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Quantum pixel representations 
and compression for N‑dimensional 
images
Mercy G. Amankwah1,3,4, Daan Camps1,4, E. Wes Bethel1,2, Roel Van Beeumen1,5 & 
Talita Perciano1,5*

We introduce a novel and uniform framework for quantum pixel representations that overarches 
many of the most popular representations proposed in the recent literature, such as (I)FRQI, (I)NEQR, 
MCRQI, and (I)NCQI. The proposed QPIXL framework results in more efficient circuit implementations 
and significantly reduces the gate complexity for all considered quantum pixel representations. Our 
method scales linearly in the number of pixels and does not use ancilla qubits. Furthermore, the 
circuits only consist of Ry gates and CNOT gates making them practical in the NISQ era. Additionally, 
we propose a circuit and image compression algorithm that is shown to be highly effective, being able 
to reduce the necessary gates to prepare an FRQI state for example scientific images by up to 90% 
without sacrificing image quality. Our algorithms are made publicly available as part of QPIXL++, a 
Quantum Image Pixel Library.

The growth in scientific data size and heterogeneity overwhelms current statistical and learning approaches for 
analysis and understanding. More specifically, the analysis of image-based data becomes increasingly challeng-
ing using current classical algorithms. Consequently, finding more efficient ways of handling scientific data is 
an important research priority.

Quantum computing holds the promise of speeding up computations in a wide variety of fields1, including 
image processing. One of the research challenges to make quantum computing a viable platform in the post-
Moore era is to reduce the complexity of a quantum circuit to accommodate many qubits. The current and 
near-term quantum computers, known as noisy intermediate-scale quantum (NISQ) devices, are characterized 
by low qubit counts, high gate error rates, and suffer from short qubit decoherence times2. Hence, optimizing 
quantum circuits into short-depth circuits is extremely important to successfully produce high-fidelity results 
on NISQ devices.

Quantum image processing (QIMP) extends the classical image processing operations to the quantum com-
puting framework3. QIMP algorithms are used on images that have been represented in a quantum state. A variety 
of quantum image representation (QIR) methods has been developed4. The flexible representation of quantum 
images (FRQI)5,6, the improved flexible representation of quantum images (IFRQI)7, the novel enhanced quantum 
representation (NEQR)8, the improved novel enhanced quantum representation (INEQR)9, the multi-channel 
representation of quantum images (MCRQI/MCQI)10,11, the novel quantum representation of color digital images 
(NCQI)12, and the improved novel quantum representation of color digital images (INCQI)13 are among the 
most powerful existing QIR methods. These QIR methods became extremely popular due to two main factors. 
First, their flexibility in encoding the positions and colors in a normalized quantum state. Second, image pro-
cessing operations can be performed simultaneously on all pixels in the image by exploiting the superposition 
phenomenon of quantum mechanics.

In this paper, we introduce a uniform framework called the quantum pixel representation (QPIXL) that over-
arches all previously mentioned quantum image representations and probably many more. Furthermore, we 
propose a novel technique for preparing QPIXL representations that requires fewer quantum gates for all the dif-
ferent representations, compared to earlier results, and without introducing ancilla qubits. The proposed method 
makes use of an efficient synthesis technique for the uniformly controlled rotations14 and uses only Ry gates and 
controlled-NOT ( CNOT ) gates, making the resulting circuits practical in the NISQ era. For example, the original 
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FRQI state preparation method5 for an image with N = 2n grayscale pixels uses n+ 1 qubits in total, i.e., n qubits 
for encoding the position and 1 qubit for the color, and has a O (N2)  gate complexity. Recently, the FRQI gate 
complexity has been reduced to O (N log2 N) at the price of introducing several extra ancilla qubits7. In contrast, 
our QPIXL method for preparing an FRQI state has only a gate complexity of O (N) and does not require extra 
ancilla qubits. Additionally, we introduce a compression strategy to further reduce the gate complexity of QPIXL 
representations. In our experiments, the compression algorithm allows us to further reduce the gate complexity 
by up to 90% without significantly sacrificing image quality. An implementation of our algorithms is publicly 
available as part of the Quantum Image Pixel Library (QPIXL++)15 at https://​github.​com/​Quant​umCom​putin​
gLab. QPIXL++ is built based on QCLAB++16,17, which allows for creating and representing quantum circuits.

