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Triboelectrification-Induced Electricity in Self-Healing Hydrogel for
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Monitoring
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ABSTRACT: Triboelectric nanogenerators (TENGs) have shown huge application potential
in the fields of micro—nano energy harvesting and multifunctional sensing. However, the
damage of triboelectric material is one of the challenges for their practical applications. Herein,
we fabricated a flexible TENG employing self-healing hydrogel and fluorinated ethylene
propylene film as triboelectric materials for mechanical energy harvesting and pressure
monitoring. The prepared hydrogel not only has excellent flexibility, transparency, and self-
healing property but also exhibits good mechanical property without plastic deformation and
damage under a large stretchable strain of 200%. The output electric signals of TENGs are as
high as 33.0 V and 3 pA under a contact frequency of 0.40 Hz and a pressure of 2.9 N,
respectively, which can charge a capacitor of 0.22 uF to 24.3 V within 300 s. Note that the
voltage retention rate of TENGs after self-healing is up to 88.0%. Moreover, hydrogel-based
TENGs can act as a wearable pressure sensor for monitoring human motion, exhibiting a high
sensitivity of 105.9 mV/N or 1.73 nA/N under a contact frequency of 0.40 Hz. This research
provides a reference roadmap for designing TENGs and self-powered pressure sensors with flexibility, self-healing, and robustness.
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1. INTRODUCTION

As technology continues to advance, flexible wearable
electronics gradually show huge application potential in
electronic skin (E-skin),"” soft robotics,”* health monitoring,s’6
and other aspects in human daily lives.” However, as traditional
power supply methods, batteries and capacitors require frequent
charging and maintenance due to limited capacitance, which
affect the continuous operation and stability of wearable
electronics, especially in harsh environments.*” At the same
time, discarded batteries/capacitors also cause serious pollution
to the environment.'*~"* Therefore, developing high-perform-
ance sustainable energy technologies becomes one of the
important research topics. In 2012, Wang’s group first invented
the triboelectric nanogenerator (TENG) that can convert
various kinds of mechanical energies into electrical energy for
self-powered electronics,”® such as human motion energy,lé
vibration energy,”’1 8 wind energy,lg’zo rain drop energy,21 water
wave energy,” > and sound energy.”**> With continuous
research and progress, the output performance of TENGs
have been greatly improved,”*™** which facilitates their practical
process in daily life. It plays a very good supplementary role to
traditional energy and is of great significance to the realization of
carbon neutrality goals.

As a new intrinsically conductive material, polymeric
hydrogels have adjustable conductivity, excellent self-healing
performance, and good biocompatibility, thus showing great
potential applications in soft robots, biomimetic prostheses,
health monitoring, and wearable electronics.”>~>* The hydrogel-

based TENGs have already attracted great attention and
obtained satisfactory achievement by hydrogel structure design
and optimization.*””** Pu et al. fabricated a flexible sandwich-
structured TENG based on a polyacrylamide hydrogel as an
electrode for harvesting biomechanical energy and acting as an
E-skin."' However, this TENG does not possesses self-healing
property and cannot work normally after damage. Sun et al.
developed a polyacrylamide/gelatin/PEDOT:PSS composite
hydrogel that has good flexibility, stretchability, and sensitivity
to stress.*” As the electrode of a sandwich-structured TENG,
only the hydrogel has good self-healing property, and TENG
cannot work normally when the charged layer is damaged. In
addition, a linear silicone-modified polyurethane coating and a
temperature-responsive polycaprolactone film as self-healing
friction layers have been used to fabricate TENGs, which is of
great significance to prolong the service life of TENGs."”** Thus
far, there are no reports on the use of self-healing hydrogels as
triboelectric materials to fabricate TENGs.

