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De novo analysis of bulk RNA-seq data at
spatially resolved single-cell resolution

Jie Liao 1,2,10, Jingyang Qian1,10, Yin Fang 3,4,10, Zhuo Chen 3,4,10,
Xiang Zhuang3,4,10, Ningyu Zhang3,4, Xin Shao 1,2, Yining Hu1, Penghui Yang1,
Junyun Cheng1,5, Yang Hu1,5, Lingqi Yu1, Haihong Yang3,4, Jinlu Zhang1,3,
Xiaoyan Lu1,5, Li Shao6, Dan Wu 7, Yue Gao 8 , Huajun Chen 3,4 &
Xiaohui Fan 1,2,5,9

Uncovering the tissue molecular architecture at single-cell resolution could
help better understand organisms’ biological and pathological processes.
However, bulk RNA-seq can only measure gene expression in cell mixtures,
without revealing the transcriptional heterogeneity and spatial patterns of
single cells. Herein, we introduce Bulk2Space (https://github.com/ZJUFanLab/
bulk2space), a deep learning framework-based spatial deconvolution algo-
rithm that can simultaneously disclose the spatial and cellular heterogeneity of
bulk RNA-seq data using existing single-cell and spatial transcriptomics
references. The use of bulk transcriptomics to validate Bulk2Space unveils, in
particular, the spatial variance of immune cells in different tumor regions, the
molecular and spatial heterogeneity of tissues during inflammation-induced
tumorigenesis, and spatial patterns of novel genes in different cell types.
Moreover, Bulk2Space is utilized to perform spatial deconvolution analysis on
bulk transcriptome data from two different mouse brain regions derived from
our in-house developed sequencing approach termed Spatial-seq.Wehave not
only reconstructed the hierarchical structure of the mouse isocortex but also
further annotated cell types that were not identified by originalmethods in the
mouse hypothalamus.

Tissue complexity is portrayed by the spatial diversity and hetero-
geneity of cells1. Advances in spatially resolved transcriptomics2–4 have
made it possible to understand the cell composition, molecular
architecture, and functional details of tissues at unanticipated spatial
levels5,6. State-of-the-art experimental technologies, including image-
based methods7–10, spatial barcoding RNA-seq methods11–14, and laser

capture microdissection-based methods15,16, have been developed to
address either high throughputmeasuring of cells, unbiased detection
of mRNA species, or single-cell resolution. To investigate the mole-
cular variation during biological andpathological processes at a higher
resolution, each sample is encouraged to be analyzed by spatially
resolved single-cell transcriptomics,which is not yet fully achieved and
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is time-consuming, costly, and difficult to scale up17. Meanwhile, with
investment for almost two decades, RNA-seq has been extensively
applied in transcriptome analysis18, with many large projects having
been carried out, such as the Encyclopedia of DNA Elements
(ENCODE)19, The Cancer Genome Atlas (TCGA)20, and projects of the
International Cancer Genome Consortium (ICGC)21. A wealth of bulk
RNA-seq data has become a legacy for biological and clinical
research22. Thus, reanalysis of the enormous amount of bulk data to
explain both cellular diversity and spatial expression patterns is a
challenging but consequential task.

In silico methods have great potential to predict spatial hetero-
geneity from bulk RNA-seq data at single-cell resolution by integrating
cutting-edge technologies. Several approaches such as CPM23,
CIBERSORT24, and MuSiC25 can only extrapolate proportions of cell
types from bulk RNA-seq data and have failed to further generate
single-cell data, let alone map them to tissue coordinates. The emer-
gence of an approach that can efficiently decompose bulk RNA-seq
data into spatially resolved single-cell expression profiles is expected
to reveal the cell diversity of complex tissue and the spatial expression
variation simultaneously.

Herein, we introduce Bulk2Space, a spatial deconvolution algo-
rithm based on deep learning frameworks, which generates spatially
resolved single-cell expressionprofiles frombulk transcriptomesusing
existing high-quality scRNA-seq data and spatial transcriptomics as
references. We hypothesize that the process of scRNA-seq is similar to
sampling cells from bulk tissue, and each selected cell is labeled with a
unique barcode. Consequently, bulk transcriptomedata canbeused as

a weighted collection of single-cell expression data in a defined clus-
tering space of cells. Bulk2Space first generates single-cell tran-
scriptomic data within the clustering space to find a set of cells whose
aggregated data is proximate to the bulk data. Next, the generated
single cells were allocated to optimal spatial locations using a spatial
transcriptome reference. For this step, we chose as a spatial reference
oneof the twomost commonly used spatially resolved transcriptomics
technologies. One is an image-based method with limited target
genes7–9, and the other is a spatial barcoding method without single-
cell resolution11–14. Taken all, Bulk2Space showed a robustperformance
across multiple datasets and conditions and is an open-access algo-
rithm on GitHub (https://github.com/ZJUFanLab/bulk2space).

Results
Design concept of Bulk2Space
The overall design of the Bulk2Space algorithm is illustrated in Fig. 1,
which is divided into two steps, deconvolution, and spatial mapping.
Although bulk RNA-seq data are obtained by sequencing a mixture of
cells, whereas scRNA-seq labels individual cells in advance, both
methods share comparable cell types and states23–26. Thus, we assume
that bulk transcriptomics data can be decomposed into single-cell
transcriptomics data by a well-designed deconvolution algorithm
(Step 1). Subsequently, in the second step, the above-mentioned two
prevailing spatially resolved transcriptomics methods, though, failed
in either achieving single-cell resolution or delineating the whole
transcriptome, can provide reference locations for single cells gener-
ated in the first step of Bulk2Space based on the similarity of their
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Fig. 1 | Workflowof Bulk2Space. aOverview of the design concept of Bulk2Space.
Bulk transcriptome data is taken as the input, and a single-cell profile is used as the
reference for characterizing the clustering space of the heterogeneous tissue. After
deconvolution, input bulk data is deconvolved into single-cell transcriptomics data.
Then, either of the two spatially resolved transcriptomics, spatial barcoding-based
RNA-seq or image-based in-situ hybridization, is used as the spatial reference.
Generated single cells are assigned to the corresponding coordinates based on the
spatial reference. The output is a set of generated single-cell profiles with specified
x and y spatial coordinates. b Detailed deconvolution procedure. The input vector
of bulk tissue is equal to the production of the expression matrix of cell types and
the proportion vector of each cell type. The calculatedproportion of all cell types is

employed for the subsequent single-cell generation. The single-cell reference is
used to characterize the clustering space of the tissue, and a deep learning model
generates single-cell profiles within the clustering space of each cell type.
c, d demonstrate the strategies for spatial mapping based on the two mainly used
spatially resolved transcriptomics approaches. c For spatial barcoding-based
reference, each generated single cell is assigned to the spot with the highest gene
expression correlation until the aggregation of cells within the spot is close enough
to the exact expression value. d For image-based reference, each generated cell is
assigned to the location where the cell on tissue has the highest similarity with the
given cell.
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expressionprofiles (Step 2)27,28. As a consequence, it couldbe rationally
conceived that the combination of single-cell profiles and spatial
transcriptomics is expected to overcome technical bottlenecks and
accomplish the spatially resolved single-cell deconvolution of bulk
transcriptomes (Fig. 1a).

For the deconvolution of bulk transcriptomics data, we hypo-
thesize that the process of single-cell sequencing identifies with the
process of sampling from the tissue, while the ratio between different
cell types is related to the zone of the tissue, the ways of single-cell
capturing, and the size of the cell itself. However, even if the ratio
between cell types changes, the state of each cell type still fluctuates
within a relatively stable high-dimensional space, which is namely the
clustering space of cell types. This hypothesis has been supported by
several studies29–31. As shown in Fig. 1b, a single-cell reference can be
utilized to characterize the clustering space and average the gene
expression for each cell type31,32. The expression vector of the bulk
transcriptome is taken as the input, which is equal to a product of the
average gene expression matrix of cell types and their abundance
vector. By solving this nonlinear equation, the proportion of each cell
type is determined. Then, the solved proportion of each cell type is
taken as a control parameter to generate the corresponding number of
single cells. Specifically, a deep generative model, termed beta varia-
tional autoencoder (β-VAE)33, is employed to simulate a given number
of single cells within the characterized clustering space of each cell
type. The simulation stops when the training loss no longer reduces,
thus deconvolves the heterogeneous bulk transcriptome into single-
cell transcriptome data. Instead of only calculating the abundance
values of cell types, as performed by other methods, such as Cell
Population Mapping (CPM)23, CIBERSORT24, and ImmuCC26, Bulk2-
Space can generate biologically feasible single-cell expression profiles.

For spatial mapping, the single-cell profiles generated in the first
step are assigned to the reference tissue section based on an optimi-
zation strategy. In the second step, we consider two of the most
commonly used spatially resolved transcriptomics approaches as the
spatial reference, namely, spatial barcoding-based RNA-seq methods
and image-based targeted methods.

Spatial barcoding-based methods employ arrayed reverse tran-
scription primers with unique positional barcodes to preserve the
spatial information of mRNA via in situ complementary DNA (cDNA)
synthesis. Such methods could provide the whole transcriptome as
well as the location of each sequenced spot after decoding the spatial
barcodes. However, these methods are unable to achieve single-cell
resolution, because the spots are customized in shape and size, such as
ST14 (100 μm in diameter), Visium (55 μm in diameter), Slide-seq13 (10
μm in diameter), etc. As shown in Fig. 1c, for spatial barcoding-based
references, each barcoded spot is regarded as a mixture of several
cells. Similar to existing decomposition methods such as RCTD34,
SpatialDWLS35, stereoscope36, and SPOTlight37, we first calculate the
cell-type composition of each spot. The difference is that we thenmap
the generated single cells into the recommended spots based on the
similarity of their cell expression profiles and ensure that the propor-
tions of cell types in each spot are consistent with the calculated
results. Since Bulk2Space generates spatially resolved single-cell
transcriptomics data from bulk RNA-seq, the spatial heterogeneity of
individual cells can be analyzed, which cannot be realized by RCTD,
SpatialDWLS, stereoscope, and SPOTlight.

As illustrated in Fig. 1d, another strategy is to map the single-cell
data generated in the first step onto image-based targeted references
capable ofmeasuring hundreds to thousands of RNA species38, such as
MERFISH7, STARmap9, seqFISH10, etc. The pairwise similarity between
cells is calculated based on genes shared by both datasets, and even-
tually, each generated single cell is robustly mapped to an optimized
coordinate of the target cell in the spatial reference. The resulting
spatially resolved single-cell RNA-seq data can provide unbiased
transcriptomes of individual cells and improve the gene coverage.

Taken all, unlike other computational methods that focus only on
either of the two spatially resolved transcriptomics approaches,
Bulk2Space takes into account both techniques to greatly increase the
scalability, applicability, and reference data of the algorithm.

