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Introduction: Recent studies comparing canine mammary tumors (CMTs) and
human breast cancers have revealed remarkable tumor similarities, identifying shared
expression profiles and acquired mutations. CMTs can also provide a model of inherited
breast cancer susceptibility in humans; thus, we investigated breed-specific whole
genome sequencing (WGS) data in search for novel CMT risk factors that could
subsequently explain inherited breast cancer risk in humans.

Methods: WGS was carried out on five CMT-affected Gold Retrievers from a large
pedigree of 18 CMT-affected dogs. Protein truncating variants (PTVs) detected in all five
samples (within human orthlogs) were validated and then genotyped in the 13 remaining
CMT-affected Golden Retrievers. Allele frequencies were compared to canine controls.
Subsequently, human blood-derived exomes from The Cancer Genome Atlas breast
cancer cases were analyzed and allele frequencies were compared to Exome Variant
Server ethnic-matched controls.

Results: Carcinoembryonic Antigen-related Cell Adhesion Molecule 24 (CEACAM24)
c.247dupG;p.(Val83Glyfs∗48) was the only validated variant and had a frequency of
66.7% amongst the 18 Golden Retrievers with CMT. This was significant compared
to the European Variation Archive (p-value 1.52 × 10−8) and non-Golden Retriever
American Kennel Club breeds (p-value 2.48 × 10−5). With no direct ortholog of
CEACAM24 in humans but high homology to all CEACAM gene family proteins, all
human CEACAM genes were investigated for PTVs. A total of six and sixteen rare PTVs
were identified in African and European American breast cancer cases, respectively.
Single variant assessment revealed five PTVs associated with breast cancer risk. Gene-
based aggregation analyses revealed that rare PTVs in CEACAM6, CEACAM7, and
CEACAM8 are associated with European American breast cancer risk, and rare PTVs
in CEACAM7 are associated with breast cancer risk in African Americans. Ultimately,
rare PTVs in the entire CEACAM gene family are associated with breast cancer risk in
both European and African Americans with respective p-values of 1.75 × 10−13 and
1.87 × 10−04.
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Conclusion: This study reports the first association of inherited CEACAM mutations
and breast cancer risk, and potentially implicates the whole gene family in genetic risk.
Precisely how these mutations contribute to breast cancer needs to be determined;
especially considering our current knowledge on the role that the CEACAM gene family
plays in tumor development, progression, and metastasis.

Keywords: breast cancer, canine mammary tumor, CEACAM, whole genome sequencing, comparative oncology,
inherited risk, rare protein truncating variants, splice mutations

INTRODUCTION

Breast cancer is a serious health concern. Amongst both sexes,
it globally ranks as the second most commonly diagnosed type
of cancer and the second leading cause of cancer-related deaths,
accounting for ∼2.1 million new diagnoses and 626,679 deaths
in 2018 (Bray et al., 2018). Worldwide, it is also the most
common cancer diagnosed in women and the overall leading
cause of cancer-related female deaths (Bray et al., 2018). In the
United States, 2020 estimates predicted breast cancer to be the
leading site of new cancer diagnoses in women and the second
leading cause of cancer-related deaths, resulting in 276,480 new
diagnoses and 42,170 deaths (American Cancer Society, 2020).
Advances in breast cancer research have translated to better
disease screening, diagnosis, and treatment, but new research
questions continuously arise as time and medical needs progress
(Cardoso et al., 2017).

Comparative oncology, which is the study of cancer biology
and therapy in spontaneous, naturally-occurring cancers in
companion animals, provides valuable models of human cancer
that have and will continue to make research advances (Garden
et al., 2018). Recent studies comparing canine mammary tumors
(CMTs) and human breast cancers have revealed notable tumor
similarities, identifying shared expression profiles and acquired
mutations (Liu et al., 2014; Ettlin et al., 2017; Lee et al., 2018,
2019; Kim et al., 2019; Gray et al., 2020). CMTs can also provide
a model of hereditary breast cancer susceptibility in humans,
especially considering similar genetics and familial clustering
(Goebel and Merner, 2017; Gray et al., 2020). While most CMT
studies investigating inherited risk have focused on identifying
genetic variants in orthologs of known human breast cancer risk
genes (Goebel and Merner, 2017; Huskey et al., 2020), in this
study, we investigate breed-specific whole genome sequencing
(WGS) data in search for novel CMT risk factors. WGS studies
have been used to make numerous disease gene discoveries
in dogs, many of which clearly translated to human health
(Gilliam et al., 2014; Guo et al., 2014; Sayyab et al., 2016;
Kolicheski et al., 2017; Fyfe et al., 2018; Meurs et al., 2019).
Taking a similar approach, we identified a Carcinoembryonic
Antigen-related Cell Adhesion Molecule 24 (CEACAM24) protein-
truncating variant (PTV) in a Golden Retriever CMT pedigree,

