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Abstract: Material extrusion (ME), one of the most widely used additive manufacturing technique,
has the advantages of freedom of design, wide range of raw materials, strong ability to manufacture
complex products, etc. However, ME products have obvious surface defects due to the layer-by-layer
manufacturing characteristics. To reveal the generation mechanism, the three-dimensional surface
roughness (3DSR) of ME products was investigated theoretically and experimentally. Based on the
forming process of bonding neck, the 3DSR theoretical model in two different directions (vertical
and parallel to the fiber direction) was established respectively. The preparation of ME samples
was then completed and a series of experimental tests were performed to determine their surface
roughness with the laser microscope. Through the comparison between theoretical and experimental
results, the proposed model was validated. In addition, sensitivity analysis is implemented onto
the proposed model, investigating how layer thickness, extrusion temperature, and extrusion width
influence the samples’ surface roughness. This study provides theoretical basis and technical insight
into improving the surface quality of ME products.

Keywords: material extrusion; surface roughness; bonding neck; theoretical model; experimental
tests; sensitivity analysis

1. Introduction

Additive manufacturing has gradually developed from the initial prototype manu-
facturing to direct manufacturing and mass manufacturing, which has a wide range of
important application prospects [1–3]. Material extrusion (ME) is one of the most popular
additive manufacturing technologies, which create three-dimensional (3D) solids through
layer-by-layer manufacturing process [4,5]. It is inherently less wasteful than traditional
subtractive methods of production and holds the potential to decouple social and economic
value creation from the environmental impact of business activities [6]. However, due to the
stratified nature of manufacturing characteristic, there is a big gap between ME products
and those fabricated by traditional processing methods in terms of surface quality [7]. Since
surface roughness affects the wear resistance, fatigue strength, and corrosion resistance of
ME products, it needs to be as small as possible to maintain stability and extend the service
life of the products for application in the field of automotive, electronics, aerospace, etc., [8].

Up to now, the surface roughness of ME products has been mainly assessed by per-
forming iterative experiments at varying processing conditions. A lot of investigations
on the optimization of processing parameters [9–12] have been performed to improve the
surface quality of ME products, but the improvement is limited due to the small adjustment
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range. In order to effectively improve the surface quality of ME products and mitigate the
time-consuming and expensive iterative experiments performed, it is necessary to clarify
the generation mechanism of their surface roughness. Therefore, many scholars at home
and abroad have carried out relevant research. Lalehpour et al. [13] proposed a theoretical
model of surface roughness based on the material layer of ME products, and verified the
model by experiments. The results showed that the proposed model could accurately
predict the surface roughness of specific ME products. Vahabli et al. [14] proposed a new
model on the basis of experimental research. Compared with other models [15,16], the pro-
posed one had a significant improvement in the accuracy of surface roughness prediction.
Angelo et al. [17], considering the influence of step effect on the surface profile, improved
the model set up by Anh et al. [18,19], and proposed a new parameter Pa (ISO 4287) for
evaluating the ME products’ surface quality. Comparing the predicted Pa value with the ex-
perimental data in the literature, it was found that the improved model was more accurate.
Li et al. [20] proposed a data-driven model, which applied machine learning algorithms
to accurately predict the surface roughness of ME products. Wang et al. [21] established a
mechanism model based on the thermal analysis theory of bonding formation. The model
could help to predict the surface roughness of printed heat-resistant parts. Kaji et al. [22]
proposed an empirical model through actual observation and analysis of the geometry of
the ME products’ surface profile. Li et al. [23] established a surface roughness model of ME
products based on the surface profile representation method of parabolic curve and linear
straight line. After comparing with experiments, they found that the model could improve
the prediction accuracy. Assuming that the surface profile of ME products was parabolic,
Pandey et al. [24] took into account the influence of layer thickness and printing direction,
and created a semi-empirical formula for predicting the surface roughness of ME products.
Combining theory and experience, Taufik et al. [25] established a theoretical model, which
could simulate surface profile features of ME products.