Performance evaluation of Bulk2Space using simulated and
biological datasets
To demonstrate the robustness of the deconvolution step of Bulk2-
Space, a benchmark test was performed using 30 paired simulations
(both bulk and single-cell datawere generated from the samedatasets)
from 10 different high-quality single-cell datasets across human blood,
brain, kidney, liver, and lung, and mice brain, kidney, lung, pancreas,
and testis (Fig. S1a), and 12 unpaired simulations (both bulk and single-
cell data were generated from different datasets of mice pancreas)
from 8 single-cell RNA-seq data of human pancreas (Fig. S1b). All
datasets used in this study were listed in Supplementary Data 1.

First, for 30 paired simulations, each single-cell transcriptome
dataset was divided into two parts, one for reference and the other for
the synthesis of bulk data. The procedure for bulk data synthesis is
shown in Fig. S1c. For each single-cell dataset, we changed the pro-
portion of cell types and synthesized 3 corresponding bulk tran-
scriptomics data with different cell compositions. Three generative
deep learning models, namely, the beta variational autoencoder (β-
VAE)33, generative adversarial networks (GAN)39, and conditional GAN
(CGAN)40, were introduced here for the benchmarking of different
methods using 30 paired single-cell datasets. The gene expression
correlation between the generated single-cell data and input bulk data
was calculated to evaluate and compare the three candidate algo-
rithms. As illustrated in Fig. 2a, β-VAE performed better than the other
algorithms in both Pearson and Spearman correlations with a lower
root mean squared error (RMSE). The Pearson correlation, Spearman
correlation, and RMSE were calculated by combining the gene
expression across all cell types and averaging these metrics for each
cell type. Ten examples of different species and tissues are shown in
Fig. S2. The results demonstrated that the clustering space of the
generated single-cell data was similar to that of the test data but varied
in the proportions of different cell types (Fig. S2a and Fig. S2b). Fur-
thermore, the correlation analysis of the expression of marker genes
for each cell type between the generated and test data was performed
for each method. The comparison of the correlation heatmaps
between Bulk2Space, GAN, and CGAN showed that Bulk2Space had
higher correlations across different simulations (Fig. S2c).

We then benchmarked the deconvolution step of Bulk2Space
using 12 unpaired simulation data of mice pancreas. Because other
deconvolution methods, such as CPM23, CIBERSORT24, and ImmuCC26,
can only predict cell-type proportions instead of gene expression of
generated data, we compared Bulk2Space with GAN, CGAN, and a
Bayesian deconvolution method termed bMIND41. As illustrated in
Fig. 2b and Fig. S3a, Bulk2Space outperformed the other three meth-
ods with a higher Pearson correlation of gene expression and lower
gene expression variation (RMSE). Although CGAN had a comparable
performance as Bulk2Space in the single-cell generation, its comput-
ing speed was significantly lower than Bulk2Space. The detailed com-
parison of the cell-type-specific marker gene expression correlations
of generated single-cell data and the ground truth between the four
candidate methods were shown in Fig. S3b.

To further investigate the robustness of the single-cell generation
of Bulk2Space, we introduced two noise mechanisms to test the per-
formance of the algorithm (Fig. S4). One mechanism changes the
expression values of certain genes in randomly selected cells (Fig. S4a),
and the other alters the cell type labels of selected cells (Fig. S4b).
Bulk2space showed robust performance and could effectively avoid
the over-fitting phenomenon (Fig. S4c and Fig. S4d). We also demon-
strated that Bulk2Space can deconvolve bulk RNA-seq data with an
annotation-free single-cell reference in the supplementary information
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Fig. S5. Since the core generation model of Bulk2Space is β-VAE, a
perturbation analysiswas conducted to verify the robustness of single-
cell generation by Bulk2Space. The perturbation test confirmed that
better generation results can be obtained by assuming that the latent
vectors follow the Gaussian distribution (Fig. S6). Finally, we validated
Bulk2Space with paired biological bulk and single-cell data derived

from different mice liver42. As shown in Fig. S7, the deconvolution
results indicated that Bulk2Space could be well applied in biological
scenarios.

In the second step, Bulk2Space assigns the generated single cells
to spatial coordinates based on a spatially resolved transcriptome
reference (Fig. 1c, d). There are two types of most common spatially
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Fig. 2 | Benchmark test for Bulk2Space. a Gene expression correlation (Pearson
correlations, left, and Spearman correlations, middle) and gene expression varia-
tion (RMSE, right) of threemethods, namely, Bulk2Space (β-VAE), GAN, and CGAN,
using paired simulation data (n = 30). Each point represented a simulated dataset.
Data are presented as boxplots (minima, 25th percentile, median, 75th percentile,
andmaxima).bGene expression correlation and gene expression variation of three
methods with unpaired simulation data (n = 12). Data are presented as boxplots
(minima, 25th percentile, median, 75th percentile, and maxima). c Benchmark test
for 10 spatial mapping methods (from left to right, Bulk2Space (deep forest), gra-
dient boosting decision tree, decision tree, multi-layer perceptron, DeepGBM, lin-
ear regression, RCTD, spatialDWLS, stereoscope, and SPOTlight) using paired
simulation data (n = 50). Data are presented as boxplots (minima, 25th percentile,

median, 75thpercentile, andmaxima). Left, Pearson correlationof geneexpression,
Middle, Spearman correlation of gene expression, Right, gene expression variation
(RMSE). d Benchmark test for 10 spatial mapping methods using paired simulation
data (n = 60). Data are presented as boxplots (minima, 25th percentile, median,
75th percentile, and maxima). e The UMAP layout of the MERFISH data (image-
based spatially resolved transcriptomics) and the single-cell data. Share cell types
were colored with corresponding colors. f Expression correlation heatmap of the
marker genes of all shared cell types inMERFISHdata and scRNA-seqdata.g Spatial
expression of genes in the ground truth and predicted by Bulk2Space using paired
and unpaired single-cell RNA-seq data. PCC for each gene was shown. Source data
are provided as a Source Data file.
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resolved transcriptomic techniques. One is the spatial barcoding-
based RNA-seq technology, which includes ‘spatial transcriptomics’
(ST)14, high-definition spatial transcriptomics (HDST)11, and Slide-
seq12,13, 10 Visium, etc. These methods are based on tissue micro-
regions with certain regular shapes (spots), and cannot achieve single-
cell resolution. The other is image-based in situ transcriptomics,
including MERFISH7, seqFISH8,10, and STARmap9. These methods can
only measure the expression of target genes but cannot cover the
whole transcriptome. To overcome the bottlenecks of the two
approaches, we designed corresponding spatial assignment strategies.

The first strategy was designed to map single cells to spots in
spatially resolved transcriptomics based on spatial barcoding. In this
step, we first used paired synthetic data to test the performance of
Bulk2Space. The data synthesis procedure is illustrated in Fig. S1c.
Similar to the commonly used spatially resolved transcriptomics
technologies, such as ST, HDST, 10X Visium, and Slide-seq, we ran-
domly chose 10 cells from each scRNA-seq data and aggregated their
gene expression profiles as a spot of pseudo spatial transcriptomics
data. A comprehensive comparisonbetween Bulk2Space (deep forest),
six machine learning or deep learning approaches, and four published
methods, RCTD34, SpatialDWLS35, stereoscope36, and SPOTlight37 was
then conducted using 50 paired simulation datasets. These methods
were benchmarked for the optimization of cell-type composition and
spatial gene expression patterns. As shown in Fig. 2c, compared with
these methods, Bulk2Space showed higher correlations in gene
expression and lower RMSEs than other methods. The cell composi-
tion and spatial cell-type distribution predicted by Bulk2Space were
highly correlated to the ground truth (Fig. S8). Next, we benchmarked
the spatialmapping stepof Bulk2Space using unpaired simulation data
of mice pancreas. As shown in Fig. 2d, Bulk2Space showed the highest
correlations in gene expression and the lowest RMSEs. The compar-
ison of the cell-type composition for each spot between Bulk2Space
and the spatial reference was shown in Fig. S9.

The second spatial mapping strategy uses image-based targeted
methods. A scRNA-seq data (“GSE113576”) and MERFISH data (image-
based reference) of the mouse hypothalamus tissue from the same
experiment43 were used as paired datasets to test the performance of
the Bulk2Space algorithm. Another scRNA-seq data44 derived from a
separated experiment was used as unpaired single-cell data. We wan-
ted to find the shortest path that could shift single cells to optimal
locations. First, a nonparametric empirical Bayes network was used to
eliminate the expression differences between the single-cell data and
spatially resolved transcriptome data. As illustrated in Fig. 2e, the
clustering spaces of the two datasets were very similar, with most cell
types sharing the distribution in both datasets. The two discrete
datasets could bewellmerged in distribution, and the gene expression
of each cell type hada correlation ofover0.8 between the twodatasets
(Fig. 2f). Of the 150 target genes identified inMERFISH, a leave-one-out
test was conducted for the evaluation of the spatial mapping step of
Bulk2Space. Specifically, 149 were used as reference genes, and the
rest one was used for validation. The results showed that spatially, the
gene expression pattern of the matched cells was highly correlated
with that of the reference, and the predicted spatial expression pat-
terns across all 150 targeted genes are strongly correlated with the
ground truth with averaged Pearson correlation coefficients (PCCs)
over 0.9 for both paired and unpaired datasets (Fig. 2g and Fig. S10).

We further verified Bulk2Space’s spatial mapping using five-fold
cross-validation for image-based methods (Fig. S11). specifically, the
150 targeted genes in MERFISH were split into five folds using R
package caret (version 6.0–92), and 80% of genes were used as the
reference and the remaining was used for validation of predicted
spatial expression. As shown in Fig. S11, the spatial expressions of the
top 25 genes predicted by Bulk2Space for the paired and unpaired
single-cell data were compared with MERFISH data.

To validate the spatial mapping step of Bulk2Space in the real
situation, two biological datasets, a spatial reference sequenced by
Slide-seq v212, and a single-cell data45 from separated experimentswere
used to reconstruct the structureof themousehippocampus (Fig. S12).
The spatial distribution of single cells predicted by Bulk2Space was
consistentwith the real patternof cell types in that region. Notably, the
refined subregions in the mouse hippocampus were successfully
reconstructed by Bulk2Space, which was confirmed by the spatial
expression of cell-type-specific marker genes (Fig. S12e).

Since Bulk2Space employed β-VAE to generate single-cell profiles
within the clustering space of cell types, we then investigated whether
the randomness ofβ-VAE could affect the generation of single-cell data
and the spatial mapping results. We conducted 100 repetitions on the
deconvolution step of Bulk2Space to evaluate the robustness of β-VAE
using simulated bulk and single-cell ref. 46. The results demonstrated
that the single-cell generation remained highly robust across 100
repetitions (Fig. S13).