Related work
Almost every image processing algorithm18 developed in the classical sense can also be developed in the quantum 
environment. These quantum versions may be computationally faster and may handle data more effectively by 
taking advantage of properties such as coherence, superposition, and entanglement associated with quantum 
science. How an image is represented on a quantum computer dramatically influences the image processing 
operations that can be applied. Hence, QIR has become a vital area of study in QIMP. Early approaches are the 
qubit lattice representation19 and the flexible representation of quantum images (FRQI)5. The latter, which is 
the FRQI method, forms the foundation of our work. The former is a quantum counterpart of classical image 
representation models without any significant performance improvement. At the same time, FRQI is based on 
quantum mechanical phenomena and captures both the color and geometry of an image in one quantum state. 
Besides its flexibility and the use of fewer qubits, FRQI can also perform both geometric and color operations 
on the image concurrently20.

Since the FRQI only uses one qubit for storing the color information, the number of measurements to accu-
rately retrieve an image can be very large. The NEQR addresses this issue by storing the color information in 
orthogonal states allowing for color retrieval in a single measurement. Although the NEQR allows for accurate 
image retrieval, it requires significantly more qubits and does not utilize the superposition principle in the color 
qubit sequence, i.e., ℓ qubits basis states are used for images with bit depth ℓ . On the other hand, the IFRQI com-
bines both ideas and utilizes limited and discrete levels of superposition that are maximally distinguishable. The 
IFRQI, therefore, ensures accurate image retrieval with a small number of measurements; however, it requires 
log2(N)− 2 extra ancilla qubits. Other existing quantum image representation models are the quantum image 
representation for log-polar images (QUALPI)21, the n-qubit normal arbitrary superposition state (NASS)22, and 
the generalized quantum image representation (GQIR)23.

Several quantum image processing algorithms have been introduced in the literature using these QIRs. For 
example, Zhang et al.24,25 introduced an image edge extraction algorithm (QSobel) based on FRQI and also a 
quantum feature extraction framework based on NEQR. Jiang et al.26 recently proposed a new quantum image 
median filtering based on the NEQR. There are image segmentation algorithms that utilizes different QIRs along 
with the quantum Fourier transform1,27. Jiang et al.23 developed a new quantum image scaling up algorithm 
based on the GQIR. Li et al.28 developed a quantum version of the wavelet packet transforms based on the NASS. 
Zhou et al.29 proposed a quantum realization of the bilinear interpolation method for NEQR. There are several 
other examples in major application areas including image filtering30–33, image segmentation34–36, and machine 
learning37–41.

In order to run a quantum algorithm on a NISQ device, it first needs to be synthesized into elementary 1- and 
2-qubit gates. The original implementation of the FRQI5 required O (N2) elementary gates, while the more recent 
implementation by Khan7 reduced the complexity to O (64N log2 N) elementary gates by introducing log2(N)− 2 
extra ancilla qubits. We propose a novel QPIXL synthesis approach that reduces the FRQI gate complexity to 
O (2N) , i.e., N rotation Ry gates and N CNOT gates, and does not require ancillary qubits. Furthermore, our 
QPIXL synthesis approach also reduces the original IFRQI gate complexity from O (pN log2 N) to only O (pN) and 
also gets rid of the ancilla qubits. Similar gains are obtained for preparing (I)NEQR, MCRQI, and (I)NCQI states.

QPIXL: Quantum pixel representations
Some of the most widely used representations for quantum images, such as (I)FRQI5,7, (I)NEQR8,9, MCRQI11, and 
(I)NCQI12,13, can all be described by the following general definition for quantum image representations. This 
representation is similar to the pixel representation for images on traditional computers and captures both pixel 
colors and positions into a single quantum state |I� that we call a quantum pixel representation, QPIXL in short.