Although the above scholars put forward different types of theoretical models or
empirical formulas, they generally ignored the anisotropic characteristics of the ME product,
i.e., the surface roughness varies in different directions. Furthermore, the surface roughness
of only one side of the built product was taken into account, which was obviously limited
for 3D entities. Besides, Vanaei et al. [26,27] studied the influence of extrusion temperature
and the temperature between adjacent extruded filaments on the shape, size and fatigue
life of ME products, separately. The experimental results showed that optimizing the above
temperature was necessary for achieving the optimization of ME products’ forming quality.
But little information is available in the literature mentioned above.

Due to the layer-by-layer manufacturing process, the forming quality of ME products
was controlled by the thermal energy (temperature distribution) of the extruded material
filaments [28,29]. The surface quality of ME products is related to the forming quality. The
cross section of the material filament is elliptical, and bonding neck is formed between
adjacent elliptical sections, which plays a vital role in the surface quality of ME products [30].
Therefore, based on the bonding neck forming process (horizontal and longitudinal bonding
necks), a three-dimensional surface roughness (3DSR) theoretical model of ME products
was established in this paper, with the anisotropic characteristics and temperature taken
into account. Compared with a series of testing results, the proposed model was validated.
In addition, sensitivity analysis of the model was carried out to predict how extrusion
width, layer thickness, and extrusion temperature influence the ME products’ surface
roughness.

2. Analytical Study

Due to the influence of gravity and the nozzle extrusion during the forming process,
the cross section of the extruded filament of ME product is elliptical. There are two bonding
necks generated in horizontal and longitudinal direction, respectively, as shown in Figure 1.
It is assumed that the work done by the surface tension is equal to that by the viscous force
when the bonding neck is formed between adjacent filaments, and the change in the length
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of the material filament is ignored. Based on the formation of bonding neck, there are four
different types of surface roughness, which are the surface roughness vertical or parallel to
the fiber direction based on the horizontal bonding neck (SRVF-HB and SRPF-HB) and the
roughness vertical or parallel to the fiber direction based on the longitudinal bonding neck
(SRVF-LB and SRPF-LB). Details are listed in Table 1.
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2.1. Analytical Investigation Based on Horizontal Bonding Neck
2.1.1. The Surface Roughness Vertical to the Fiber Direction

Figure 2 shows the schematic diagram of the formation stage of the horizontal bonding
neck. In the forming process, the material flow is assumed to occur in a circle with the
radius of the contact point being r0 (the radius of curvature of the ellipse).
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At any time t, the instantaneous radius, bonding neck length, and angle are separately
r1, 2x, and 2θ. They have the following relationship:

x = r1 × sin θ (1)
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According to the principle of volume conservation, at any time t, the expression of the
instantaneous radius r1 during the bonding process of adjacent material filaments is:

r1 =

√
πr0√

π − θ + sin θ cos θ
(2)

where r0 is the radius of curvature of the ellipse, r0 = a2/b, a is the semi-major axis of the
ellipse, b is the semi-minor axis of the ellipse.

The net contact cross-sectional area is:

S =
4
√
πlb2

a
π − θ√

π − θ + sin θ cos θ
(3)

Under the influence of surface tension [31],when material filaments are bonded, the
work done by surface tension is:

WS = −Γ
dS
dt

, (4)

where Γ is the surface tension coefficient, substituting Equation (3) into Equation (4), the
work done by surface tension can be expressed as:

WS =
4
√
πlb2Γ
a

(π − θ) cos2 θ + sin θ cos θ

[(π − θ) + sin θ cos θ]
3/2

·
θ (5)

where
·
θ is the rate of change of the instantaneous half-angle of the horizontal bonding neck,

·
θ= dθ/dt.

Assuming that the molten mass is the Newtonian fluid when adjacent extruded
material filaments are bonded, the expression for the work done by viscous force of the
Newtonian fluid [32] is:

WV =
y

V

3η
·
ε2dV (6)

where η is the viscosity of the material, which is an important factor dependent on the
extrusion temperature and the temperature between adjacent extruded filaments [26,27,33].
V is the bonded volume of adjacent extruded material filaments,

·
ε is the fluid strain rate.