We then used simulated PDAC47 and melanoma48,49 bulk data to
evaluate the robustness of the spatial mapping step of Bulk2Space
using three repetitions of bulk data deconvolution and spatial map-
ping. As shown in Fig. S14 and Fig. S15, the spatial deconvolution
results suggested a robust performance of Bulk2Space with 3 repeti-
tions for PDAC and melanoma bulk data, respectively.

In conclusion, although the single-cell data generated by β-VAE
were slightly different each time, the overall prediction results showed
robust performance in the spatial distribution of cell types, the cell-
type composition and proportion in spots, and the spatial patterns of
gene expression.

Validation of Bulk2Space using biological data
To further verify the performance of the Bulk2Space, two consecutive
slices49 from the samemelanoma tissue were used to demonstrate the
spatial deconvolution result. As shown in Fig. S16, one slicewas used as
the spatial reference and the other was used to synthesize the bulk
data. The expression of cell-type-specific marker genes between the
generated data and the reference were highly correlated and the
spatial distribution pattern of generated single cells was consistent
with the histological annotations of different regions. Moreover, we
found a spatial heterogeneity of generated B cells fromdifferent tissue
regions, which was associated with the biological functions in the
lymph node area and the melanoma region. Because Bulk2Space can
predict spatially resolved single-cell transcriptomics data from bulk
RNA-seq or scRNA-seq, spatial heterogeneity of the same cell type can
be discovered. This was difficult for other spatial deconvolution
algorithms to achieve such as RCTD34, SpatialDWLS35, stereoscope36,
and SPOTlight37.

Similarly, the same spatial deconvolution procedure of Bulk2-
Space was performed for another two discrete slices from different
PDAC47 tissues to reveal the spatial heterogeneity of bulk tran-
scriptomics data. One slice was used as the spatial reference and the
otherwas used to synthesize the bulk data. As shown in Fig. S17, similar
results were retrieved as the validation of melanoma data. The
expression of cell-type-specific marker genes between the generated
data and the reference were highly correlated and the spatial dis-
tribution pattern of generated single cells was consistent with the
histological feature of tissue regions.

Bulk2Space integrates spatial gene expression and histomor-
phology in PDAC
Based on the success in the spatial deconvolution of PDAC using
simulated data and discrete slices, we further verified the perfor-
mance of the Bulk2Space algorithm using biological bulk RNA-seq
data. As shown in Fig. 3a, two bulk RNA-seq data50 of the pancreatic
adjacent (PA) and the PDAC tissues, one scRNA-seq data47, and one
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spatial transcriptomics data47 were derived from two individual
experiments and three different technologies. The scRNA-seq data
sequenced by inDrop-seq51 were used as the single-cell reference
for the deconvolution of PA tissue and PDAC bulk data, and

the spatial barcoding-based ST data were used as the spatial
reference.

The PA andPDACbulkdatawere deconvolved into single-cell data
with different cell-type proportions by Bulk2Space. We compared the

a bCollection of bulk RNA-seq data, single-cell (SC) RNA-seq data,and
spatially resolved transcriptomics (ST) data

d Expression correlation of marker genes between
SC reference and deconvolved PDAC bulk data

 log(Fold Change) > 0.5, P value<0.05

e Spatial mapping of generated cells
from the PDAC tissue by Bulk2Space

g Bulk2Space predicted cell-type proportions in spatial distribution h Spatial expression of cell-type-specific maker genes at spot and single-cell resolution

f
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Fig. 3 | Spatially resolved analysis of PDAC by Bulk2Space. a Collection of
pancreatic adjacent (PA) and PDACbulk transcriptomedata, PDAC scRNA-seqdata,
and PDAC spatial transcriptomics data. Two bulk data were sequenced by bulk
RNA-seq. The scRNA-seq data sequenced by inDrop-seq51 is used as the single-cell
reference. One slice of the sectioned PDAC tissue sequenced by ST14 was employed
as the spatial reference. b The cell-type proportions of single cells generated from
PDAC and PA tissues by Bulk2Space. Purple box, the proportion of the cell type was
higher in PA tissue than that in PDAC tissue. Black box, the proportion of the cell
typewas higher in PDAC tissue than that in PA tissue. Teal, the PDAC tissue. Red, PA
tissue. c The clustering space of single cells generated from the PDAC (Top) and PA
(Bottom) bulk data byBulk2Space usingUMAP layout. Different colors represented
distinct cell types. d Pairwise expression correlation of cell-type-specific marker
genes between single cells generated by Bulk2Space and the single-cell reference

for PDAC. Marker genes were found by ‘FindAllMarkers’ function in Seurat. P value
was calculated with the Wilcoxon Rank Sum test. e Spatial mapping of single cells
generated from PDAC bulk data. Scale bar, 1mm. f Top, Histological annotation for
cancer region (red), duct epithelium (yellow), and normal pancreatic tissue (light
blue). Middle, clusters of cancer region (yellow), pancreatic tissue (blue), duct
epithelium (green), and stroma (dark gray) from the spatial transcriptomics data.
Bottom, spatial deconvolution result of the bulk PDAC data by Bulk2Space with
each spot displaying the composition of cell types in a pie chart. Scale bar, 1mm.
g The spatial abundance of acinar cells, cancer clone A cells, cancer clone B cells,
and ductal cells in each spot on the tissue section predicted by Bulk2Space. Scale
bar, 1mm.hThe spatial expression of themarker genes in acinar cells, cancer clone
A cells, cancer clone B cells, and ductal cells predicted by Bulk2Space at spot (left)
and cellular (right) resolution. Source data are provided as a Source Data file.
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cell-type proportions of single cells generated from PA and PDAC bulk
data with Bulk2Space. As shown in Fig. 3b, the proportion of acinar
cells in PA was significantly higher than that in PDAC, where the pro-
portion of two cancer clone subtypes was higher. The clustering space
of single cells generated from PDAC and PA tissue was exhibited in
Fig. 3c. The detailed information for the deconvolution of PA tissue
was shown in Fig. S19.

Here, we focused on the PDAC bulk data. The expression of cell-
type-specific marker genes between generated single-cell profiles by
Bulk2Sapce and the reference data was highly correlated (Fig. 3d).
Then, each cell was mapped to coordinates based on the spatial
reference (Fig. 3e). To further correlate the spatial expression pattern
of the tissuewith its histological feature, we investigated themolecular
architecture of the annotated regions in the spatial reference (Fig. 3f).
As shown, the spatial distribution of two cancer clones, acinar cells,
and ductal cells predicted by Bulk2Space (Fig. 3e) was consistent with
the histological annotation of cancer cells and desmoplasia, normal
pancreatic tissues, and duct epithelium, as well as the spatially
resolved transcriptomics of the cancer region, pancreatic tissue and
stroma, and the duct epithelium, respectively. The spatial cell-type
proportions predicted by Bulk2Space were illustrated in Fig. 3g and
Fig. S19c. The spatial expression of cell-type-specific marker genes at
spot (left) and single-cell (right) resolution for different cell types were
shown in Fig. 3h and Fig. S19d. Compared with the spatial distribution
of single cells generated by Bulk2Space, the spatial expression of cell-
type-specific marker genes exhibited consistent patterns.

Bulk2Space reconstructs thehierarchical structureof themouse
isocortex region sequenced by Spatial-seq
In addition to linking the histomorphology and transcriptomics in
pathological tissues, another application scenario of Bulk2Space is to
reconstruct the structure of tissues with spatial patterns. For instance,
the spatial organization of the isocortex region of the mouse brain
exhibits a layered pattern. Therefore, Bulk2Space was applied to
reconstruct the hierarchical structure of the mouse isocortex region
through spatial deconvolution of the bulk transcriptomics data. The
bulk transcriptomics data of mouse isocortex were sequenced by our
in-house developed multiplexed RNA-seq approach, termed Spatial-
seq. The detailed information for Spatial-seq was described in the
‘Methods’ section and illustrated in Fig. S20a. In short, the laser cap-
turemicrodissection (LCM)was used to isolate regions of interest from
the tissue sections and each isolated tissue was collected indepen-
dently. Then, barcoded beads were used to capture and label the
mRNA from the collected samples. Finally, the captured mRNA was
pooled together for RNA-seq. The transcriptome data of each sample
can be obtained by identifying the sample-specific barcode sequence.
Using Spatial-seq, we isolated and sequenced 13 main brain regions
from coronal and sagittal sections across the entire mouse brain
(Fig. S20b).

As shown in Fig. 4a, the bulk transcriptomics data of the mouse
isocortex was obtained by Spatial-seq. The mouse primary visual cor-
tex regions in different coronal sections from anterior to posterior
were collected and sequenced by SMART-seq252. The result scRNA-seq
data were used as the single-cell reference. A sagittal section of the
mouse brain was divided into two parts and sequenced using 10X
Visium to obtain spatial transcriptomics data of the isocortex region.
The spatial reference data were downloaded from 10X datasets. The
detailed information of datasets used in this study was summarized in
Supplementary Data 1.

The bulk datawere first deconvolved into single-cell RNA-seq data
(Fig. 4b). Subsequently, the generated single cells were mapped to
spatial locations by Bulk2Space and the spatial distribution of cell
types showed a distinct layered pattern (Fig. 4c). The expression of
cell-type-specific marker genes was highly correlated between Bulk2-
Space results and the single-cell reference data (Fig. 4d). The spatial

distribution of the cell-type proportion in each spot predicted by
Bulk2Spacewas illustrated inFig. 4e,which correspondedwellwith the
hierarchical structure of themouse isocortex. The spatial distributions
of cell-type proportions predicted by Bulk2Space for seven cell types
including Astro, L2/3 IT, L4, L5 IT, L5 PT, L6 CT, and L6 IT cells were
shown in Fig. 4f. The results supported the ability of Bulk2Space to
reconstruct the spatial organization of tissues. Moreover, the spatial
expression patterns of cell-type-specific marker genes predicted by
Bulk2Space at single-cell resolution were consistent with the propor-
tion distributions of the corresponding cell types (Fig. 4g).

Different from traditional spatial deconvolution algorithms such
as RCTD34, SpatialDWLS35, stereoscope36, and SPOTlight37, Bulk2Space
can generate spatially resolved single-cell transcriptomics data from
bulk RNA-seq. Besides, Bulk2Space allowed us to analyze the spatial
heterogeneity of individual cells from the spatially resolved tran-
scriptomics data without single-cell resolution.

Bulk2Space re-annotates ambiguous cells in the mouse
hypothalamus
The Bulk2Space algorithm was also used to spatially deconvolve bulk
transcriptome data derived from the hypothalamus region of the
mouse brain using Spatial-seq, to explain the spatial distribution of
single cells and gene expression. The resources of the bulk, single-cell,
and spatial data was illustrated in Fig. 5a. The single-cell reference was
obtained by profiling ~31000 cells using Drop-seq and the MERFISH
data of themouse hypothalamus were used as the spatial ref. 43. More
details were summarized in Supplementary Data 1.