Here, we report a novel TENG based on a flexible and
transparent hydrogel with excellent self-healing property directly
as a triboelectric material, which shows great potential for a
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Figure 1. (a) Schematic diagram for the preparation process of the self-healing hydrogel. (b,c) Self-healing principle diagram of the hydrogel. (d)
Demonstration of tensile property of the self-healing hydrogel. (e) Demonstration of tensile property of the self-healing hydrogel after self-healing. (f)
Stretched length and corresponding tensile force curves of self-healing hydrogel from the first to fifth stretches. (g) Demonstration of flexibility of self-
healing hydrogel: bending and twisting.

broad range of applications in mechanical energy harvesting and hydrogel still shows good mechanical performance without
pressure monitoring. After being stretched to 200% strain, the plastic deformation. After a complete self-healing process, a cut
18817 https://doi.org/10.1021/acsomega.2c01743
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Figure 2. (a,b) Schematic diagram of the self-healing hydrogel-based TENG (a) and pressure array sensor (b). (c) Photograph of the pressure array
sensor. (d) Working principle of TENG. (e) Simulation calculations of the electric potential distribution of TENG between contacting interfaces by
COMSOL software.
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hydrogel as the friction material can still give TENG high output
performance with a large voltage retention rate of 88%. A
hydrogel-based wearable array sensor exhibits a high sensitivity
of 1059 mV/N or 1.73 nA/N, showing great application
potential in self-powered wearable sensing systems.

2. EXPERIMENTAL SECTION
2.1. Preparation of Self-Healing Hydrogels. The self-

healing hydrogels were prepared using a simple one-pot method.
Typically, acrylamide (AM) (7.029 g) and diacetone acrylamide
(DAAM) (0.169 g) were added into a distilled water solution
(20 mL) and stirred well. Then, polyvinylpyrrolidone (PVP-
K30, M,, = 5.0 X 10* g/mol) (0.34 g), adipic dihydrazide (ADH)
(0.087 g), and ammonium persulfate (APS) (0.05 g) were added
in the above mixed solution in sequence. After stirring for 1 h
and standing for 3 h, the solution was poured into glass molds
measuring 8 X 7 X 1 mm and protected with nitrogen and then
heated at 40 °C for 6 h to obtain a self-healing hydrogel with a
thickness of 1 mm.

2.2. Fabrication of the TENG and Sensor. First, the self-
healing hydrogel, fluorinated ethylene propylene (FEP) film,
and aluminum (Al) foil were cut into squares with dimensions of
5.0 X 5.0 cm each. Then, using a laser cutting machine, two
acrylic plates were cut with dimensions of 6.0 X 6.0 cm as
supports. Finally, the cut Al electrode and triboelectric materials
were closely adhered to the acrylic plates to construct the
TENG.

A 2 X 2 sensor array consists of 4 small TENGs with a size of
2.0 X 2.0 cm, in which the back of the TENG electrode is
supported by PDMS with a size of 8.0 X 8.0 cm X 200 ym, the
distance between each sensor unit is 1 ¢cm, and the device is
surrounded by elastic sponge as a flexible support.

2.3. Characterization and Measurement. Infrared
spectra were recorded on a Fourier transform infrared (FTIR,
Nexus 670) spectrometer from 400 to 4000 cm ™. Measurement
of Iyophilized samples of self-healing hydrogels was done using
the KBr particle method. The morphologies of the hydrogel
were observed using a scanning electron microscope (Quanta
450) and a laser scanning confocal microscope (LSM800 Carl
Zeiss, Germany). The force was provided by a linear motor
(LinMot 1100) and measured by a force sensor (BSCC-H2).
The output voltage and current signals of the TENG were
obtained by using a mixed domain oscilloscope (Tektronix
MDO3014) and a system electrometer (Keithley 2611B),
respectively.

3. RESULTS AND DISCUSSION

Figure la shows the preparation process of the self-healing
hydrogel. Using APS as an initiator, AM and DAAM as
monomers were free-radically copolymerized to form long
chains of PAM-co-DAAM. The ketone group in the long chain
reacts with the hydrazide of ADH to form an acylhydrazone
bond as the first cross-linking point and can improve the
toughness and stretchability of the hydrogel.”> Moreover, PVP
can synergize with the CONH, functional groups of PAM-co-
DAAM to generate hydrogen bonds to form a second cross-
link.”® The FTIR spectrum of the hydrogel shows that the
stretching bands at 3435, 1630, and 1097 cm™! correspond to
the characteristic absorption bands of O—H, C=0, and C—N
in ADH, respectively (Figure S1). The self-healing principle of
the hydrogel is displayed in Figure 1b. When the hydrogel is cut,
owing to the hydrogen bonds between PVP chains and the

CONH, functional groups of PAM-co-DAAM, the hydrogel can
be repaired spontaneously without external interference. After
self-healing for 12 h, the two hydrogels can self-heal well under
the dynamic cleavage and reconstruction of hydrogen bonds and
the rearrangement of polymer segments. The process of forming
hydrogen bonds is shown in Figure Ic.