Assuming that the strain rate
·
ε is continuous in the bonding area, it can be expressed as:

·
ε =

∂vy(A)

∂y
=

vy(A)− vy(O)

r1
(7)

where vy(O) is the flow rate of the material on the contact surface, vy(A) is the speed at
which the center point of the material filaments bonding area moves to the contact point,
vy(A) can be expressed as:

vy(A) =
(θ − π)

√
πrb2 sin θ

a (π − θ + sin θ cos θ)
3/2

·
θ (8)

Substituting Equation (8) into Equation (7), the expression of the strain rate is given by:

·
ε =

(π − θ) sinθ

(π − θ + sin θ cos θ)

·
θ (9)

Substituting Equation (9) into Equation (6), the expression of the work done by the
viscous force is:

WV =
6πlηb4

a2
(π − θ)2 sin2 θ

(π − θ + sin θ cos θ)2

·
θ2 (10)
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Let the work done by surface tension WS equals to work done by viscous force WV, the
expression of the rate of change of the instantaneous half-angle to the horizontal bonding
neck can be given by:

·
θ =

2Γa (π − θ + sin θ cos θ)1/2

3
√
πb2η (π − θ)2 sin2 θ

×
[
(π − θ) cos2θ + sin θ cos θ

]
(11)

Substituting Equation (2) into Equation (1), the expression of the half-length to the
horizontal bonding neck is:

x =
sin θ
√
πb2

a
√
π − θ + sin θ cos θ

(12)

Using the initial conditions θ(0) = θ0 = 0 to solve Equation (11) to obtain the instanta-
neous half-angle of the horizontal bonding neck at a certain moment. Then substituting the
half-angle θ into Equation (12) to obtain the horizontal bonding neck.

During the bonding process of adjacent filaments, the bonding neck stops growing
when the melt temperature of the extrudate drops to the critical temperature. Therefore, it
is necessary to analyze the extrudate’s cooling time.

Bellehumeur et al. [34] used the lumped capacity (LC) analysis for modeling the
cooling process of the extrudate and thus proposed the cooling model as follows:

T = TE + (TL − TE)× e−mx, (13)

with

m =

√
1 + 4αβ− 1

2α
and x = vt (14)

where
α =

k
ρCv

and β =
h1P

ρCAv
(15)

where TE is the envelope temperature of the environment, TL is the melting temperature,
T is the real-time temperature, ρ is the density of the material filament, k is the thermal
conductivity of the material, h1 is the system convection coefficient. The terms C, A, and P
separately represent the specific heat capacity of the material, area, and perimeter of the
elliptical section.

According to the actual situation of the formation of the horizontal bonding neck, the
model schematic of the surface roughness vertical to the fiber direction based on horizontal
bonding neck (SRVF-HB) is determined, as shown in Figure 3.
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The (xoy) coordinate system is established based on the cross section of the nth layer
of material filament and its center point, and the cross-sectional profile can be expressed as:

x2

a2 +
y2

b2 = 1 (16)

Extrusion width E and layer thickness K can be given respectively by:

E = 2a and K = 2b. (17)

Substituting Equation (12) into Equation (16), the coordinates of P1(x1, y1) and P2(x2, y2)
can be obtained, thus the width of the overlapping area c is:

c = 2b

1−

√
1− πb4 sin2 θ

π − θ + sin θ cos θ

 (18)

The boundary is determined by two lines parallel to the surface normal vector, which
are expressed as:

ylb1
= y1 (19)

ylb2
= y2 (20)

The temporary centerline lt is located between the straight line lv and lp, and the
three straight lines are parallel to each other. Let the intersection of the line lt and lb1 be
Pt1(xt1, yt1), and the expression of xt1 is:

xt1 = xt1_old + d(AP > AV) (21)

where d is iterative increment. Hence the expression of lt is:

xlt = xt1 (22)

Combining Equation (16) with Equation (22), and Equation (20) with Equation (22)
respectively can obtain the intersections Pt2 (xt2, yt2), Pt3 (xt3, yt3), and Pt4 (xt4, yt4).