After deconvolution of the bulk RNA-seq data of the mouse
hypothalamus by Bulk2Space, the clustering space of the generated
single cells was close to that of the MERFISH data (Fig. 5b). The gen-
erated single cells were then mapped to spatial coordinates based on
the image-based spatial reference (Fig. 5c). As shown in Fig. 5c, the cell-
type distributions in MERFISH data and Bulk2Space results were
comparable at single-cell resolution. Among the 10 cell types, imma-
ture oligodendrocytes were unique to MERFISH, and macrophages
were predicted by Bulk2Space, but absent in MERFISH data. The
heatmap suggested that 7 of the 8 shared cell types were strongly
correlated in both MERFISH and Bulk2Space results with an average
pairwise correlation over 0.9. The poor correlation of mural cells
between MERFISH data and Bulk2Space results may be related to the
few numbers of pericytes. The spatial patterns of the MERFISH tar-
geted genes were consistent with that of Bulk2Space results (Fig. 5d).

Meanwhile, owing to the limited number of measured target
genes, some ambiguous cells in MERFISH data could not be further
identified according to their expression profiles. However, using
Bulk2Space, the generated single cells with unbiased gene expression
were assigned to the spatial context, thus further clustering these
ambiguous cells using novel genes that were absent in MERFISH data
(Fig. 5e).Meanwhile, the spatial distribution of novel genes beyond the
targeted RNA species was predicted by Bulk2Space andwas consistent
with the spatial pattern of corresponding cell types as illustrated in
Fig. 5f and Fig. S21.

Bulk2Space uncovers spatial gene expression dynamics in dif-
ferent stages of the inflammation-induced prostate cancer
Tumor development is linked to chronic infection, dietary factors,
obesity, inhaled pollutants, tobacco use, and autoimmunity. The uni-
fying principle underlying these processes is inflammation, which is an
aberrantly prolonged form of a protective response to a loss of tissue
homeostasis53. To explore whether Bulk2Space could identify the cel-
lular and molecular pathways that coordinate the tumor-promoting
effects in inflammation-induced cancer, we deconvolved the bulk
transcriptome data of prostate cancer and mapped single cells gen-
erated by Bulk2Space to the corresponding spatial references,
including normal glands, inflammatory tissue, and tumor sites. The
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resources of the bulk (fromTCGA), single-cell54, and spatial data55 were
listed in Supplementary Data 1.

These tissue regions were isolated from the prostate, and three of
the sections were subjected to RNA-seq based on spatial barcoding
(Fig. 6a). Next, Bulk2Space was used to deconvolve the bulk data into
single-cell profiles (Fig. 6b) and mapped the generated single cells to
spatial coordinates (Fig. 6c).Notably, the composition anddistribution

of cells in different tissue regions were quite different and closely
related to the state of the tissue (Fig. 6d, e). A comparison of cell
distribution between normal, inflammatory, and cancerous tissues
(Fig. 6f–h) showed that in normal glands, cancer-associated fibroblasts
(CAFs) were the most abundant, but in inflammatory and cancer tis-
sues, the proportions of CAFs were significantly lower (52.4% in nor-
mal, 20.5% in inflammation, and 27.5% in cancer). In the areas of
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inflammation, cells involved in the inflammatory response, such as
immunocompetent B cells, endothelial cells, monocytes, and NK cells
(Fig. 6g), were more abundant than in normal or tumor tissues (13.4%
in inflammation, 2.0% in normal, and 1.7% in cancer). In cancer with a
Gleason score (Gs) of 3 + 4, theproportionof cancer epithelial cellswas
significantly higher (53.0% in cancer, 6.3% in normal, and 4.3% in

inflammation) than that in normal and inflammatory areas (Fig. 6h),
while the proportion of the periventricular layer cells was significantly
lower (17.9% in cancer, 39.3% in normal, and 44.1% in inflammation).

During the progress of inflammation-induced prostate cancer,
CAFs accumulated in normal glands at the early stage, resulting in high
expression of inflammatory factors and promoting the occurrence of

Fig. 5 | Spatially resolved analysis of the mouse hypothalamus bulk data by
Bulk2Space. a The resources of the bulk transcriptome data, single-cell reference,
and spatial reference. The bulk RNA-seq data of the mouse hypothalamus was
profiled using our in-house developed Spatial-seq. The single-cell reference data
was derived from Drop-seq. The spatial reference data is obtained from MERFISH.
b TheUMAP layout of single-cell profiles inMERFISHdata and generated frombulk
tissue by Bulk2Space. Top, clustering of all cells in both datasets. Two hetero-
geneous sets of data were aligned through a joint analysis. Each cell type was
represented by a unique color. c The spatial distribution of distinct cells in MER-
FISHandBulk2Space results. The stackedbar chart showed the cell number of each
cell type (gray) and the number of cells predicted by Bulk2Space to the

corresponding cell type at each coordinate (blue). Bottom, Pearson correlation of
gene expression between cell types in MERFISH data and Bulk2Space results. The
correlation of shared cell types was in red border and the expression correlation
between MERFISH ambiguous cells and Bulk2Space predicted cell types was in
green border.dThe spatial expression of genes predictedby Bulk2Space and in the
ground truth (MERFISH). e Re-annotation of ambiguous cells in MERFISH using
Bulk2Space results. Left, clustering of the ambiguous cells. Right, spatial assign-
ment of cells that were colored according to their predicted cell types. f Predicted
spatial expression patterns of novel marker genes for different cell types. Source
data are provided as a Source Data file.
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local inflammation, a fundamental innate immune response to per-
turbed tissue homeostasis, thus leading to tissue cancerization53.
Bulk2Space results were consistent with this phenomenon.

Discussion
Understanding the transcriptional heterogeneity within the tissue
from the perspective of single-cell spatial resolution and full gene
coverage is an essential direction for the development in the field of
biological sciences1,56. The spatial locations of cells may determine
their identity and how they interplay with each other in the
microenvironment57,58. However, there are many technical challenges,
and thus, such a technology has not been fully realized yet. Traditional
bulk transcriptome data can provide gene expression patterns and
reflect theoverall status of tissue,which iswidely used in studies on the
occurrence and development of diseases. Nevertheless, disease-
inherent cell composition and spatial distribution are difficult to ana-
lyze. Although several attempts can infer the cell-type proportions
from traditional RNA-seq data, understanding bulk tissue at single-cell
spatial resolution remains a pressing need in the field. Cell identity can

be characterized by the clustering space of single-cell gene expression
profiles59, and expression features can be stably retained across dif-
ferent conditions, technologies, and species29. Based on this, we used a
deep learning model, termed β-VAE, to generate single-cell profiles
with biological significance within the clustering space of each cell
type and map them accurately to tissue coordinates, thus deconvol-
ving the bulk transcriptomics into spatially resolved single-cell
transcriptomics data.

As thoroughly considered the merits and demerits of the wide-
spread use of two spatially resolved transcriptomics technologies, we
employed different spatial mapping strategies for each method. For
image-based in situ hybridization, Bulk2Space couldpredict the spatial
expression of mRNA species apart from the target genes. Moreover,
Bulk2Space can help annotate cells whose types are difficult to further
distinguish by targeted methods. For spatial barcoding-based RNA-
seq, each sequenced tissue region contains transcripts from different
cells and can thus be regarded as amixture of cells, not allowing single-
cell resolution. Bulk2Space can assign single cells to optimal spots, and
these mixtures are split into collections of individual cells, thus
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Fig. 6 | Spatial gene expression dynamics analysis of inflammation-induced
prostate cancer by Bulk2Space. a Experimental design of the bulk transcriptome
data. The tissuewas segmented into distinct regions, namely, normal glands (pink),
inflammation (blue), and several cancer regions (red, green, purple, and yellow).
Three tissue regions (1.1 normal, 2.3 inflammation, and 3.3 cancer region) were
isolated to conduct spatially resolved transcriptomics. b The t-SNE layout of the
generated single-cell profiles by Bulk2Space. Each cell type was represented by a
unique color. c The proportions of generated single cells that were mapped to
normal, inflammation, and cancer region by Bulk2Space, respectively. The color of

each cell typewas consistent with (b).d The proportion of cells assigned to normal
(pink), inflammation (blue), and cancer (green) regions for each cell type. e The
predicted proportion of distinct cell types for each tissue region by Bulk2Space.
f The proportions of cancer-associated fibroblasts (CAFs) in normal (left), inflam-
mation (middle), and cancer regions (right). g The proportions of immune cells in
normal, inflammation, and cancer regions. h The proportions of cancer epithelial
cells in normal, inflammation, and cancer regions. Source data are provided as a
Source Data file.
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providing a spatially resolved single-cell deconvolution strategy for
these spatial data. Our results showed that Bulk2Space had great bio-
logical and clinical application prospects, including linking tissue
molecular characteristics with histological phenotypes, revealing the
spatial specific variation of cells, discovering the spatial expression
pattern of novel genes, achieving more refined cell clustering, and
predicting the molecular mechanism underlying the progression of
the disease.

Methods
Datasets
All scRNA-seq, spatially resolved transcriptomics, and bulk RNA-seq
datasets used in this study were collected from high-quality publica-
tions, Gene Expression Omnibus (GEO), and The Cancer GenomeAtlas
(TCGA), wherein unannotated, ambiguous, or low quality-cells were
excluded. The detailed description of each dataset was summarized in
Supplementary Data 1.

Computing environment
The Bulk2Space was developed on two workstations, as listed below.

Workstation 1. Dell Precision Tower 7820 Workstation, CPU (Intel
XeonGold5118, 2.3GHz × 2), RAM (64GB, 16GB×4,DDR4, 2933MHz),
Hard Drive (SSD, SATA Class 20, 512 GB; HDD, 7200 rpm, SATA), Gra-
phics Card (NVIDIA, Quadro P4000, 8 GB), Operating System (Ubuntu
16.04), Running Environment (CUDA 11.6, Torch 1.12.1, Python 3.8.5,
deep-forest 0.1.5, easydict 1.9, numpy 1.19.2, pandas 1.1.3, scanpy 1.8.1,
scikit-learn 1.0.1, scipy 1.5.2, tqdm 4.50.2, Unidecode 1.3.0).

Workstation 2. Dell Precision Tower 7920 Workstation, CPU (Intel
Xeon Gold 6230, 2.1 GHz × 2), RAM (192 GB, 16 GB × 12, DDR4,
2933MHz), Hard Drive (SSD, SATA Class 20, 512 GB; HDD, 7200 rpm,
SATA),GraphicsCard (NVIDIA, RTX2080Ti VIDEOCARDV2× 2, 22GB),
Operating System (Ubuntu 18.04), Running Environment (CUDA 11.0,
Torch 1.7.1, Python 3.8.5, deep-forest 0.1.5, easydict 1.9, numpy 1.19.2,
pandas 1.1.3, scanpy 1.8.1, scikit-learn 1.0.1, scipy 1.5.2, tqdm 4.50.2,
Unidecode 1.3.0).