Abbreviations: CMT, canine mammary tumor; PTV, protein truncating variant;
CHIC, Canine Health Information Center; WGS, whole genome sequencing; PCR,
Polymerase chain reaction; ELM, Eukaryotic Linear Motif; TCGA, The Cancer
Genome Atlas; SNVs, single nucleotide variants; BAM, binary sequence alignment
mapping; GDC, Genomic Data Commons; GATK’s, Genome Analysis Toolkit’s;
gVCF, genome variant calling format; NHLBI, National Heart, Lung, and Blood
Institute; HBOC, hereditary breast and ovarian cancer.

which ultimately revealed that rare PTVs in the CEACAM
gene family are associated with breast cancer risk in humans.
Aberrant expression of many CEACAM genes have previously
been associated with tumorigenesis, and CEACAM gene products
are recognized as clinically-relevant tumor markers (Kuespert
et al., 2006; Beauchemin and Arabzadeh, 2013; Han et al., 2020).
This is the first association to be reported between CEACAM gene
mutations and inherited cancer risk.

MATERIALS AND METHODS

Golden Retriever Pedigree and WGS
As previously described by Huskey et al. (2020), blood- or
buccal-derived DNA samples were obtained from 18 CMT-
affected Golden Retrievers from the Canine Health Information
Center (CHIC) DNA repository, and a pedigree was constructed
linking all 18 dogs in one large pedigree. Five of those Golden
Retrievers (three females and two males) were selected for WGS.
This number was influenced by the cost of WGS. Furthermore,
aiming to identify breed-specific mutations, distantly related dogs
were selected, including two males since male breast cancer is
associated with hereditary disease (Huskey et al., 2020). The WGS
data was processed through a bioinformatics pipeline (Huskey
et al., 2020). Upon alignment to the CanFam3.1 reference
genome and annotation using gene predictions from Ensembl
build version 75, a script was written to isolate PTVs found
in all five Golden Retriever samples. PTVs were defined as
single nucleotide variants (SNVs) that resulted in a premature
stop codon or abrogated a splice site, and small insertions or
deletions (indels) that changed a transcript’s reading frame.
Upon filtering, the genes with PTVs were classified into two
different groups, orthologs of human genes or non-orthologs.
Polymerase chain reaction (PCR) and Sanger sequencing were
carried out to validate the PTVs in human orthologs. CEACAM24
c.247dupG;p.(Val83Glyfs∗48) was the only validated variant.
Following validation, the 13 remaining CMT-affected Golden
Retrievers underwent PCR and Sanger sequencing to determine
their mutation status.

Canine Controls
As a convenient, publically available, online canine genetic
variant repository, the European Variation Archive1 was
initially used to note the allele frequency of CEACAM24
c.247dupG;p.(Val83Glyfs∗48). The European Variation Archive

1https://www.ebi.ac.uk/eva/?eva-study=PRJEB24066
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FIGURE 1 | CEACAM24 (c.247dupG; p.(Val83Glyfs*48)) mutation summary. (A) Samtools tview image capture of the mutation in a WGS CMT-affected Golden
Retriever. (B) Sanger sequencing results of validation in CMT-affected Golden Retriever cohort depicting wildtype (WT), heterozygous, and homozygous sequences
at the mutation location. (C) Mutalyzer prediction of the change in protein sequence with frame-shifting mutation. (D) Depiction of the WT and mutated protein and
lost regions and domains of the dog CEACAM24 protein with the frame-shift mutation.

provides high quality WGS variant calls of over 200 dogs from
multiple breeds (breed and sex information was unknown).
The data was obtained through Ensembl by accessing the
canine gene’s “Variant table” under “Genetic Variation”;
for a particular variant, “Population genetics” information
was given, including European Variation Archive allele

frequencies (Zerbino et al., 2018). Furthermore, additional
splicing, frame-shifting, and stop gain mutations within
the other dog CEACAM genes were investigated through
Ensembl transcripts (CEACAM16: ENSCAFT00000044174;
CEACAM18: ENSCAFT00000004587; CEACAM20: ENSCAFT0
0000047731; CEACAM24: ENSCAFT00000047960; CEACAM28:
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ENSCAFT00000022623). CEACAM1, CEACAM23, and
CEACAM30 did not have variant information available in
Ensembl for European Variation Archive data.

Through the CHIC repository, blood or buccal-swab derived
DNA from purebred, American Kennel Club registered dogs were
randomly selected and obtained to determine the frequency of
CEACAM24 c.247dupG;p.(Val83Glyfs∗48). This included DNA
from Golden Retrievers (n = 87), as well as 13 other breeds,
including Petit Basset des Griffon (n = 10), Gordon Setter
(n = 8), Australian Cattle Dog (n = 10), Siberian Husky
(n = 10), Dalmatian (n = 10), Irish Setter (n = 9), Welsh
Pembroke Corgi (n = 10), Standard Schnauzer (n = 10),
Newfoundland (n = 10), Keeshond (n = 10), Great Dane (n = 8),
Doberman Pinscher (n = 10), and Boxer (n = 10). PCR and
Sanger sequencing were carried out to determine CEACAM24
c.247dupG;p.(Val83Glyfs∗48) genotypes of each dog.