The enclosed areas AP and AV are composed of straight lines lt, peak profiles, valley
profiles, and their boundaries. The enclosed area AP and AV can be expressed as:

AP =
∫ yt2

yt3

[ f (y) + lt (y)] dy (23)

AV1 =
∫ xt1

x1

[lb1 (x)− f (x)] dx +
∫ xt2

xt1

[lt (x)− f (x)] dx (24)

AV2 =
∫ xt3

x2

[ f (x)− lb2 (x)] dx +
∫ xt4

xt3

[lt (x)− lb2 (x)] dx (25)

AV = AV1 + AV2 (26)

where f (x), f (y), lb1(x), lb2(x), lt(x), and lt(y) are the expansion formulas of elliptic curve,
boundary line, and temporary centerline with respect to x and y separately.

When lt is in a certain position so that AP = AV, the expression of the straight line
lt can be obtained by substituting Equation (9) to Equation (12). At this time, lt is the
arithmetic mean centerline of the contour.

Considering the influence of forming accuracy on the surface roughness of the ME
sample, the height change of the surface profile vertical to the fiber direction can be
expressed as:

h = qs (27)

where s is forming accuracy, s = ±0.1 mm, q is the influence coefficient.
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Therefore, according to the definition of surface roughness [18], SRVF-HB can be
expressed as:

Ra,V−HB =
∑n

i=1|li ± qs|
n

(28)

where n is the number of sampling points, n = a−x1
m + 1, m is the interval distance between

sampling points, m = 0.001 mm.

2.1.2. The Surface Roughness Parallel to the Fiber Direction

Ideally, the surface profile parallel to the fiber direction of the ME products should
have been smooth. As a matter of fact, it is an undulating curve, with the schematic diagram
shown in Figure 4.
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The maximum height of the surface profile depends on the height change of the surface
profile vertical to the fiber direction, and the expression is:

r = h (29)

Based on the SRVF-HB, assuming that u is the width of the surface profile parallel to
the fiber direction, the surface roughness parallel to the fiber direction based on horizontal
bonding neck (SRPF-HB) can be determined by:

Ra,P−TB =
1
l

∫
| f (x)|dx (30)

l = u (31)

| f (x)| = X1 + X2 + X3 (32)

Substituting Equation (30) into Equation (32), the expression of Ra,P−HB is:

Ra,P−HB =
X1 + X2 + X3

u
(33)

where X1, X2, and X3 are the areas of the enclosed section.

2.2. Analytical Investigation Based on Longitudinal Bonding Neck
2.2.1. The Surface Roughness Vertical to the Fiber Direction

Figure 5 is a schematic diagram of the formation stage of the longitudinal bonding
neck. The formation principle is similar to that of the horizontal bonding neck.
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At any time t, the relationship between the instantaneous radius r2, longitudinal
bonding neck length 2y, and instantaneous angle 2β is:

y = r2 × sin β (34)

According to the principle of volume conservation, the expression of the instantaneous
radius r2 during the bonding process of adjacent material filaments is:

r2 =

√
πr0√

π − β + sin β cos β
(35)

Similarly, the expression of the instantaneous half-angle change rate of the longitudinal
bonding neck is:

·
β =

2Γa (π − β + sin β cos β)1/2

3
√
πb2η (π − β)2 sin2 β

×
[
(π − β) cos2β + sin β cos β

]
(36)

Substituting Equation (33) into Equation (32), the expression of the half-length to the
longitudinal bonding neck is:

y =
sin β
√
πb2

a
√

π − β + sin β cos β
(37)

Using the initial conditions β(0) = β0 = 0 to solve Equation (36) to obtain the instan-
taneous half-angle of the longitudinal bonding neck at a certain moment. Then substituting
the half-angle β into Equation (37) to determine the longitudinal bonding neck.