Note that the obtained hydrogel has a typical porous network
morphology of the gel matrix after freeze-drying, indicating the
formation of the hydrogel (Figure S2ab). Also, the LSCM
images showed that the surface of the hydrogel before freeze-
drying was smooth (Figure S2c,d). To examine the tensile
properties of the hydrogels, the prepared hydrogels with a
thickness of 1.0 mm were dyed red and green, respectively, and
then cut into strips of 1.0 X 6.0 cm (Figure S3a). The two ends
were clamped for 0.5 cm and then slowly stretched. As can be
seen from Figures 1d and S4, the clamped hydrogels can be
stretched from 5.0 to 15.0 cm with a stretchable strain of 200%.
Note that when the two hydrogels were cut from the middle
(Figure S3b), self-healing process could be completed within 12
h and the original tensile properties could be maintained (Figure
le). To explore the mechanical properties of the hydrogel, the
relationship between the stretched length of the hydrogel and
corresponding tensile force was measured. As shown in Figure
1f, the hydrogel with a width of 1.0 cm was gradually elongated
from 5.0 to 15 cm, and the tensile force was also gradually
increased from 0 to 0.71 N. During the recovery process, the
pulling force was gradually reduced from 0.71 to 0 N, showing
excellent stability for 5 cycles. This indicates that the hydrogel
has good elastic deformation properties without irreversible
deformation during the stretching-recovery process from 5.0 to
15.0 cm. In addition, the photographs of the prepared self-
healing hydrogels in the bending and twisting states are
displayed in Figure 1g, showing good transparency and excellent
flexibility.

To further explore the application value of the self-healing
hydrogel in energy-harvesting and self-powered sensing system,
we designed a TENG and a wearable pressure sensor based on
the hydrogel, respectively. Figure 2a shows the schematic
diagram of the TENG with a contact-separation mode fixed on a
linear motor. The self-healing hydrogel and FEP film were used
as triboelectric materials with a size of 5.0 X 5.0 cm, Al foils were
used as electrodes, and acrylic sheets were used as support
materials. Figure 2b,c shows the structure diagram and optical
image of the wearable pressure sensor, which contains four
TENGs individually with the size of 2.0 X 2.0 cm. Figure 2d is a
schematic diagram of the working principle of the TENG. Its
work process can be divided into four steps: (I) When pressing
the TENG, the FEP film contacts with the hydrogel film, and the
equal and opposite charges are generated on the surface of FEP
(negative charge) and hydrogel (positive charge) films due to
the triboelectrification. (II) When removing the external force,
the FEP film separates from the hydrogel film. Owing to
electrostatic induction, the electron flows from the upper Al
electrode to the bottom Al electrode, and the opposite charges
are generated on two Al electrodes, while negative charges are
generated by the FEP film. In this process, a current was
produced from the bottom to upper electrodes. (III) When the
FEP film recovers to its original state, there is no electron flow
between the two electrodes owing to the electrostatic balance.
(IV) when pressing the TENG again, the electrostatic balance is
broken, and the electron flows from the bottom to the upper Al
electrode, corresponding to an opposite current direction
compared with step II. The potential difference and potential
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Figure 3. (a,b) Measured output voltage (a) and current (b) signals of TENG under different frequencies (0.10—0.40 Hz) at 1.7 N. (c,d) Measured
output voltage (c) and current (d) signals of TENG under different pressures (1.7—2.9 N) at 0.40 Hz. (e,f) Measured output voltage (e) and current
(f) signals of TENG under forward connection and reversed connection at 2.9 N and 0.40 Hz. (g) Measured output currents and calculated output
powers of TENG under different loads at 2.9 N and 0.40 Hz. (h) Charging curves of capacitors with different capacitances driven by TENG at 2.9 N

and 0.40 Hz.

distribution of the two electrodes of the TENG were
theoretically simulated using COMSOL modeling, and the
results are shown in Figure 2e.