Canine Statistical Analyses
Upon determining CEACAM24 c.247dupG;p.(Val83Glyfs∗48)
allele frequencies, p-values were generated using the Fisher’s
Exact Test in R (v 3.5.1), comparing allele differences in Golden
Retriever to control dogs, including both European Variation
Archive and CHIC DNA samples.

Dog and Human CEACAM Protein
Analyses
EMBOSS water alignment (Madeira et al., 2019) was carried
out to determine the level of homogeneity between the dog

CEACAM24 protein and other dog and human CEACAM
proteins. Additionally, InterPro (Hunter et al., 2009) and
the Eukaryotic Linear Motif (ELM) resource (Kumar et al.,
2020) were used to identify CEACAM domains and binding
motifs, respectively.

Human CEACAM Gene Analysis – The
Cancer Genome Atlas
Due to the homogeneity of the CEACAM gene family and
no direct ortholog of dog CEACAM24 in humans, all human
CEACAM family genes were investigated for rare PTVs in
The Cancer Genome Atlas (TCGA) breast cancer cohort.
Investigating inherited risk, only blood-derived exomes of
breast cancer cases were analyzed. Overall, whole-exome binary
sequence alignment mapping (BAM) files were downloaded
using the Genomic Data Commons (GDC) Data Portal
Repository through approved research project #10805. To
acquire the samples, the specific filters under the “Cases”
category included: Project (TCGA-BRCA), Samples Sample
Type (Blood Derived Normal), and Race (“Black or African
American” and “White”). The samples were further filtered
under the “Files” category, including Experimental Strategy
(WXS) and Data Format (BAM). A total of 170 sample files
were obtained for African Americans and 650 for European
Americans. These files were downloaded using the GDC Data
Transfer Tool (version 1.2.0). Only individuals with known
ages of breast cancer onset were used in this study; as a
result, one European American and two African American BAM

TABLE 1 | CEACAM24 c.247dupG; p.(Val83Glyfs*48) genotypes and allele frequencies.

Data set/Cohort Dog breed # of dogs # of HOM # of HET Minor allele frequency p-value for comparison to
CMT affected Golden Cohort

CMT Affected Golden Retriever 18 6 9 66.7 -

CHIC United States
Breed Specific Controls

Golden Retriever 87 42 34 67.8 0.3334

CHIC United States
Non-Golden Retriever
Controls

Petit Basset Griffon
Vendeen

10 7 2 80.0 2.48 × 10−5

Gordon Setter 8 5 2 75.0

Australian Cattle Dog 10 4 2 50.0

Siberian Husky 10 4 1 45.0

Dalmatian 10 3 2 40.0

Irish Setter 9 0 1 5.6

Welsh Pembroke Corgi 10 0 0 0.0

Standard Schnauzer 10 0 0 0.0

Newfoundland 10 0 0 0.0

Keeshond 10 0 0 0.0

Great Dane 8 0 0 0.0

Doberman Pinscher 10 0 0 0.0

Boxer 10 0 0 0.0

Totals and Avg MAF of
CHIC Non-Golden Retriever
Controls

125 23 10 22.4

European Variation
Archive Controls

European General Dog
Population

196 12 44 17.3 1.52 × 10−8

The bold values represent significant p-values, p-values less than 0.05.
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files were removed from further bioinformatics processing and
statistical analysis.

The downloaded BAM files, which had previously been
aligned to the hg38 human reference genome, were processed
using the remaining steps of a pipeline adapted from the Genome
Analysis Toolkit’s (GATK’s) best practices pipeline (Van der
Auwera et al., 2013). Base quality scores were recalibrated using
BaseRecalibrator and then HaplotypeCaller was used to generate
genome variant calling format (gVCF) files (GATK version
3.6). GenotypeGVCFs was used to merge the individual gVCF
files based on ethnicity (GATK version 3.6). The European
American files were merged in batches of approximately 200
using GATK’s (version 3.6) CombineGVCFs prior to merging
into a single VCF file with GenotypeGVCFs. The two ethnic
specific VCF files were then processed through a variant quality
score recalibration using VariantRecalibrator (GATK version
3.6), and, as recommended, SNVs were filtered using a pass filter
of 99.5%, and indels were filtered using a slightly lower pass filter
of 99.0% (Van der Auwera et al., 2013). Variants in CEACAM1
(NM_001184815; chr19:42507306-42528481), CEACAM3
(NM_001815 at chr19:41796587-41811554), CEACAM4
(NM_001817; chr19:41618971-41627074), CEACAM5
(NM_004363; chr19:41708626-41730421), CEACAM6 (NM_00
2483; chr19:41755530-41772210), CEACAM7 (NM_006890;
chr19:41673303-41688270), CEACAM8 (NM_001816 at chr19:
42580243-42594924), CEACAM16 (NM_001039213; chr19:4469
9151-44710718), CEACAM18 (NM_001278392; chr19:5147
8643-51490605), CEACAM19 (NM_020219; chr19:44671
452-44684355), CEACAM20 (NM_001102597; chr19:44506159-
44529675), and CEACAM21 (NM_001098506; chr19:41576