Data processing
All data were preprocessed using R (version 4.1.1). For mouse brain
scRNA-seq data by Moffitt43 et al., we filtered 841 ambiguous cells and
88 unstable cells. For human prostate cancer scRNA-seq data by Wu54

et al., we filtered 183 unassigned cells. All cells of other scRNA-seq as
well as spatially resolved transcriptomics datasets were retained. For
mouse hypothalamus MERFISH data, we filtered 5 “blank” barcodes as
well as the Fos gene, whose expression value in all cells was ‘NA’. For
human prostate cancer RNA-seq data, we used biomaRt (version
2.48.3) to transform ensemble id to gene name. For all scRNA-seq and
spatially resolved transcriptomics datasets, the raw counts were nor-
malized using the global-scaling normalization method “LogNorma-
lize” by Seurat (version 4.0.4)60. For the MERFISH dataset, the
normalized data was determined as the raw count per cell divided by
the cell volume and scaled by 1000.

Step 1: Deconvolution of bulk transcriptome data
Cell type proportions prediction. For a given bulk RNA-seq dataset,
we aimed to calculate its cell-type proportions firstly, and then gen-
erate single-cell gene expression profiles based on the calculated
proportions. Since cell type and gene expression of all single cells can
be accessed from the scRNA-seq data reference, we collected cells with
the same cell type and then average their gene expression. This aver-
age vector ci 2 RN is defined as the gene expression of cell type

i (i ∈ {1,2,⋯,C}, where C denotes the total number of cell types). Given
the gene expression vector x 2 RN of a bulk RNA-seq dataset, we
aimed to predict the cell type proportion:

XC

i= 1

pici =x ð1Þ

Here, pi is the proportion of cell type i.
We applied least square estimation (LSE) to estimate pi by mini-

mizing the squared discrepancies between observed data.

min
p

∣∣x� Cp∣∣2 ð2Þ

where C 2 RN ×C denotes the cell type gene expression profile, and
each column represents a different cell type. p = [p1, p2,⋯, pC]T is the
proportion vector to be estimated.

Single-cell simulation by β-VAE. Let D= X ,V ,Wf g be a set consisting
of gene expression vectors x 2 RN and two sets of ground truth data
generative factors: conditionally independent factors v 2 RK , where
log p(v|x) =∑klog p(vk|x); and conditionally dependent factorsw 2 RH .
We assume that x are generated by a true world simulator S using the
corresponding ground truth data generative factors: pθ(x|v,w) = S(v,w),
where θ is the generative model parameter.

We wanted to develop an unsupervised deep generative model
that, using samples from X only, can learn the joint distribution of the
data x and a set of generative latent factors z (z 2 RM , where M ≥ K)
that can be used to generate the observed data x; i.e., pθ (x|z) ≈p(x|v,w)
= S(v,w). However, since the integral of the marginal likelihood pθ(x) =
∫pθ(z)pθ(x|z) dz is intractable (so we cannot evaluate or differentiate
the marginal likelihood), the true posterior density pθ (z|x) = pθ(x|z)
pθ(z)/pθ(x) is intractable.

To solve this problem, for a given observation x, we described
the inferred posterior configurations of the latent factors z through
a probability distribution qϕ(z|x): an approximation to the intract-
able true posterior pθ(x|z). We aimed to ensure that the inferred
latent factors qϕ(z|x) capture the generative factors v in a disen-
tangled manner. A disentangled representation can be defined as
one where single latent units are sensitive to changes in single
generative factors, while being relatively invariant to changes in
other factors. In a disentangled representation, knowledge about
one factor can generalize to novel configurations of other factors.
The conditionally dependent data generative factors w can remain
entangled in a separate subset of z that is not used for represent-
ing v.

An intuitive approachwas tominimize the KLdivergencebetween
the approximate and the true posterior:

DKL qϕ z∣xð Þ∣∣pθ z∣xð Þ
� �

= �
X

z

qϕ z∣xð Þlog pθ z∣xð Þ
qϕ z∣xð Þ
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= �
X

z

qϕ z∣xð Þlog
pθ x,zð Þ
pθ xð Þ

qϕ z∣xð Þ
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= �
X

z

qϕ z∣xð Þ log
pθ x∣zð Þ
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= �
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z

qϕ z∣xð Þlog pθ x∣zð Þ
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=�L θ,ϕ;xð Þ+ log pθ xð Þ� �

ð3Þ
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Here, Lðθ,ϕ;xÞ is called the variational lower bound, and can be
written as:

L θ,ϕ;xð Þ=
X

z

qϕ z∣xð Þlog pθ x∣zð Þ
qϕ z∣xð Þ

 !

=
X

z

qϕ z∣xð Þlog pθ x∣zð Þpθ zð Þ
qϕ z∣xð Þ

 !

=
X

z

qϕ z∣xð Þ log pθ x∣zð Þ� �
+ log

pθ zð Þ
qϕ z∣xð Þ

 !" #

=Eqϕ z∣xð Þ log pθ x∣zð Þ� �� ��DKL qϕ z∣xð Þ∣∣pθ zð Þ
� �

ð4Þ

To encourage this disentangling property in the inferred qϕ (z|x),
we introduced a constraint over it by trying to match it to a prior p(z)
that can both control the capacity of the latent information bottleneck,
and embodies the desiderata of statistical independence mentioned
above. We set the prior to be an isotropic unit Gaussian p zð Þ ~N 0,Ið Þ,
then the constrained optimization problem can be written as:

max
ϕ,θ

Eqϕ z∣xð Þ logðpθ x∣zð ÞÞ� �
subject to DKL qϕ z∣xð Þ∣∣pθ zð Þ

� �
< ϵ ð5Þ

where ϵ specifies the strength of the applied constraint. Re-writing the
above equation as a Lagrangian under the KKT conditions, we obtain:

F ðθ,ϕ,β;x, zÞ=Eqϕ z∣xð Þ logðpθ x∣zð ÞÞ� �� β DKL qϕ z∣xð Þ∣∣pθ zð Þ
� �

� ϵ
� �

ð6Þ

where the KKT multiplier β is the regularization coefficient that con-
strains the capacity of the latent information channel z and puts
implicit independence pressure on the learnt posterior due to the
isotropic nature of the Gaussian prior pθ(z). Since β, ϵ ≥0, according to
the complementary slackness KKT condition, the equation can be re-
written as:

F θ,ϕ,β;x, zð Þ≥L θ,ϕ;x, z,βð Þ=Eqϕ z∣xð Þ logðpθ x∣zð ÞÞ� �

�β DKL qϕ z∣xð Þ∣∣pθ zð Þ
� �� � ð7Þ

which is the β-VAE formulation with the addition of the β coefficient.
Here, different β will change the degree of applied learning

pressure during training, thereby encouraging different learned
representations. We postulated that to learn disentangled repre-
sentations of the conditionally independent data generative factors v,
it is important to set β > 1 to impose a stronger constraint on latent
bottleneck than the original VAE. These constraints limit the capacity
of z, coupled with the pressure to maximize the log likelihood of the
training data x under the model, encouraging the model to learn the
most efficient representation of the data. The additional pressure from
high β values may create a trade-off between reconstruction fidelity
and the quality of disentanglement within the learned latent repre-
sentations. When the appropriate balance is found between informa-
tion preservation (reconstruction cost as regularization) and latent
channel capacity restriction (β > 1), disentangled representations
emerge.

Model configuration. In step1, we simulate single-cell by β-VAE. Both
the encoder and decoder apply a four-layer perceptron, where each
layer is followed by a RELU activation except the last layer of the
encoder. For the encoder, the number of neurons in each layer is 2048,
1024, 512 and 512 respectively. While for the decoder, the number of
neutrons in each layer is 512, 1024, 2048 and k, respectively, where k
represents the number of genes in the dataset. The dimensionality of
the latent space learned by the beta-VAE is 256. The relative weighting

of the reconstruction loss and regularization loss is 1:4. We apply the
Adam with weight decay (AdamW) optimizer with an initial learning
rate as 1e−4, the decoupled weight decay as 5e−4 and Adam’s β para-
meters as 0.9 and 0.999. Moreover, the default running epoch is fixed
to 3000, but we use early stopping during the training phase, with
whichwe stop training when the training loss no longer reduces for 50
epochs.

Here we introduce the implementation details of our benchmark
approaches. For GAN and cGAN, the generator consists of two fully
connected layers, followed by LeakyRELU and RELU activations,
respectively. The discriminator is also made up of two fully connected
layers,where thefirst layer is followedbyaLeakyRELUactivation.Weuse
the Adam optimizer with the initial learning rate of 1e-4 and the betas
parameters of 0.5 and 0.999. We train util the loss in the generative and
discriminative phases is no longer reduced for 50 epochs, and use the
model obtained at this time as the final model for prediction.

Step2: Mapping generated single cells to spatial locations
Spatial barcoding-based RNA-seq. After obtaining the generated
data, we needed to map each cell and the spot it belongs to. To
improve the accuracy and reduce the complexity of this process, we
divided it into twosteps. First, wecalculated the cell typeproportionof
each spot, and then predicted which cells are contained in each spot
based on this proportion.
1. Calculate cell type proportions. The procedure is identical to the

Step 1 deconvolution, we repeated this process to obtain the cell
type proportion of each spot in the tissue.

2. Deep forest for spot recommendation. With cell type proportion,
we next predicted which cells are contained in each spot. We
defined this task as a binary classification problem. We designed a
classifier, whose input is the gene expression vectors of both single
cell s and spot x. When the cell belongs to the spot, the output of
the classifier is 1, otherwise the output is 0. Specifically, the input
can be represented as v= ½s; x; s�x� 2 RN × 3, where semicolon
means concatenate operation. s�x 2 RN can be regarded as an
auxiliary signal, since when there is a negative number occurring in
this vector, the single cell must not belong to the spot.

We applied multi-Grained Cascade Forest (gcForest), a decision
tree ensemblewith a cascade structure and further enhanced bymulti-
grained scanning, to build our classifier. Each level of cascade receives
feature information processed by its preceding level and outputs its
processing result to the next level. Each level is an ensemble of deci-
sion tree forests, i.e., an ensemble of ensembles. We also included
completely-random tree forests) to encourage diversity. Given an
instance, each forest counts the percentage of different classes of
training samples at the leaf node where the concerned instance falls,
and then average across all trees in the same forest to produce an
estimate of class distribution. The estimated class distribution forms a
class vector, which was generated by k-fold cross validation and then
concatenated with the original feature vector to be input to the next
level of the cascade.