To measure the output performance of the hydrogel-based
TENG with a size of 5.0 X 5.0 cm (Figure 2a) under different

conditions, we systematically studied the output voltages and

currents of the TENG under different working frequencies and

forces. First, we measured the effect of different frequencies on

the output performance of the device at 1.7 N. As shown in

Figure 3a,b, as the contact frequencies gradually increased from
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0.10 to 0.40 Hz, the open-circuit voltages/short-circuit currents
increased from 2.0 V/0.3 uA to 8.0 V/0.9 pA, respectively. The
improvement of the output performance is attributed to the
increase of the electrostatic induction rate induced by the faster
contact frequency, thus increasing the charges migration rate.
Then, we further studied the output performance of the TENG
under different pressure conditions and a constant contact
frequency of 0.40 Hz. With the increase of the forces from 1.7 to
2.9N, the corresponding output voltages/currents increase from
7.0 V/0.9 uA to 33.0 V/3.0 pA, respectively (Figure 3c,d). This
is due to the increase of the contact area and degree between the
hydrogel and the FEP film, which promotes the charge
generation, thereby enhancing the output performance. The
above research illustrates that the hydrogel-based TENG is
sensitive to contact frequency and pressure, showing huge
application potential in frequency and pressure monitoring. To
determine the authenticity of the output signals of TENG, the
circuit is connected through forward and reverse connections.
The output performance of the TENG with the two connection
modes above were measured under a pressure of 2.9 N and a
contact frequency of 0.40 Hz (Figure 3e,f). The output voltages/
currents are approximately 34.0 V/3.5 yA and —34.0 V/-3.5
HA, respectively. Despite the change in the circuit’s forward and
reverse connections, the absolute values of output electrical
signals were unchanged, which confirms the authenticity of the
output signals. It is worth noting that there is no obvious wear
phenomenon on the hydrogel surface when the TENG runs
continuously for 6 h (Figure SS), indicating that the device has
good stability. In addition, in order to test the output
performance change of the hydrogel-based TENG before
cutting and after self-healing, the TENGs were constructed
using the hydrogel before cutting and after self-healing as the
triboelectric materials (Figure S6), respectively. Figure S7a,b

18822

shows the output voltage and current signals of the TENGs
under a pressure of 2.9 N and a frequency of 0.40 Hz, the open-
circuit voltage is reduced from 34.0 V before cutting to 30.0 V
after self-healing, and the corresponding short-circuit current is
reduced from 3.0 to 2.5 pA. It can be seen from the calculations
that the output voltage and current retention rates of the TENG
fabricated with the self-healed hydrogel current are as high as 88
and 83%, respectively, indicating excellent stability of the
TENG. Note that both the output voltages and currents of the
TENG increased with the increase of healing time, and when the
hydrogel was completely healed, the output performance of
TENG almost reached the level before cutting (Figure S8a,b).
Figure 3g displays the measured output currents and calculated
powers of the TENG under different external loading resistances
at a pressure of 2.9 N and a contact frequency of 0.40 Hz,
showing that the output current decreases with the increase in
the external loading resistance. According to the formula P = I’R,
the output power of the TENG under different external loading
resistances could be calculated. As the picture shows, the
corresponding output power first increases and then decreases
rapidly. Moreover, the optimum output power of the TENG is
about 383 W under a loading resistance of 70 M. In order to
facilitate the use for tiny electronic devices, the produced electric
energy from the TENG by harvesting mechanical energy is
usually stored in capacitors or batteries. We studied the charging
performance of the capacitors with different capacities. Note
that a rectifier is required to connect to the TENG to convert the
alternating current generated by the TENG into direct current
for charging purposes. As illustrated in Figure 3h, the smaller the
capacitor capacity, the faster the increase in voltage in the
charging process. The 0.22 uF capacitor voltage can be charged
from 0 to 24.3 V in approximately 295 s, while the 0.33, 10, and
22 uF capacitor voltages can be charged to 11.7,2.2,and 1.2V,
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respectively. The charging results show that the electrical energy
generated by the TENG can be successfully stored in the
capacitor, which provides the possibility for the continuous
operation of the microelectronic devices.