166-41586844) were then extracted from the ethnic specific
VCF files and annotated using ANNOVAR (version June2017).
Variants were filtered to include rare PTVs with ethnic-specific
minor allele frequencies of <1% in Exome Variant Server (EVS;
National Heart, Lung, and Blood Institute (NHLBI) Exome
Sequencing Project) (Exome Variant Server, 2019).

Human Statistical Analyses
Using the Fisher’s exact test (Sprent, 2011) in R (v 3.5.1),
individual PTVs were assessed to compare allele frequency
differences between ethnic-specific TCGA breast cancer cases
and EVS controls. The Fisher’s method was used for gene-based
and gene family-based aggregation analyses (Fisher, 1925; Sutton
et al., 2000). The R tool “sumlog” (in the “metap” package)
was used to combine p-values for each aggregation test. To
accommodate for the one-sided nature of the Fisher exact test
p-values, compliments of p-values in the opposite direction were
used in the calculations for the Fisher’s method aggregation
analyses.

Human Mutation Analysis
Mutalyzer was used to determine the effect of frame-shifting
and non-sense variants on the coded protein (Wildeman et al.,
2008). Human splicing mutations that affected non-protein-
coding exons of the mRNA, specifically in the 3′ untranslated
region (UTR), were analyzed using the miRDB tool to identify
microRNA binding sites potentially lost due to a splicing
mutation (Chen and Wang, 2020). For each gene harboring a
splice mutation affecting non-protein-coding exons, microRNA
binding sites within the 3′ UTR with a target score of ≥80 were

TABLE 2 | Homology of dog and human ceacam proteins to dog CEACAM24 protein.

Species Gene name Protein accession % Identity % Similarity

Dog CEACAM1 NP_00101026 52.2 58.4

CEACAM16 ENSCAFP00000039084 22.5 37.7

CEACAM18 ENSCAFP00000058450 19.3 32.5

CEACAM20 ENSCAFP00000036293 21.2 31.9

CEACAM23 NP_001091021 38.4 40.8

CEACAM24 NP_001091023 100 100

CEACAM28 NP_001091015 42.2 46.3

CEACAM30 NP_001091022 53.6 58.3

Average of all Dog CEACAM proteins compared to Dog CEACAM24 (excluding CEACAM24 from analysis) 35.6 43.7

Human CEACAM1 NP_001171744 53.1 60.8

CEACAM3 NP_001806 47 58.2

CEACAM4 NP_001808 50.4 63.4

CEACAM5 NP_004354 53.2 61

CEACAM6 NP_002474 37.8 48

CEACAM7 NP_008821 45.1 58.3

CEACAM8 NP_001807 53.8 63.6

CEACAM16 NP_001034302 28 43.5

CEACAM18 NP_001265321 26.9 46.2

CEACAM19 NP_064604 23.7 38.1

CEACAM20 NP_001096067 25.7 39.9

CEACAM21 NP_001091976 34.1 42.3

Average of all Human CEACAM proteins compared to Dog CEACAM24 39.9 51.9
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noted. The top five ranked microRNA targets were investigated
for previous cancer (specifically, hereditary breast and ovarian
cancer (HBOC) syndrome) associations.

RESULTS

Upon filtering the WGS data, 12 different PTVs were
detected in all five Golden Retrievers, four of which were
within human orthologs. Only one PTV, a frame-shifting

mutation in CEACAM24 (c.247dupG;p.(Val83Glyfs∗48)) was
determined to be a true positive upon validation (Figure 1).
This mutation had a frequency of 66.7% amongst the 18
Golden Retrievers with CMT in this study (Table 1). Upon
comparing that frequency to the 17.3% allele frequency in
the European Variation Archive, a p-value of 1.52 × 10−8

was generated. Representing dogs from another continent and
not knowing the breeds of the European Variation Archive,
the frequency of CEACAM24 c.247dupG;p.(Val83Glyfs∗48) was
subsequently determined in different American Kennel Club

FIGURE 2 | Dog and human CEACAM gene family protein domain analysis. (A) Dog CEACAM protein domain and binding site depictions with membrane regions.
(B) Human CEACAM protein domain and binding site depictions with membrane regions.
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breeds (Table 1). There was no statistically significant difference
between Golden Retriever CMT cases and controls. However,
there was a significant difference between Golden Retrievers
cases and other American Kennel Club breeds (2.48 × 10−5;
Table 1). The CEACAM24 c.247dupG;p.(Val83Glyfs∗48) allele
frequency ranged from 0 to 80% in the assessed breeds
(Table 1). CEACAM24 c.247dupG;p.(Val83Glyfs∗48) abolishes
the extracellular region, the transmembrane domain, and part
of the cytoplasmic region, including the Ig V-set domain
(Figures 1C,D).

