MD was 31.79% (95% CI 19.88–43.70), as re-
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ported by Manish AD ROCKI 2018. On the other hand, the PDE5I treatment with the
smallest MD difference was YU AD ROCKI 2020, which reported an improvement of 5.67%
(95% CI 1.67–9.67).

7. Conclusions

Dementia, which causes cognitive impairment, is one of the main causes of death and
affects the families of many patients globally. The main causes of dementia are AD and
VD, and its treatment is difficult. Many mechanism studies on the treatment of dementia
have been performed. We focused on studies of ROCK and PDE-5. ROCK and PDE-
5 contribute to AD deterioration through PS1 mutation and tau hyperphosphorylation,
respectively; cause damage to the brain due to hypoxia, induced by decreased cerebral
blood flow due to vasoconstriction; and contribute to increased pro-inflammatory marker
levels and immune cell migration. Therefore, ROCK and PDE-5 inhibitors are receiving
significant attention as pharmacological treatments for dementia. Improvement of the
cGMP pathway and an increase in the cognitive function of mice following ROCK or PDE-5
inhibition were confirmed in animal and in vitro experiments. In addition, the MWM-
TSTQ (%) results of animal models were compared based on the SMD and MD through
meta-analysis, confirming that both ROCK inhibitors and PDE-5 inhibitors helped improve
cognitive function.

Therefore, the results of this analysis expect synergistic treatment effects for the
combined administration of both drugs. Both ROCK and PDE-5 inhibitors showed good
effects on improving cognitive impairment, and many factors share both mechanisms.
ROCK suppresses eNOS and PDE-5 suppresses NO, leading to a downward adjustment of
NO/cGMP. And they share several factors that can affect neuroinflammatory responses,
such as MCP-1, NF-kB, and VCAM-1. So we conclude that the combined administration of
both inhibitors is worth studying in anticipation of the treatment effect of synergy.
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