According to the actual situation of the longitudinal bonding neck, the model schematic
of the surface roughness vertical to the fiber direction based on longitudinal bonding neck
(SRVF-LB) is determined, as shown in Figure 6.
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Similarly to Equation (28), SRVF-LB can be expressed as:

Ra,V−LB =
∑n

i=1|li ± qs|
n

(38)

2.2.2. The Surface Roughness Parallel to the Fiber Direction

As shown in Figure 7, based on the SRVF-LB, assuming that v is the width of the
surface profile parallel to the fiber direction, the surface roughness parallel to the fiber
direction based on longitudinal bonding neck (SRPF-LB) can be similarly given by:

Ra,P−LB =
X′1 + X′2 + X′3

v
(39)

where X′1, X′2, and X′3 are the areas of the enclosed section.
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3. Experimental Analysis
3.1. Sample Preparation

To determine the surface roughness of ME products, cube samples with the size of
20 × 20 × 20 mm were fabricated by the ME device (FLSUN-QQ, Chaokuo, China), as
shown in Figure 8. All the processing parameters were set the same, such as printing speed,
layer thickness, extrusion width, build direction, extrusion temperature, etc. Details are
shown in Table 2. The sample material is polylactic acid (PLA), which is biodegradable
with the characteristics of good thermoplasticity, high strength, and excellent processing
performance, etc., [35].
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Table 2. Processing parameter settings.

Sample (I = 1~3) Ri

Extrusion width (mm) 0.4
Layer thickness (mm) 0.15

Extrusion temperature (◦C) 200

Build direction
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Platform Temperature (◦C) 60

3.2. Surface Roughness Test

The experimental study of SRVF-HB/LB and SRPF-HB/LB of each sample was carried
out by using the 3D laser microscope (LEXT OLS4100, Olympus, Tokyo, Japan), as shown
in Figure 9. The standard for measuring surface roughness is ISO 4287: 1997. Through
microscope observation, the surface roughness test was carried out on different typical
positions (where the filaments bonded normally and no defects occurred) of the sample’s
surface [36]. Taking into account the layer-by-layer forming process and orthotropic
characteristics, each sample contains two sides with different surface roughness, and each
side has two different surface roughness (separately SRVF-HB/LB and SRPF-HB/LB). For
each sample, three different typical positions for each side in each direction were randomly
selected for testing to ensure the representativeness and repeatability of the results. Each
position was measured ten times, and there were totally 60 sets of surface roughness results
obtained for each sample, separately including 15 sets for SRVF-HB, SRVF-LB, SRPF-HB,
and SRPF-LB. Therefore, a total of 180 sets of tests were completed on the three samples. In
order to ensure the accuracy and reliability of the test results, the average value of the data
measured on each side in each direction was taken as the analysis result.
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4. Results and Discussions
4.1. Results Based on the Horizontal Bonding Neck
4.1.1. Surface Roughness Vertical to the Fiber Direction (SRVF)

Based on the horizontal bonding neck, the theoretical and experimental surface profiles
of the ME sample (Ri, I = 1~3) vertical to the fiber direction are shown in Figure 10. From
the comparison, it can be seen that the theoretical results are in good agreement with the
experimental ones. Therefore, the SRVF-HB theoretical model can accurately predict the
surface profile of the ME sample vertical to the fiber direction based on the horizontal
bonding neck.
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vertical to the fiber direction.

Table 3 summarizes the detailed results of ME samples (Ri, i = 1~3). It can be seen
that the discrepancy between the theoretical and experimental results is in the range of
1.48~7.42%, validating the correctness of the theoretical model. Therefore, the proposed
model can accurately predict the ME samples’ SRVF-HB.

Table 3. The detailed results of SRVF-HB.