Homology analysis revealed that the dog CEACAM proteins
were, on average, 43.7% similar to the dog CEACAM24
protein (Table 2 and Figure 2A). Similarly, there were many
related functional domains and high homology between the
dog CEACAM24 protein and the human CEACAM proteins,
averaging 51.9% similarity (Table 2 and Figure 2). This
homology, along with the fact that there is no direct human
ortholog of dog CEACAM24, prompted all human CEACAM
genes (Figure 2B) to be investigated for rare PTVs in the TCGA
breast cancer cohort.

A total of six rare PTVs were identified in African
Americans and sixteen in European Americans breast cancer
cases (Supplementary Tables 1, 2). Single variant assessment
revealed five variants associated with breast cancer risk, three
of which were associated each with European and African
American breast cancer (Table 3 and Figures 3, 4). One variant,
CEACAM7 c.195C > A;p.(Y65X), was associated with breast
cancer risk in both ethnicities (Table 3 and Figure 3). Two
stop gain mutations in CEACAM4 were associated with African
American breast cancer (Table 3 and Figure 3), and two
splicing mutations were associated with European American
breast cancer, one in CEACAM6 and another within CEACAM8
(Table 3 and Figure 4). Both of those splicing mutations
affect non-protein-coding exons in the 3′ UTR, which, instead
of truncating the protein, potentially disrupt key microRNA
binding sites previously associated with cancer (Table 4 and
Figure 4). Overall, gene-based aggregation analyses revealed
that rare PTVs in CEACAM6, CEACAM7, and CEACAM8 are
associated with European American breast cancer risk, and rare
PTVs in CEACAM7 are associated with breast cancer risk in
African Americans (Table 5). Ultimately, rare PTVs in the entire
CEACAM gene family are associated with breast cancer risk in
both European and African Americans with respective p-values
of 1.75× 10−13 and 1.87× 10−04 (Table 5).

DISCUSSION

Utilizing a comparative oncology approach, our team identified
CEACAM24 c.247dupG;p.(Val83Glyfs∗48) in Golden Retrievers
with CMT and subsequently determined that rare PTVs in the
entire CEACAM gene family were associated with inherited
breast cancer risk in humans. We previously described a large
Golden Retriever pedigree with segregating CMT, carried out
WGS on five selected Golden Retriever cases, and highlighted
variants in orthologs of human breast cancer susceptibility
genes (Huskey et al., 2020). In this current study, we used TA
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FIGURE 3 | Individual significant stop gain mutations. (A) CEACAM4 c.367C > T;p.(Arg123∗). (B) CEACAM4 c.424C > T;p.(Gln142∗). (C) CEACAM7
c.195C > A;p.(Tyr65∗).

the same WGS dataset to identify novel variants that could be
influencing Golden Retriever CMT susceptibility. We isolated
PTVs found in all five sequenced Golden Retriever samples,
and, upon validation, determined the mutation status in the 13
remaining CMT-affected Golden Retrievers within the pedigree.
CEACAM24 c.247dupG;p.(Val83Glyfs∗48) was the only validated
variant and had an allele frequency of 66.7% amongst the 18
CMT-affected dogs. Despite not being recognized as a breed
highly affected by CMT, Golden Retrievers have a higher
prevalence of cancer compared to many dog breeds with 65%
of Golden Retrievers in the United States succumbing to the
disease (Dobson, 2013; Salas et al., 2015; Kent et al., 2018).
The Golden Retriever CEACAM24 c.247dupG;p.(Val83Glyfs∗48)
allele frequency and cancer mortality rate are very similar.

The CMT-affected Golden Retrievers within this study can
all be linked back to a sire in the United States from the

1950s, which was shortly after the registration of the breed
with the American Kennel Club. Since importation to and
registration in the United States, Golden Retrievers in Europe
and the United States are considered two distinct populations,
as breeding between the two continents is rare and unique gene
pools have been established due to strict breeding standards
and the popular-sire effect (Brackman, 2020). Cancer mortality
in European-bred Golden Retrievers has been reported to be
38.8%, which is much lower than Golden Retrievers in the
United States (65%) (Dobson, 2013; Kent et al., 2018). These
differences could be explained by distinct genetic risk factors. The
allele frequency of CEACAM24 c.247dupG;p.(Val83Glyfs∗48) in
the European Variant Archive was 17.3%, which corresponded
to a p-value of 1.52 × 10−8 when compared to our CMT-
affected Golden Retrievers from the United States. However,
in addition to not knowing breed-specific information in
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FIGURE 4 | CEACAM6 and CEACAM8 significant splicing mutations. (A) Depiction of the change in genomic sequence with splice site mutation. (B) Depiction of
the top five miRNA binding sites for CEACAM6 and CEACAM8 within the mature mRNA. Blue is coding and red is non-coding.