Definition 1  (Square QPIXL) The quantum state for the QPIXL representation of a 2m × 2m image P =
[

pij
]

 , 
where each pixel pij has color cij , is given by the normalized state

where |k� are the computational basis states on 2m-qubits and |ck� is an encoding of the color information cij in a 
quantum state on one or more qubits. The color values |ck� should be regarded as a vectorized version of the 2D 
color values cij , i.e., |ck� �→ cij for k = i + j · 2m.

We remark that the order of |k� and |ck� in Definition 1 is reversed compared to the original definition5,6. Our 
ordering is consistent with the quantum circuit implementation for |I� provided in “QPIXL quantum circuit 

(1)|I� = 1

2m

22m−1
∑

k=0

|k� ⊗ |ck�,
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implementation” and in the original work5,6. Observe that the QPIXL state |I� creates an equal superposition 
over the computational basis states of the 2m-qubits in the first register, which encodes the pixel positions, and 
applies a tensor product with the state on the second register that encodes the color information. Definition 1 
is general because it allows for flexibility in the type of color information and color encoding that is used. The 
mentioned QPIXL representations differ in their approach to map cij to |ck�.

Since Definition 1 can trivially be extended to rectangular, 3D, and higher dimensional images, we will use 
the following more general definition.

Definition 2  (General QPIXL) The quantum state for the QPIXL representation of an image of N pixels pk is 
given by the normalized quantum state

where n = ⌈log2 N⌉ , |ck� is an encoding of the color information of pixel pk , and |k� are the computational basis 
states on n-qubits.

Remark that in case the number of pixels N is not a power of 2, Definition 2 appends zero-valued pixels for 
k = N ,N + 1, . . . , 2⌈log2 N⌉ − 1 . Consequently, the state (2) is fully determined by the N pixel values pk . Without 
loss of generality, we will assume that N = 2n in the remainder of the paper.

QPIXL quantum circuit implementation.  The preparation of a QPIXL state on a quantum computer 
can be considered as a state preparation procedure, i.e., |I� is the result of a quantum circuit UQPIXL applied to 
the all-zero state |0�⊗n+ℓ , where n qubits are used to encode the pixel position and ℓ qubits are used for the color 
information.

All QPIXL states are prepared in two steps: first creating an equal superposition over the n qubits that determine 
the pixel positions and afterwards adding the color information to the state by means of a unitary U|c� . In matrix 
notation, this procedure yields

where H⊗n ⊗ I⊗ℓ creates an equal superposition over the first n qubits:

FRQI in the QPIXL framework
The FRQI5,6 fits Definitions 1 and 2 of the QPIXL framework and is applicable to grayscale image data. An FRQI 
encoding uses only 1 qubit for the pixel intensity information |ck� . The color mapping used is bijective as discussed 
in detail by Li et al22,42. We define this mapping as follows.

Definition 3  (FRQI mapping) For a grayscale image of N pixels pk where each pixel has a grayscale value 
gk ∈ [0,K] , i.e., an integer value between 0 and the maximum intensity K, the QPIXL state with the FRQI map-
ping |IFRQI� is defined by Definition 2 with the color mapping used in (2) given by5,6,22,42

with |0� =
[

1

0

]

 and |1� =
[

0

1

]

.

Observe that the FRQI representation of an N-pixel grayscale image requires n+ 1 qubits in total: n qubits for 
the pixel positions in |k� and 1 qubit for encoding the corresponding pixel intensity information in |ck� . By Eq. (5), 
we have that θk ∈

[

0,
π
2

]

 and

Definition 3 is flexible because the grayscale value of each pixel pk can be encoded by choosing the angles θk 
accordingly. For example, consider an 8-bit grayscale image where each pixel pk has a grayscale value gk between 
0 and 255, then the angles θk in Eq. (5) are given by5,6,22,42

(2)|I� = 1√
2n

(

N−1
∑

k=0

|k� ⊗ |ck� +
2n−1
∑

k=N

|k� ⊗ |0�
)

,

(3)|I� = UQPIXL|0�⊗n+ℓ = U|c�(H
⊗n ⊗ I⊗ℓ)|0�⊗n+ℓ,

(4)(H⊗n ⊗ I⊗ℓ)|0�⊗n+ℓ = H⊗n|0�⊗n ⊗ |0�⊗ℓ = 1√
N

N−1
∑

k=0

|k� ⊗ |0�⊗ℓ.