To demonstrate the application potential of self-healing
hydrogel-based TENG in wearable pressure sensors, a 2 X 2
sensor array consisting of four small-scale TENGs was
constructed. It is important to analyze the response of the
output performance to contact frequency and pressure. Figure
4a,b shows the output voltage and current signals of the four
channels of the sensor under conditions of constant pressure (15
N) and different frequencies, respectively. It can be seen that
when the contact frequency is 0.20 Hz, the output voltage of the
channel 1 is 0.9 V, and the corresponding current is
approximately 45 nA. As the frequency increases, the output
electrical signals also increase accordingly. At 0.33 and 0.40 Hz,
the output voltage/current signals are 1.3 V/56 nA and 1.8 V/68
nA, respectively. The output signals of channel 2, 3, and 4 have
the same trend and similar values. Figure 4c,d further presents
the output variation of the four channels at different pressures at
a constant contact frequency of 0.40 Hz. Similar to the effect of
contact frequency, with the increase of applied pressure from 15
to 28 N, the generated electrical signals of four channels all
gradually increase from ~1.9 V/67 nA to ~3.4 V/94 nA. To
measure the sensitivity of the pressure sensor, we have fitted the
linear relationship between pressure and output voltage/current
peaks at different contact frequencies. As shown in Figure 4e,f,
for the pressure sensor, both the output voltage and current
signals show an excellent linear relationship with applied
pressures. The slope of the fitted curves represents the sensitivity
of the sensor to pressure. At 0.20 Hz, the calculated sensitivities
of the pressure sensor from voltage and current are 91.0 mV/N
and 2.315 nA/N, respectively. When the contact frequencies are
0.33 and 0.4 Hz, the corresponding sensitivities are 97.2 mV/N/
2.16 nA/N and 105.9 mV/N/1.73 nA/N, which shows good
sensitivity of the pressure sensor applied under different contact
frequencies.

The fabricated 2 X 2 array pressure sensor above can act as a
wearable pressure sensor for motion monitoring. First, we
examined the practical effect of the motion sensor, as shown in
Figure Sa. A finger presses the four individual sensor units from
channel 1 to 4 in sequence, then from channel 4 to 1; each
channel produces the corresponding induction signals in turn.
Note that no electrical signal output is detected in the unit where
no force is applied. Due to the different pressures of the fingers,
the generated signals also vary from 0.33 to 0.98 V. The
corresponding test photos of pressing the four channels with
fingers are shown in Figure Sb—e. Figure 5f is the sensor output
voltage signals measured as the volunteer periodically
straightens and bends his elbow; the corresponding test photos
are displayed in Figure Sgh, respectively. When the elbow is
straightened, the sensor has no voltage signal output, but when
the elbow is first bent and then straightened, the four channels of
the sensor can simultaneously generate four similar electrical
signals. Due to the different positions of each channel, the
magnitude of the signal induced by it is also different, ranging
from 1.69 to 2.36 V. Moreover, when the elbow is bent at
different angles, each sensor unit detects different output voltage
signals, showing huge application potential in monitoring
motion.

4. CONCLUSIONS

In summary, this work presents a novel and simple self-healing
hydrogel-based TENG and sensor for efficient mechanical
harvesting and motion monitoring. Through structure design
and regulation, a flexible and transparent hydrogel was prepared
with excellent self-healing property. Moreover, the prepared self-
healing hydrogel shows good mechanical properties without
plastic deformation even at a large stretchable strain of 200%.
Under a contact frequency of 0.40 Hz and a pressure of 2.9 N,
the fabricated TENG generates the output electrical signals of
33.0 V and 3 pA, respectively, which can be used to charge
capacitors. Comparing the output performance changes of the
hydrogel-based TENG and the healed hydrogel-based TENG, it
was found that the latter does not decrease significantly. As a
wearable array pressure sensor based on several individual
TENGs, a high sensitivity of 105.9 mV/N can be realized.
Moreover, the output signals of the sensor are different under
different motion states of the human body. The study
demonstrates the potential application of self-healing hydrogels
as triboelectric layers for TENGs and wearable triboelectric
pressure sensors.
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