the European Variant Archive, genetic bottlenecks upon
importation to the United States need to be acknowledged.
Thus, comparing allele frequencies to a United States dog
population with known breed status was important, which can
be determined through American Kennel Club registration.
Overall, CEACAM24 c.247dupG;p.(Val83Glyfs∗48) appears to be
common in Golden Retrievers in the United States with an allele
frequency of 67.8%, which is not significantly different from
the CMT-affected Golden Retriever cases. However, that allele
frequency was determined by screening 87 Golden Retrievers
from the CHIC repository with unknown disease diagnoses
and age at sample submission. This is not ideal for canine
cancer studies; older dogs (> than 8 years of age) with
unaffected CMT-status are recommended (Tonomura et al.,
2015; Hayward et al., 2016). In saying that, if CEACAM24
c.247dupG;p.(Val83Glyfs∗48) truly is a high-frequency allele
in Golden Retrievers due to a genetic bottleneck in the
United States, it can explain why 65% of Golden Retrievers
succumb to cancer (Kent et al., 2018).

Regarding the assessment of other American Kennel Club
breeds, an overall CEACAM24 c.247dupG;p.(Val83Glyfs∗48)
allele frequency of 22.4% was revealed, which was significantly
different from CMT-affected Golden Retriever cases. Noting
the small sample sizes of each breed, over half of the assessed
breeds showed no presence of the variant. However, some breeds
contained the variant at higher levels; most notably, Petit Basset
Griffon Vendeen, Gordon Setter, Australian Cattle Dog, Siberian
Husky, and Dalmatian. Petit Basset Griffon Vendeen, which
had the highest allele frequency, has a cancer mortality rate of
33% (Dobson, 2013). In a United Kingdom study, Dalmatians,
Gordon Setters, and Siberian Huskies were found to have cancer
mortality rates ranging from 19.1 to 31.8% (Dobson, 2013), and
Australian Cattle Dogs have a rate of 27% (Petmed, 2014).

CEACAM24 is a part of the dog CEACAM gene family
(Figure 2A), which is a subdivision of the immunoglobulin

superfamily of cell adhesion molecules (IgCAMs)
(Smith and Xue, 1997; Kuespert et al., 2006). All IgCAMs,
and hence all CEACAM proteins, are characterized by
having at least one immunoglobulin (Ig)-like domain
(Figure 2). CEACAM genes have diverse functions in
both dogs and humans, including cell-cell adhesion, cell
signaling, immunity/inflammation, angiogenesis, and tumor
development, progression and metastasis (Kuespert et al., 2006;
Kammerer et al., 2007; Kammerer and Zimmermann, 2010;
Beauchemin and Arabzadeh, 2013; Han et al., 2020). CEACAM24
c.247dupG;p.(Val83Glyfs∗48) abolishes the extracellular region,
the transmembrane domain, and part of the cytoplasmic region,
including the Ig V-set domain; thus, it is presumed to be a
loss-of-function mutation. According to Ensembl, no other
stop gain or frame-shifting variants have been identified in dog
CEACAM genes. However, one splicing mutation in CEACAM28
(c.1415-2A > G) was identified, which had a 34% allele frequency
within the European Variation Archive. The CEACAM gene
family is present in many mammalian species but has evolved
in a highly species-specific manner, heavily influenced by
pathogen/host coevolution (Kammerer et al., 2007; Kammerer
and Zimmermann, 2010; Weichselbaumer et al., 2011). Despite
phylogenetic discordance of dog and human CEACAM genes
(Weichselbaumer et al., 2011), our analyses revealed there is high
homology between the dog CEACAM24 protein and the human
CEACAM proteins, averaging 51.9% similarity. This homology,
along with the fact that there is no direct human ortholog of the
CEACAM24 gene, prompted all human CEACAM genes to be
investigated for rare PTVs in the TCGA breast cancer cohort.

There are 12 human CEACAM genes, all of which cluster on
chromosome 19q13.2-19q13.4. Over the years, genetic markers
in that region have been associated with many different types
of cancer susceptibility, including breast cancer (Rockenbauer
et al., 2002; Yin et al., 2002; Nexo et al., 2003, 2008; Vogel
et al., 2004; Amin Al Olama et al., 2013; Gao et al., 2018).
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TABLE 4 | Top five miRNA binding sites for both CEACAM6 and CEACAM8 and previous cancer associations.