Sample (z = 1~10) Average Measurements (µm) Prediction (µm) Errors (%)

R1_z 22.59
24.4

7.42
R2_z 23.28 4.59
R3_z 24.07 1.48

4.1.2. Surface Roughness Parallel to the Fiber Direction (SRPF)

Figure 11 shows the sample’s theoretical and average experimental results of the sur-
face profile parallel to the fiber direction. It can be seen that the predictions generally agree
well with the measurements. Therefore, the proposed SRPF-HB model can give reliable
predictions on the surface profile parallel to the fiber direction based on the horizontal
bonding neck.
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The predicted and measured surface roughness of ME samples are detailed in Table 4.
It can be seen that the discrepancy between theoretical and experimental results is small
(4.13~7.82%). Therefore, the proposed model can accurately predict SRPF-HB of ME
samples.

Table 4. The detailed results of SRPF-HB.

Sample (z = 1~10) Average Measurements (µm) Prediction (µm) Errors (%)

R1_z 8.25
8.95

7.82
R2_z 8.58 4.13
R3_z 9.34 4.36

4.2. Results Based on the Longitudinal Bonding Neck
4.2.1. Surface Roughness Vertical to the Fiber Direction (SRVF)

Figure 12 presents the theoretical and experimental results of the surface profile vertical
to the fiber direction of the ME samples (Ri, i = 1~3). It can be seen that both the values
and trend are in good agreement. Therefore, the SRVF-LB model can accurately predict the
surface profile vertical to the fiber direction based on the longitudinal bonding neck.
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Table 5 lists the average experimental and theoretical results of ME samples’ SRVF-LB.
The discrepancy is only in the range of 1.86~4.50%. Therefore, the proposed model can
accurately predict the results of SRVF-LB.

Table 5. The detailed results of SRVF-LB.

Sample (z = 1~10) Average Measurements (µm) Prediction (µm) Errors (%)

R1_z 31.24
32.20

2.98
R2_z 32.80 1.86
R3_z 33.65 4.50

4.2.2. Surface Roughness Parallel to the Fiber Direction (SRPF)

As shown in Figure 13, the predicted surface profile of the sample parallel to the fiber
direction based on the longitudinal bonding neck is in generally good agreement with
the average measured results. Therefore, the proposed SRPF-LB model can give a reliable
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prediction on the surface profile of the ME sample parallel to the fiber direction based on
the longitudinal bonding neck.
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Figure 13. Theoretical and average experimental results of the surface profile of the ME samples
parallel to the fiber direction.

Table 6 compares the theoretical and average experimental results of the samples’
SRPF-LB. It can be seen that they are in good agreement, and the proposed model is reliable.

Table 6. The detailed results of SRPF-LB.

Sample (z = 1~10) Average Measurements (µm) Prediction (µm) Error (%)

R1_z 5.40
5.80

6.89
R2_z 6.35 9.48
R3_z 6.41 10.52

5. Sensitivity Analysis

In order to analyze the sensitivity of the proposed model, three key processing pa-
rameters were selected for research, as shown in Table 7. Each parameter was individually
modified to the value shown in Case 1~3, and the other processing parameters remain un-
changed. By comparing the predicted surface roughness values under different processing
parameters, the sensitivity of the model can be determined.

Table 7. Parameters for testing sensitivity.

Case Default Lower Value Upper Value

1. Extrusion width (mm) 0.4 0.3/0.2 -
2. Extrusion temperature (◦C) 200 190 210

3. Layer thickness (mm) 0.15 0.1 0.2

5.1. Effect of Extrusion Width

Figures 14 and 15 show the influence of different extrusion widths (0.2, 0.3, and 0.4 mm)
on the predicted values of SRVF-HB, SRPF-HB, SRVF-LB, and SRPF-LB of ME products.
For SRVF-HB, when the extrusion width is increased from 0.2 to 0.4 mm, the corresponding
predicted values are reduced by 13.17% (from 28.10 down to 24.40 µm); while for SRPF-HB,
it is reduced by 7.45%, with the value decreasing from 9.67 to 8.95 µm; taking into account
SRVF-LB, its value is increased by 8.45% (from 29.60 up to 32.20 µm) when the extrusion
width is increased from 0.2 to 0.4 mm; about SRPF-LB, it is increased to 5.80 µm. This
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can be explained that increasing the extrusion width alone can increase the length of the
horizontal bonding neck and slightly reduce the longitudinal one, which thereby reduces
the height of the surface profile (or surface roughness) based on the horizontal bonding
neck, but vice versa for that based on the longitudinal bonding neck.
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5.2. Effect of Layer Thickness