To enhance cascade forest, we introduced a procedure of multi-
grained scanning. We used sliding windows to scan the raw features.
Specially, we used a window with a fixed length of k to slide the input
vector into k-dimensional feature vectors. We then feeded these vec-
tors to n forests and finally produce n two-dimensional vectors. By
using multiple sizes k of sliding windows, differently grained feature
vectors were generated.

The we summarized the overall procedure of gcForest. For the
original raw features, three window sizes {⌊N/16⌋,⌊N/8⌋,⌊N/4⌋} were
used formulti-grained scanning. The generated datawere used to train
a completely-random tree forest containing 100 trees. We con-
catenated the output of these two forests as the transformed feature
vectors, which also acted as the input of cascade forest. The final
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model was a cascade of cascades, where each cascade consisted of
multiple levels each corresponding to a grain of scanning. Each level
consisted of 4 completely-random tree forests, each containing 100
trees. In other words, the transformed feature vectors were aug-
mented with the class vector generated by the previous grade, and
then were used to train the current grade of cascade forests.

Given a test instance, it would obtain its corresponding trans-
formed feature vector through the multi-grained scanning procedure,
and then go through the cascade till the last level. The two-dimensional
class vectors at the last level were aggregated, and the class with the
largest aggregate valuewas selected to obtain the final prediction result.

This decision tree ensemble approach not only had much fewer
hyper-parameters than deep neural networks, but also retained the
interpretability of tree models. Its model complexity could be auto-
matically determined in a data-dependent manner, which made
gcForest work well even on small-scale data.

Image-based in situhybridization.Wedeveloped a simplemethod for
predicting the spatial distributions of genes not measured in spatial
transcriptomic data which produced by in situ RNA imaging-based
technologies. To do this, Bulk2Space used the spatial transcriptomic
data as the reference, and generated scRNA-seq data were mapped to
the tissue space corresponding to this reference. To eliminate the
differences between scRNA-seq data and spatial transcriptomic data
caused by different experiment types, an empirical Bayes framework
was used to remove the batch effect, so that both sets of data are at the
same scale level. Subsequently, the cross-dataset k-nearest neighbor
graph of spatial transcriptomic data in scRNA-seq data was computed
in the aligned space, and then the predicted whole gene expression
profile of each cell of spatial transcriptomic data could be calculated to
the mean of its k nearest neighbors in scRNA-seq data.

Model configuration. Deep forest is applied for spot recommen-
dation. Specifically, the number of samples used to construct fea-
ture discrete bins is set to 200000. If the size of training set is
smaller than it, then all training samples will be used. The type of
binner used to bin feature values into integer-valued bins is “per-
centile”, which means each bin will have approximately the same
number of distinct feature values. We set the maximum number of
cascade layers in the deep forest as 20, and apply 2 estimator in each
cascade layer. Gini impurity is used to measure the quality of a split.
We have no constraints on the maximum depth of each tree. The
training process terminates when the validation performance on
the training set does not improve compared against the best vali-
dation performance achieved so far to 2 tolerant rounds. And the
counting on tolerant rounds is triggered if the performance of a
fitted cascade layer does not improve by 1e-5 compared against the
best validation performance achieved so far.

We also introduce the implementation details of our bench-
mark approaches. (1) For Logistic Regression (LR), we implement L2
regularization as the additional penalty term to solve the problem
of overfitting.We use L-BFGS algorithm as the solver, which uses the
Hessian matrix to iteratively optimize the loss function. We fit the
model according to the given training data and return the prob-
ability estimates on testing set. (2) For Decision Tree (DT), we use
the Gini impurity to measure the quality of a split and choose the
best split at each node.We don’t set anymaximumdepth of the tree,
so nodes are expanded until all leaves are pure or until all leaves
contain less than 2 samples. We build the decision tree classifier
from the training set, and then predict class probabilities of the
input samples. (3) For Gradient Boosting Decision Tree(GBDT), we
set the learning rate as 0.1 and the number of boosting stages to
perform as 100. The loss function to be optimized is log loss func-
tion, and we choose Friedman MSE to measure the quality of a split.
Themaximumdepth of the individual regression estimators is set to

3. We fit the gradient boosting model on the training set and use the
trained model to make predictions on testing set. (4) For Multilayer
Perceptron(MLP), we apply a two-layer perceptron, where each
layer is followed by a batch normalization, a RELU activation, and a
dropout layer with the probability of element zeroing as 0.1. We use
the Adam optimizer with the initial learning rate of 1e-4 and the
betas parameters of 0.9 and 0.999. We train until the loss is no
longer reduced for 30 epochs, and use the model obtained at this
time as the final model for prediction. (5) For DeepGBM, we set the
number of tree groups to 100. The dimension of leaf embedding for
a tree group is set to 20. The structure of the distilled NNmodel is a
fully connected network with “100-100-100-50” hidden layers. We
adopt the feature selection in each tree group, where we first sort
the features according to the information gain, and the top 128 of
them are selected as the inputs of distilled NN model. We use the
Adam with weight decay (AdamW) optimizer with an initial learning
rate as 2e-3, the decoupled weight decay as 1e-6, and Adam’s betas
parameters as 0.9 and 0.999. We train until the model reaches the
highest ROC-AUC score, and use it for prediction.

Performance evaluation of Bulk2Space (simulated datasets)
Benchmarking the deconvolution step of Bulk2Space on simulated
datasets.
1. Simulated bulk data and the single-cell reference were generated

from same datasets (paired simulations).

Datasets. Ten scRNA-seq datasets were applied to benchmark our
method, including human and mouse primary tissues. Five human
scRNA-seq datasets including peripheral blood46 (“GSE92495”), brain61

(“GSE103723”), kidney62 (“GSE121862”), liver63 (“GSE124395”), and
lung64 (“GSE130148”). Five mice scRNA-seq datasets including brain65

(“GSE60361”), kidney66 (“GSE119531”), lung67 (“GSE127465”), pancreas68

(“GSE84133”), and testis69 (“GSE112393”).

Data simulations. The simulated data were derived from the above 10
scRNA-seq datasets.We randomlydivided the scRNA-seq data into two
parts, one was treated as the single-cell reference (data_2) and the
other (data_1) for the construction of bulk transcriptome data via
aggregating all the single-cell gene expression profiles. Considering
the cell composition of bulk RNA-seq data varies greatly in the natural
situation, for each data_1, we further changed the cell-type proportion
and synthesized 3 corresponding bulk transcriptome data with dif-
ferent cell compositions. In total, 30 paired simulated data were syn-
thesized in this study. The detailed description of the experimental
design was summarized in Supplementary Data 2.

Comparied methods. a, Generative adversarial networks (GAN), b,
conditional generative adversarial networks (CGAN). The generator
consists of two fully connected layers, followed by LeakyRELU and
RELU activations respectively. The discriminator is also made up of
two fully connected layers, where the first layer is followed by a Lea-
kyRELU activation.We use the Adamoptimizer with the initial learning
rate of 1e-4 and the betas parameters of 0.5 and 0.999. We train until
the loss in the generative and discriminative phases is no longer
reduced for 50 epochs, and use the model obtained at this time as the
final model for prediction.

Benchmark metrics. Pearson correlation coefficient (PCC), Spear-
man’s rank correlation coefficient (SRCC), and root mean squared
error (RMSE) were used to assess the similarity of the gene expression
profile between scRNA-seq data reference and synthetic bulk tran-
scriptome data.

2. Simulated bulk data and the single-cell reference were generated
from different datasets (unpaired simulations).
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Datasets. Eight human pancreas scRNA-seq datasets from different
resources were also applied to benchmark our method, including 1
CelSeq70 (“GSE81076”), 1 CelSeq271 (“GSE85241”), 1 Fluidigm C172

(“GSE86469”), 4 inDrops68 (“GSE84133”), and 1 SMART-Seq273 (E-
MTAB-5061).

Data simulations. The simulated data were derived from the above 8
scRNA-seq datasets. We randomly selected one as the single-cell
reference and another dataset from different resources as bulk tran-
scriptome data. The detailed description of the experimental design
was summarized in Supplementary Data 3.

Comparied methods. a, Generative adversarial networks (GAN). b,
conditional generative adversarial networks (CGAN). The model
details were described above. c, bMIND41. We followed the guidelines
on the bMIND GitHub repository: https://github.com/randel/MIND.
We set the cell type proportion parameter “frac” to the output value of
Bulk2Space to ensure the generated gene expression profile
comparability.

Benchmark metrics. The benchmark metrics were described above.

Evaluating the robustness of the deconvolution step of
Bulk2Space
weevaluated the robustness ofBulk2spaceby introducing twokinds of
noise: cell type noise and gene expression noise. For cell type noise, we
randomly altered the type of cells with the ratio of 0.01, 0.02, 0.04,
0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9. For gene expression noise, we
firstly constructed a noise expression profile C,

C ~ U �x,xð Þ ð8Þ

Here, x is the maximum gene expression value of scRNA-seq data
reference.

We next constructed synthetic expression matrix by combining
noise expression profile with scRNA-seq data reference, and the ratio
of gene expression-altered cells remains0.01, 0.02, 0.04, 0.08,0.1, 0.2,
0.3, 0.4, 0.5, 0.7, and 0.9. PCC, SRCC and RMSE between the synthetic
expression matrix and constructed bulk RNA-seq data were used to
evaluate performance.

Benchmarking the spatial mapping step of Bulk2Space on
simulated datasets

1. Spatial barcoding-based data

Datasets. Eighteen datasets metioned above were applied to bench-
mark our method. 10 datasets were applied to construct single-cell
data and spatial reference from same datasets, and other 8 datasets
were applied to construct single-cell data and spatial reference from
different datasets.

Data simulations. Starting from scRNA-seq data reference, we ran-
domly chose 10 cells from it and aggregated their transcriptomic
profiles as a spot of pseudo spatial transcriptomic data. The spot with
over 25000UMI countswouldbe sampled down to 20000UMI counts
to better meet the true situation. We also constructed pseudo spatial
transcriptomic datawith 100, 200, 500, 1000, and 5000 spot numbers
to simulate true spatial transcriptomics data produced by different
spatial barcoding technologies. Besides, the simulation that the
scRNA-seq and spatial datasets are from different sources was also
considered. The detailed description of the experimental design was
summarized in Supplementary Data 4 (paired simulation) and Sup-
plementary Data 5 (unpaired simulation).