Gene target name miRNA name Previous cancer association Previous HBOC association

CEACAM6 miR-3119 Yes
Chen F. et al. (2018)

No

miR-766-3p Yes
Chen et al. (2017); Wang Q. et al. (2017); You et al. (2018);
Alshamrani (2020); Liu S. et al. (2020); Tuncer et al. (2020);
Zhang et al. (2020)

Yes
Wang Q. et al. (2017); Alshamrani (2020);
Tuncer et al. (2020)

miR-6512-3p Yes
Ge et al. (2020)

Yes
Ge et al. (2020)

miR-6720-5p Yes
Yasui et al. (2017); Ren et al. (2018); Ge et al. (2020)

Yes
Ge et al. (2020)

miR-5702 Yes
Zhang et al. (2018); Mou and Wang (2019)

Yes
Mou and Wang (2019)

CEACAM8 miR-661 Yes
Vetter et al. (2010); Hoffman et al. (2014); Zhu et al. (2015);
Liu et al. (2017); Wang et al. (2018); Sun et al. (2019)

Yes
Vetter et al. (2010); Zhu et al. (2015); Wang
et al. (2018); Sun et al. (2019)

miR-9903 Yes
Shu et al. (2018)

Yes
Shu et al. (2018)

miR-616-5p Yes
Bai et al. (2017); Wang D. X. et al. (2017); Chen Z. et al.
(2018); Zhu and Li (2020)

Yes
Chen Z. et al. (2018); Zhu and Li (2020)

miR-371b-5p Yes
Li et al. (2020); Luo et al. (2020)

No

miR-4635 Yes
Cartier et al. (2017); Guan et al. (2017); Jiang et al. (2019);
Shimojo et al. (2019); Yokoi et al. (2019)

Yes
Guan et al. (2017)

Nonetheless, inherited mutations in CEACAM genes have yet to
be associated with inherited risk of cancer (Zheng et al., 2011;
Kammerer et al., 2012; Wang et al., 2015). Aberrant expression of
many CEACAM genes have been associated with tumorigenesis,
and CEACAM gene products are recognized as clinically-
relevant tumor markers (Kuespert et al., 2006; Beauchemin and
Arabzadeh, 2013; Han et al., 2020). Regarding breast cancer,
CEACAM1 has been shown to be down-regulated compared to
normal breast tissue (Yang et al., 2015), similar to its expression
in prostate (Busch et al., 2002; Liu J. et al., 2020), endometrial
(Bamberger et al., 1998), gastric (Takeuchi et al., 2019) and
colon cancer (Fournes et al., 2001; Song et al., 2011), identifying
it as a tumor suppressor. It has also been demonstrated that
CEACAM5 (Iqbal et al., 2017; Powell et al., 2018), CEACAM6
(Maraqa et al., 2008; Tsang et al., 2013; Iqbal et al., 2017;
Rizeq et al., 2018), and CEACAM19 (Michaelidou et al., 2013;
Estiar et al., 2017) are overexpressed in breast cancer and are
associated with enhanced tumor invasiveness and metastasis.
Conversely, CEACAM6 and CEACAM8 co-expression inhibits
proliferation and invasiveness of breast cancer cells (Iwabuchi
et al., 2019). Additionally, CEACAM gene splice variants have
been suggested to play a role in breast cancer tumorigenesis (Gaur
et al., 2008; Zisi et al., 2020). Lastly, through exome sequencing, Li
et al. observed loss of heterozygosity of CEACAM1, CEACAM3,
CEACAM5, CEACAM6, CEACAM7, and CEACAM8 in breast
cancer tumors that were associated with metastasis, suggesting
that this closely-linked gene family regulates tumorigenesis and
metastasis synergistically (Li et al., 2014). Corroborating those
preliminary findings, we have now determined that rare inherited
PTVs in the entire CEACAM gene family are associated with

TABLE 5 | Aggregation analysis for rare (<1% MAF) PTVs in the CEACAM gene
family.

Gene name Gene specific p-values

AA EA

CEACAM1: NM_001184815 1 0.8784262

CEACAM3: NM_001815 1 0.3978745

CEACAM4: NM_001817 0.148726 0.7479721

CEACAM5: NM_004363 1 0.8516203

CEACAM6: NM_002483 0.07636 1.4423E-05

CEACAM7: NM_006890 1.8694E-12 1.2241E-11

CEACAM8: NM_001816 0.2727805 6.4189E-12

CEACAM16: NM_001039213 0.923479 0.9930833

CEACAM18: NM_001278392 1 1

CEACAM19: NM_020219 1 1

CEACAM20: NM_001102597 1 0.9190567

CEACAM21: NM_001098506 0.9604724 0.7104384

CEACAM gene family 1.87E-04 1.75E-13

The bold values represent significant p-values, p-values less than 0.05.

breast cancer risk in both European and African Americans with
respective p-values of 1.75 × 10−13 and 1.87 × 10−04. The
p-value generated for African American breast cancer risk was
likely influenced by the small sample size in TCGA.