(5)|ck� = cos(θk)|0� + sin(θk)|1�, θk =
π/2

K
gk ,

(6)|ck� =
[

cos(θk)
sin(θk)

]

.
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On the other hand, repeated measurement of the quantum state |ck� yields the probabilities α2
k = cos2(θk) and 

β2
k = sin2(θk) for the basis states |0� and |1� , respectively. Hence, we can retrieve the grayscale values from these 

measurements by

We note that the color mapping defined in Eq. (5) has disadvantages when the images are transformed as 
discussed by Li et al43. In this case the authors propose extensions of the FRQI, named FRQIM and FRQIMC, 
in order to overcome the inconvenience to implement non-permutation transforms on FRQI. For the purposes 
of our work, we assume until “Other QPIXL mappings” that all image data is in grayscale and that we use the 
FRQI encoding from Definition 3.

QPIXL‑FRQI quantum circuit implementation.  The circuit structure introduced in “QPIXL quantum 
circuit implementation” can be used to prepare the FRQI state on a quantum computer. In this case we have 
ℓ = 1 and U|c� that implements the mapping from Definition 3, we will denote this unitary as UR . This specifica-
tion yields

with, according to Eq. (4),

We define

with

Since UR is by definition a block diagonal matrix with N 2× 2 blocks and

the prepared FRQI state (9) becomes

which is a vector of length 2N holding the cosine and sine values of the angles of all the pixels. It can be directly 
verified that this definition of UR agrees with Definition 3.

We can implement the UR circuit on a quantum computer by using N multi-controlled Ry gates5. We use the 
notation Cn(Ry) for an Ry gate with n control qubits. To illustrate this, we consider the FRQI encoding of a 2× 2 
image. This 4 pixels image can be implemented as follows using 3 qubits and 4 C2(Ry) gates:

The angles θi correspond to the pixel values pi for i = 0, 1, 2, 3 according to Eq. (5). The decomposition of the 
block diagonal matrix UR into multi-controlled Ry gates corresponds to the following matrix decomposition

(7)θk =
π/2

255
gk .

(8)gk =
255

π/2
arctan

(

βk

αk

)

.

(9)
|IFRQI� = UR (H⊗n ⊗ I)

︸ ︷︷ ︸

UFRQI

|0�⊗n+1,

(10)

(H⊗n ⊗ I)|0�⊗n+1 = 1√
N

N−1
∑

k=0

|k� ⊗ |0� = 1√
N

[

1 1 · · · 1
]

︸ ︷︷ ︸

N

⊤ ⊗
[

1 0
]⊤ = 1√

N

[

1 0 1 0 · · · 1 0
]

︸ ︷︷ ︸

2N

⊤
.

(11)UR = Ry(2θ0)⊕ Ry(2θ1)⊕ · · · ⊕ Ry(2θN−1) =











Ry(2θ0)
Ry(2θ1)

. . .

Ry(2θN−1)











,

(12)Ry(2θi) =
[

cos(θi) − sin(θi)
sin(θi) cos(θi)

]

.