Figures 16 and 17 present the comparison of predicted values of SRVF-HB, SRPF-
HB, SRVF-LB, and SRPF-LB of ME products built with different layer thickness, which
is 0.1, 0.15, and 0.2 mm. For SRVF-HB, when the layer thickness is increased from 0.1 to
0.2 mm, the predicted values are increased by 56.74% (from 21.50 up to 33.70 µm). While
for SRPF-HB, it is increased by 23.72%, with the value increased to 10.17 µm. Taking
into account SRVF-LB, its value is reduced by 29.82% (from 38.90 down to 27.30 µm)
when the layer thickness is increased from 0.1 to 0.2 mm; about SRPF-LB, it is dropped to
5.60 µm. Similarly, this is because as the layer thickness increases, the horizontal bonding
neck becomes slightly smaller, resulting in an increase in the surface roughness based
on the horizontal bonding neck, while vice versa for the surface roughness based on the
longitudinal bonding neck.
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5.3. Effect of Extrusion Temperature

The effect of different extrusion temperature (190, 200, 210 ◦C) on ME products’ surface
roughness is shown in Figures 18 and 19. In general, the surface roughness of ME samples
will be decreased when the extrusion temperature increases. For SRVF-HB, when the
extrusion temperature is increased from 190 to 210 ◦C, the corresponding predicted values
are reduced by 35.15% (from 29.30 down to 19.00 µm); while for SRPF-HB, it is reduced by
29.21%, with the value being 7.41 µm. Taking into account SRVF-LB, its value is decreased
by 27.81% (from 35.60 down to 25.70 µm) when the extrusion temperature is increased
from 190 to 210 ◦C; about SRPF-LB, it is reduced to 5.20 µm. This can be explained that
increasing the extrusion temperature will reduce the melt viscosity and increase the cooling
time of the extrudate, and thereby increase the bonding neck, which lowers the height of
surface profile, and thus betters the surface quality.
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5.4. Influencing Degree of the Processing Parameters

Taking SRVF-HB as an example, when the extrusion width is doubled, the predicted
surface roughness will be decreased by 13.17%. For the layer thickness, the surface rough-
ness will be increased by 56.74%. Besides, when the extrusion temperature is increased by
20 ◦C, the predicted surface roughness will be reduced by 35.15%. Details are shown in
Table 8. Therefore, among the three processing parameters, the layer thickness and extru-
sion temperature have more significant effect on the surface roughness of ME products,
and least for the ex-trusion width.

Table 8. The influencing degree of the three processing parameters.

Parameters Minimum Value Maximum Value The Rates of Surface
Roughness Growth (%)

Extrusion width (mm) 0.2 0.4 −13.17
Extrusion temperature (◦C) 190 210 −35.15

Layer thickness (mm) 0.1 0.2 56.74
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6. Conclusions

Based on the bonding neck forming process, a theoretical model of the three-dimensional
surface roughness (3DSR) of ME products is established considering its actual surface
conditions. Through the comparison between predictions and measurements, the proposed
model is validated and it can give reliable predictions in the ME samples’ 3DSR (i.e.,
SRVF-HB/LB and SRPF-HB/LB), with the discrepancy under 10.52% between predicted
and measured results. In addition, the sensitivity analysis shows that increasing the
extrusion width will decrease SRVF-HB/SRPF-HB, and increase SRVF-LB/SRPF-LB; but
the layer thickness is in vice versa. When the extrusion temperature is decreased, the SRVF-
HB/LB and SRPF-HB/LB will all be reduced. Among the three processing parameters,
the effect of layer thickness and extrusion temperature is more significant on the 3DSR of
ME products. The proposed model can help mitigate the time-consuming and expensive
iterative experiments performed, and it can also provide the clue to find the effective
method to improve the surface quality of ME components.
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