Comparied methods. a, Logistic Regression (LR). We implement L2
regularization as the additional penalty term to solve the problem of
overfitting. We use L-BFGS algorithm as the solver, which uses the
Hessian matrix to iteratively optimize the loss function. We fit the
model according to the given training data and return the probability
estimates on testing set. b, Decision Tree (DT). We use the Gini
impurity to measure the quality of a split and choose the best split at
each node. We don’t set any maximum depth of the tree, so nodes are
expanded until all leaves are pure or until all leaves contain less than
2 samples. We build the decision tree classifier from the training set,
and then predict class probabilities of the input samples. c, Gradient
Boosting Decision Tree (GBDT). We set the learning rate as 0.1 and the
number of boosting stages to perform as 100. The loss function to be
optimized is log loss function, and we choose Friedman MSE to mea-
sure the quality of a split. The maximum depth of the individual
regression estimators is set to 3.We fit the gradient boostingmodel on
the training set and use the trained model to make prediction on
testing set. d, Multilayer Perceptron (MLP). We apply a two-layer per-
ceptron, where each layer is followed by a batch normalization, a RELU
activation, and a dropout layer with the probability of element zeroing
as 0.1. We use the Adam optimizer with the initial learning rate of 1e-4
and the betas parameters of 0.9 and 0.999.We train until the loss is no
longer reduced for 30 epochs, and use themodel obtained at this time
as the final model for prediction. e, DeepGBM. We set the number of
tree groups to 100. The dimension of leaf embeddin for a tree group is
set to 20. The structure of the distilled NN model is a fully connected
networks with “100-100-100-50” hidden layers. We adopt the feature
selection in each tree group, wherewe first sort the features according
to the information gain, and the top 128 of them are selected as the
inputs of distilled NN model. We use the Adam with weight decay
(AdamW) optimizer with an initial learning rate as 2e-3, the decoupled
weight decay as 1e-6, and Adam’s betas parameters as 0.9 and 0.999.
We train until the model reach the highest ROC-AUC score, and use it
for prediction. f, RCTD34. We followed the guidelines on the RCTD
GitHub repository: https://github.com/dmcable/spacexr. We set the
parameter doublet_mode = ‘full’. g, spatialDWLS35. We followed the
guidelines on the spatialDWLS GitHub repository: https://github.com/
rdong08/spatialDWLS_dataset/tree/main/codes. We set the parameter
n_cell = 20. h, stereoscope36. We followed the guidelines on the ste-
reoscope GitHub repository: https://github.com/almaan/stereoscope.
We set the parameter sc epochs = 10000, st epochs = 10000. i,
SPOTlight37. We followed the guidelines on the SPOTlight GitHub
repository: https://github.com/MarcElosua/SPOTlight. We set the
parameter n_cells = 75.

Benchmark metrics. Pearson correlation coefficient (PCC), Spear-
man’s rank correlation coefficient (SRCC), and root mean squared
error (RMSE) were used to assess the similarity of the gene expression
profile per spot between the predict result and ground truth. Due to
RCTD, spatialDWLS, stereoscope, andSPOTlight could not obtain gene
expression profiles for each spot, we calculated gene signature matrix
of each cell type based on single-cell reference, and the product of the
predicted proportions of each cell type and the gene signature matrix
of each cell type was regarded as the gene expression profile of
each spot.

2. Image-based in situ hybridization data

Datasets. A mouse hypothalamus scRNA-seq data (“GSE113576”) and
MERFISH data (Bregma +0.26) (image-based reference) from the same
laboratory43 were applied to test the performance of the Bulk2Space
algorithm for the second spatial mapping strategy. We also applied
another mouse hypothalamus scRNA-seq data44 (“GSE87544”) from
different source as single-cell reference to confirm the robustness of
Bulk2Space.
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Benchmarkmetrics. Pearson correlation coefficient (PCC)was used to
assess the similarity of the gene expression profile between the predict
result and ground truth. We took two strategies, five-fold cross vali-
dation and leave-one-out cross validation, to validate performance of
Bulk2Space. In five-fold cross validation, we random split 150 target
genes identified in MERFISH into five folds using R package caret
(version 6.0–92), a split of 80% for reference and 20% for validation. In
leave-one-out cross validation, 149 were used as reference genes and
and one was used for validation.

Performance evaluation of Bulk2Space using biological datasets
Deconvolution performance evaluation using paired bulk and
single-cell datasets. Three paired mouse liver bulk and single-cell
datasets74 (“GSE119340”) were applied to evaluate the performance of
the deconvolution step of Bulk2Space.

Reconstruction of mouse hippocampus subregions at single-cell
resolution. The mouse hippocampus Slide-seq v212 and scRNA-seq
data45 were downloaded from the Seurat website: https://satijalab.org/
seurat/articles/spatial_vignette.html were applied to evaluate the per-
formance of the spatial mapping step of Bulk2Space on real single-cell
data and real spatial data. We down sampled Slide-seq v2 data to
5000 spots to speed the spatial mapping step. For Bulk2Space, we set
the parameter k = 2 and top_marker_num = 100, all other parameter
followed the default values. For Seurat, we followed the standard
analysis workflow on the Seurat website and set the parameter reso-
lution = 0.3 to perform unsupervised clustering.

Robustness evaluation of Bulk2Space using repeated data. We
conducted 100-time repetitions on the deconvolution step of Bulk2-
Space to evaluate the robustness of β-VAE using the human peripheral
blood46 (“GSE92495”) scRNA-seq data. The construction of the single-
cell reference and bulk transcriptomedata was the same asmentioned
above. We further evaluated the spatial mapping results using the
pancreatic ductal adenocarcinoma (PDAC) dataset47 and the human
melanoma dataset48,49 with 3-time repetitions. For Bulk2Space, all
parameters followed the default values.

Deconvolution of bulk RNA-seq data using annotation-free single-
cell reference by Bulk2Space. We further evaluated the performance
of Bulk2Space without providing cell type information. We randomly
divided the human peripheral blood46 (“GSE92495”) scRNA-seq data
into two parts, one was treated as the single-cell reference and the
other for the construction of bulk transcriptome data via aggregating
all the single-cell gene expressionprofiles. For the single-cell reference,
we followed the scRNA-seq data analysis workflow on the Seurat
website: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html to
get 5 “clustering spaces” using “FindClusters” function with the para-
meter resolution = 0.2. For Bulk2Space, all parameters followed the
default values.

Revealing spatial, molecular, and functional heterogeneity of B
cells in melanoma (consecutive slices). The scRNA-seq data
(“GSE72056”) by Tirosh48 et al. was used as the single-cell reference,
and two consecutive slices of the ST data by Thrane49 et al. were used
as spatial reference (slice 1) and synthesized bulk data (slice 2) (via
aggregating all the spots gene expression profiles), respectively. For
Bulk2Space, we set the parameter epoch_num = 3500, k = 10, and
top_marker_num = 500, all other parameters followed the default
values.

We firstly evaluated the expression correlation of marker genes
for five major cell types between generated single-cell expression
profiles from synthesized bulk data (slice 2) and ground truth. We
applied “FindAllMarkers” function of Seurat (version 4.0.4)60 to cal-
culate the marker genes of each cell type with the parameter

logfc.threshold = 0.5. We also evaluated the expression correlation of
marker genes for five major cell types between spatial mapping result
of Bulk2Space and spatial reference (slice 1).

For B cells spatial heterogeneity analysis, we determined two
spatial areas (lymphoid area and tumor area) based on histological
annotation firstly. Then, differentially expressed genes analysis
between B cells from different areas was applied by the “FindAllMar-
kers” function with the parameter logfc.threshold = 0.25. For these
differentially expressed genes, we further performed the pathway
enrichment analysis using the Metascape (https://metascape.org) to
investigate the biological functions.

Linking histomorphology and transcriptomics in PDAC (disrete sli-
ces). Bulk2Space was performed for another PDAC dataset47. We
selected PDAC-B scRNA-seq data as the single-cell reference, and two
inconsecutive slices of the ST data were used as spatial reference
(PDAC-B ST1, slice 1) and synthesized bulk data (PDAC-B ST2, slice 2)
(via aggregating all the spots gene expression profiles), respectively.
For Bulk2Space, we set the parameter epoch_num = 3500, k = 10, and
top_marker_num = 500, all other parameters followed the default
values. The evaluation procedure of the marker gene expression cor-
relation between Bulk2Space results and slices was same as it in the
human melanoma dataset analysis.

Application of Bulk2Space
Bulk2Space integrates spatial gene expression and histomorphol-
ogy in PDAC. The pancreatic adjacent tissues and pancreatic cancer
tissues bulk data by Wu50 et al. were downloaded from “GSE171485”.
We firstly applied the PDAC-A scRNA-seq data by Moncada47 et al. as
the single-cell reference to deconvolute pancreatic adjacent tissues
bulk data andpancreatic cancer tissues bulk data respectively.We then
applied the PDAC-A ST1byMoncada47 et al. as the spatial reference and
performed spatial mapping step for the generated single-cell gene
profiles from pancreatic cancer tissues bulk data. For Bulk2Space, we
set the parameter epoch_num = 3500, k = 10, and top_marker_num =
200, all other parameters followed the default values.

Reconstruction of mouse isocortex layers at single-cell resolution
using Spatial-seq data. The mouse isocortex bulk data was produced
by Spatial-seq (see Methods). We applied a mouse primary visual
cortex scRNA-seq data52 and two tissue sections (anterior section 1 and
posterior section 1) sequenced by 10X Visium as the single-cell refer-
ence and spatial references, respectively. For Bulk2Space, we set the
parameter epoch_num = 3500 and top_marker_num = 300, all other
parameters followed the default values.

Reconstruction of mouse hypothalamus structure at single-cell
resolution using Spatial-seq data. The mouse hypothalamus bulk
data was produced by Spatial-seq (see Methods). We applied a mouse
hypothalamus scRNA-seq data (“GSE113576”) and MERFISH data
(Bregma −0.04) by Moffitt43 et al. as the single-cell reference and
spatial reference, respectively. For Bulk2Space, we set the parameter
epoch_num = 3500 and top_marker_num = 500, all other parameters
followed the default values. For those ambiguous cells in MERFISH
data, we re-annotated their cell type based on the whole gene
expression profiles predicted by Bulk2Space.

Uncovering spatial gene expression dynamics in inflammation-
induced prostate cancer. The human prostate cancer bulk data was
downloaded from TCGA (https://portal.gdc.cancer.gov). We selected
the human prostate cancer scRNA-seq data byWu54 et al. as the single-
cell reference, and three ST data from different tissue section location
as spatial references (p1.1 Normal glands, p2.3 Inflammation, p3.3
Cancer Gs 3+4). For Bulk2Space, we set the parameter epoch_num =
3500, k = 10, and top_marker_num=500, all other parameters followed
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the default values. We then compared the distribution of various cell
types in these three different tissue regions.