We analyzed blood-derived exomes of European and African
American breast cancer cases in TCGA to identify inherited
PTVs in all human CEACAM genes, and detected sixteen
and six rare PTVs in each ethnicity, respectively. Gene-based
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analyses determined that rare PTVs in CEACAM6, CEACAM7,
and CEACAM8 are associated with European American breast
cancer risk, and rare PTVs in CEACAM7 are associated with
breast cancer risk in African Americans. CEACAM7, which
was associated with breast cancer risk in both ethnicities, has
no current link to breast cancer. However, down-regulation of
CEACAM7 in hyperplastic polyps and early adenomas represent
some of the earliest observable molecular events leading to
colorectal tumors (Scholzel et al., 2000). Though CEACAM7
expression was thought to be restricted to the epithelial cells of
the colon and pancreas, according to the Human Protein Atlas,
grandular cells of the breast have moderate CEACAM7 protein
expression (Uhlen et al., 2015; Raj et al., 2021). How CEACAM7
plays a role in breast cancer is currently unknown, but the link
could even be indirect and due to expression in non-breast tissue
(Ferreira et al., 2019). CEACAM7 c.195C > A;p.(Y65X), which
was detected in 10.8 and 4.5% of European and African American
cases, respectively, was absent in all EVS controls. It severely
truncates the 265 amino acid proteins and results in a loss of the
cytoplasmic region, as well as a large portion of the extracellular
region, including disruption of the Ig-like and Ig V-set domains.
It is likely a loss-of-function mutation (Figure 3).

Rare PTVs in CEACAM6 and CEACAM8 appear to
only be associated with European American breast cancer
risk. Considering that CEACAM6/8 co-expression inhibits
proliferation and invasiveness of breast cancer cells (Iwabuchi
et al., 2019), having a rare PTV in one of those two genes may
be sufficient to override their synergistic tumor-suppressing
relationship. While a number of PTVs were detected in these
genes, two splicing mutations, CEACAM6 c.∗40 + 2T > G and
CEACAM8 c.∗40 + 2T > G, were individually determined to be
associated with European American breast cancer, both of which
affect non-coding exons in the 3′ UTR. Both mutations affect
the donor site immediately following exon 5 of their respective
genes, which contains both coding and non-coding DNA. The
mutated donor sites likely affect the downstream sequence of
the mature mRNA product, either retaining (all or a part of)
intron 5 or removing exon 6, the last non-coding exon, where
many microRNA binding sites are located (Figure 4). Based
on miRDB rankings, the top five microRNAs that bind to the
3′ UTRs of CEACAM6 and CEACAM8 have previous links to
cancer (Table 4); thus, disrupted microRNA binding likely leads
to aberrant CEACAM6 and CEACAM8 expression.

Two stop gain mutations in CEACAM4 (c.367C > T;p.R123X
and c.424C > T;p.Q142X) were associated with African
American breast cancer. These mutations were not detected
in European American cases or controls, and are very rare
in the general African American population. They were
detected in significantly more African American breast cancer
cases compared to ethnic-matched controls, suggesting their
involvement in African American breast cancer risk. However,
gene-based aggregation analyses did not support CEACAM4
as a breast cancer risk gene. Larger African American breast
cancer cohorts will need to be studied to validate these findings.
Interestingly, in a study of parous women with and without
breast cancer, CEACAM4 has been reported to be up-regulated
in normal breast compared to breast tumor samples (Balogh
et al., 2007). Though race/ethnicity was not revealed in that

study, the results suggest that CEACAM4 could be a breast cancer
tumor suppressor.

It has long been reported that minimal genetic changes
can have radical effects on the function of CEACAM genes
(Naghibalhossaini and Stanners, 2004). Residues in CEACAM6
and CEACAM8 have been identified that are critical for
CEACAM6 homodimerization as well as the formation of
CEACAM6 and CEACAM8 heterodimers, which is important
in preventing breast cancer cell proliferation (Kuroki et al.,
2001; Iwabuchi et al., 2019). There have also been residues
reported in CEACAM1 that are crucial for determining the risk
of infection by receptor-binding pathogens (Villullas et al., 2007)
and preventing the killing activity of NK cells (Markel et al.,
2004). Furthermore, somatic missense mutations in colorectal
cancers have been detected in CEACAM1 (Song et al., 2011)
and CEACAM5 (Gu et al., 2020), the latter of which has been
shown to increase proliferation by inhibiting TGFB signaling and
altering the intestinal microbiome. The microbiome has been
reported as a new breast cancer risk factor (Fernandez et al., 2018;
Eslami et al., 2020). In fact, differences have been reported in the
microbiome of normal and cancerous breast tissue, as well as the
gut microbiota of breast cancer cases versus controls (Fernandez
et al., 2018). Disrupted CEACAM genes could be the underlying
mechanism through altered TGFB signaling, bacteria docking,
and/or estrogen metabolism (Villullas et al., 2007; Tchoupa et al.,
2014; Fernandez et al., 2018; Gu et al., 2020). This study reports
the first association of inherited CEACAM mutations and breast
cancer risk, and potentially implicates the whole gene family in
genetic risk. Precisely how these mutations contribute to breast
cancer needs to be determined, especially considering our current
knowledge on the role that the CEACAM gene family plays in
tumor development, progression, and metastasis.
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