Spatial-seq protocol
Multiplexed spatial barcoding. A virtual 48×48×48 three-dimensional
well array (barcoding array) was constructed in the X, Y, and Z direc-
tions, with 48×48wells in each layer. 384-well plates (24×16wells) were
selected as the basic units (2×3 plates) of each layer. Each well in the
barcoding array can be labeled as barcode ({Xi,Yj,Zk},i,j,k ∈ N,[1,48]).
Magnetic beads coated with carboxyl group (Cat. # 40200, purchased
from BEAVER Biomedical Engineering Co., Ltd.) were distributed into
each well for barcode synthesis. There were three rounds of barcode
extension reactions. In the first round, 5’ amino-modified barcoded
oligonucleotides (barcode Xi) were conjugated to the beads. In the
second round of extension reaction, barcoded oligonucleotides (bar-
code Yj) which had a sequence of bases at the 5’ end complementary to
the 3’ end of barcode Xi were linked to the end of barcode Xi by PCR.
Similarly, in the third roundof reaction, barcode sequences containing
a unique molecular identifier (UMI) and a polyT tail (barcode Zk) were
extended to barcode Yj by PCR. All oligonucleotides were purchased
from Sangon Biotech (Shanghai) Co., Ltd. This method only needs 144
(48×3) different barcodes to theoretically generate magnetic beads
with 483 distinct kinds ofmagnetic beadswith known sequences.More
importantly, the entire synthesis process was serialized and multi-
plexed,whichcanbe accomplishedwith thehelpof arrayedpipettes or
liquid workstations, rather than synthesizing the magnetic beads well
by well. The spatially barcoded beads can be used inmany areas, such
as multiplexed labeling of tissue samples or even single cells.

Collection of mouse brain regions. Three wild-type adult C57BL/6 J
mice (SPF, male, 20–25 g) aged 8–10 weeks were used for Spatial-seq
experiments. The environmental conditions in themouse facility were:
12 h light and 12 h dark cycle (light on from 8:00 a.m. to 8:00 p.m.),
light intensity range of 15–20 lux, temperature range of 22–26 °C,
humidity range of 40–70%, and free access to food and water. The use
and care of the mice were in accordance with the guidelines of the
Animal Advisory Committee of Zhejiang University and the US
National Institutes of Health Guidelines for the Care and Use of
Laboratory Animals. All procedures were approved by the Animal
Advisory Committee of Zhejiang University. The mouse brain was
sliced into 14-μm sections from the coronal and sagittal directions.
Each tissue slice was registered to a reference brain template provided
by the Allen Brain Atlas (https://portal.brain-map.org/). After spatial
registration, the anatomical regions of the mouse brain were deli-
neated and annotated. The outlines, dissection sequences, and col-
lectorsof thebrain regionswere specified from the annotateddata and
then imported to an LCM instrument (Laser Microdissection System
equipped with a DM68 microscope, a Leica LMD6 laser cutter, and a
single-cell capture collector LMT350, Leica Microsystems, Germany).
LCM is a microscope-guided powerful cutting system incorporating
UV light for contact- and contamination-free isolation of areas of
interest from tissue sections15. Brain regions were dissected from the
tissuebyLCMaccording to the importedfiles and fell into the collector
loaded with barcoded beads in advance. Spatial-seq has the potential
to achieve spatially resolved whole transcriptome sequencing of a
large number of single cells.

Multiplex RNA-seq. The tissue was lysed in the barcoded well, allow-
ing mRNA to be captured by polyT tail on the surface of the magnetic
beads. The lysis buffer was prepared with Tris-HCl (120μL, pH 7.5, Cat.
# T1140, purchased from Beijing Solarbio Science & Technology Co.,
Ltd.), LiCl (80μL, Cat. # AM9480, purchased from Invitrogen), 10%
SDS solution (120μL, RNase-free, Cat. # AM9823, purchased from
Invitrogen), EDTA (16μL, Cat. # ST066, Shanghai beyotime Biological
Co.,Ltd.), 0.5MDTT solution (16 μL, DNase, RNase&Protease free, Cat.

# ST041, Shanghai beyotime Biological Co.,Ltd.), and water (852μL,
nuclease-free, Cat. #AM9930, Ambion). Eachwell was loadedwith lysis
buffer. The tissue was lysed on ice for 12min. The beads were then
washed and transferred for reverse transcription (RT), The captured
mRNA was reverse transcribed using PrimeScript II Reverse Tran-
scriptase (Cat. # 2690A, Takara).to construct cDNA libraries following
the guidance of Illumina Nextera XT DNA Library Preparation Kits. A
paired-end sequencing was conducted to decode the spatial barcode
in the 3’ end and detect RNA species in the 5’ end of the cDNA.

Sequence alignment. FastQC was utilized for quality control of the
RNA-seq data (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). The derived RNA-seq data were fragmented into lots of files
based on the spatial barcodes. The digital gene expression matrix for
each barcode was retrieved follow the Drop-seq sequence alignment
cookbook.

Data normalization. FPKM, RPKM, RPM, and TPM were calculated
from the gene expression matrix according to the following formulas.

FPKM=
ExonMappedFragments × 109

TotalMappedFragments × ExonLength
ð9Þ

RPKM=
ðExonMappedRead=TotalMappedReads × 106Þ

ExonLength
× 103 ð10Þ

RPM=
ExonMappedReads × 106

TotalMappedReads
ð11Þ

TPM=
Ni=Li × 10

6

sumðN1=L1 +N2=L2 + � � � +Nn=LnÞ
ð12Þ

The data were normalized using the global-scaling normalization
method “LogNormalize” in Seurat. A Bayesian network-based method
termed ComBat was used for batch effect removal of data derived
from different cDNA libraries. The expression matrix of each sample
was normalized using the “Deconvolution Normalization” algorithm to
align the median gene expression.

Ethical statement. All experiments were approved by and conducted
in accordance with the ethical guidelines of the Zhejiang University
Animal Experimentation Committee (Protocol number, 14875).

Statistics and reproducibility
In this study, 152 simulated datasets (the data points of paired simu-
lations for deconvolution, unpaired simulations for deconvolution,
paired simulations for spatial mapping, and unpaired simulations for
spatial mapping are 30, 12, 50, and 60, respectively), 13 biological
datasets, and 2 experimental datasets were used to evaluate the
Bulk2Space algorithm. Unannotated, ambiguous, or low quality-cells
were excluded from the analysis. Pearson correlation coefficient,
Spearman’s rank correlation coefficient, and root mean squared error
were used to compare the performance between different methods.
For paired data simulations, single cells were randomly selected to
synthesize the reference and the test set. For unpaired data simula-
tions, single-cell profiles were randomly selected to synthesize the
reference and the test set. The Investigators were not blinded to allo-
cation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
The original data used in this paper can be accessed through the fol-
lowing links: (1) single-cell RNA-seq data of the human blood: GEO
accession: “GSE92495”46; (2) single-cell RNA-seq data of the human
brain: GEO accession: “GSE103723”61; (3) single-cell RNA-seq data of the
human kidney: GEO accession: “GSE121862”62; (4) single-cell RNA-seq
data of the human liver: GEO accession: “GSE124395”63; (5) single-cell
RNA-seq data of the human lung: GEO accession: “GSE130148”64; (6)
single-cell RNA-seq data of the mouse brain: GEO accession:
“GSE60361”65; (7) single-cell RNA-seq data of the mouse kidney: GEO
accession: “GSE119531”66; (8) single-cell RNA-seq data of the mouse
lung: GEO accession: “GSE127465”67; (9) single-cell RNA-seq data of the
mousepancreas:GEOaccession: “GSE84133”68; (10) single-cell RNA-seq
data of the mouse testis: GEO accession: “GSE112393”69; (11) single-cell
RNA-seq data of the human pancreas with 975 cells: GEO accession:
“GSE81076”70; (12) single-cell RNA-seqdata of thehumanpancreaswith
2133 cells: GEO accession: “GSE85241”71; (13) single-cell RNA-seq data of
the human pancreas with 597 cells: GEO accession: “GSE86469”72; (14)
four sets of single-cell RNA-seq data of the human pancreas with 1635,
1562, 3330, 1230 cells, respectively: GEO accession: “GSE84133”68; (15)
single-cell RNA-seq data of the human pancreas with 2288 cells73

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5061/);
(16) single-cell RNA-seq data of the mouse hypothalamus using 10X
Genomics: GEO accession: “GSE113576”43; (17) single-cell RNA-seq data
of the mouse hypothalamus using Drop-seq: “GSE87544”44; (18) three
sets of single-cell RNA-seq data of the mice liver: GEO accession:
“GSE119340”42; (19) single-cell RNA-seq data of the mouse hippo-
campus region45 (https://www.dropbox.com/s/cs6pii5my4p3ke3/
mouse_hippocampus_reference.rds?dl=0); (20) two sets of single-cell
RNA-seq data of the human pancreatic ductal adenocarcinoma
(PDAC): GEO accession: “GSE111672”47; (21) single-cell RNA-seq data of
the human melanoma: GEO accession: “GSE72056”; (22) single-cell
RNA-seq data of the mouse cortex region52 (https://www.dropbox.
com/s/dl/cuowvm4vrf65pvq/allen_cortex.rds); (23) single-cell RNA-
seq data of the human prostate cancer54 (https://singlecell.
broadinstitute.org/single_cell/study/SCP1415); (24) MERFISH data of
the mouse hypothalamic preoptic region at bregma 0.2643 (https://
datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248); (25) slide-
seq v2 data of the mouse hippocampus region12 (https://singlecell.
broadinstitute.org/single_cell/study/SCP815/highly-sensitive-spatial-
transcriptomics-at-near-cellular-resolution-with-slide-seqv2); (26)
three sets of spatially resolved transcriptomics data of the human
PDAC using “Spatial Transcriptomics”: GEO accession: “GSE111672”47;
(27) two sets of spatially resolved transcriptomics data of the human
melanoma using “Spatial Transcriptomics”49 (https://www.spatial
research.org/resources-published-datasets/doi-10-1158-0008-5472-
can-18-0747/); (28) two sets of 10X Visium data of the mouse anterior
cortex and posterior cortex regions (https://www.10xgenomics.com/
cn/resources/datasets/mouse-brain-serial-section-1-sagittal-anterior-1-
standard-1-1-0); (29) two sets of spatially resolved transcriptomics data
of the human prostate cancer using “Spatial Transcriptomics”55

(https://www.spatialresearch.org/resources-published-datasets/10-
1038-s41467-018-04724-5/); (30) three sets of bulk RNA-seq data of the
mice liver: GEO accession: “GSE119340”42; (31) two sets of bulkRNA-seq
data of the humanPDAC:GEOaccession: “GSE171485”50; (32) bulk RNA-
seq data of the human prostate cancer (https://portal.gdc.cancer.gov).
The bulk RNA-seq data of the mouse cortex and mouse hypothalamus
regions reported in this manuscript using our in-house developed
Spatial-seq have been deposited to the Gene Expression Omnibus
under accession number “GSE192999”. All other relevant data sup-
porting the key findings of this study are available within the article
and its Supplementary Information files or from the corresponding
author upon reasonable request. Source data are provided with
this paper.

Code availability
Bulk2Space is available as a python package and the source code is
deposited on GitHub (https://github.com/ZJUFanLab/bulk2space)75.
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