(13)R(2θi)

[

1
0

]

=
[

cos(θi)
sin(θi)

]

,

(14)

|IFRQI� =
1√
N

[

cos(θ0) sin(θ0) cos(θ1) sin(θ1) · · · cos(θN−1) sin(θN−1)
]⊤ = 1√

N

N−1
∑

k=0

|k� ⊗ |ck�,
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where each multi-controlled gate sets a single 2× 2 block on the diagonal.
In order to actually run the UFRQI circuit on a quantum computer, we need to further synthesize the multi-

controlled Ry gates into elementary 1- and 2-qubit gates. For the case of C2(Ry) gates this can be done as follows44:

yielding the following UFRQI circuit for the 4 pixels image example:

By further decomposing the C1(Ry) gates into 3 Ry and 2 CNOT gates as follows1,

the directly implementable quantum circuit for UFRQI requires 44 single-qubit and 32 CNOT gates in total. In the 
general case for images with N = 2n pixels, every individual pixel value is encoded by a Cn(Ry) gate. Decomposing 
these gates into 1- and 2-qubit gates by the method of Barenco et al.44 requires O (N) gates for every Cn(Ry) gate. 
This results in an overall circuit complexity for UFRQI that scales quadratically in N, i.e., O (N2) elementary gates 
are required to implement the full UFRQI circuit for an N pixels image on a quantum computer5. Khan7 recently 
improved the asymptotic complexity to O (N log2 N) by using n− 2 ancilla qubits.

Optimal linear gate complexity
The complexity of implementing UFRQI is determined by the complexity of the circuit for UR , a block diagonal 
matrix with 2× 2 blocks corresponding to the pixel values. In this section, we derive an alternative circuit 
implementation for UR that requires quadratically fewer gates compared to the method proposed by Le et al.5, 
i.e., the asymptotic complexity of our novel implementation requires only O (N) quantum gates for a N-pixel 
image. Our new approach thus has optimal asymptotic scaling. It is also logarithmically faster compared to the 
method proposed by Khan7 and requires no ancilla qubits.

We start by reviewing a special case of the method introduced by Möttönen et al.14 to implement a block 
diagonal matrix in a quantum circuit. In that work, these circuits are called uniformly controlled Ry rotations 
because they uniformly use all possible computational basis states in the control register. Let us define the 
nomenclature and diagrammatic notation for uniformly controlled Ry rotations.

Definition 4  (Uniformly controlled Ry rotations) Given θ ∈ R
N , a vector of rotation angles, the uniformly con-

trolled Ry rotation is defined as

and represented diagrammatically as

The dashed line indicates the n = log2(N) qubits required for controlling the different diagonal positions in 
UR . The diagram on the right hand side uses a square control node to indicate that it is uniformly controlled by 
the first n qubits.







I
I
I
Ry(2θ3)













I
I
Ry(2θ2)

I













I
Ry(2θ1)

I
I













Ry(2θ0)
I
I
I






,

(15)UR = Ry(θ0)⊕ Ry(θ1)⊕ · · · ⊕ Ry(θN−1),
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We know from the previous section that we can implement UR by using N Cn(Ry) gates. Here, we show that 
we can do this more efficiently by using a circuit that only consists of Ry and CNOT gates. As an illustrative 
example, let us consider the following circuit for 4 arbitrary angles θ̂0, . . . , θ̂3:

The following two properties of Ry rotations are immediate:

where X is a NOT gate 
[

0 1

1 0

]

 that appears in the CNOT gates above. We can analyze the circuit above using these 

two simple properties and show that the circuit does create a block diagonal matrix with 2× 2 blocks on the 
diagonal: the Ry rotations on the 3rd qubit are all block diagonal matrices and the CNOT gates permute some of 
the blocks depending on the index of the first two control qubits. If we list the four 2× 2 diagonal blocks in 
binary order, or equivalently the state of the 1st and 2nd qubit, we see that the circuit has the following effect on 
each block:

To implement a block diagonal matrix with this circuit, where the angles of the Ry blocks correspond to 
(θ0, . . . , θ3) , we get that the angles have to satisfy

This is a linear system with a specific structure, that we can rewrite as

where Ĥ =
[

1 1

1 − 1

]

 is a scaled version of the Hadamard gate and PG is the permutation matrix that transforms 

binary ordering to Gray code ordering.
It follows that, if we solve the linear system (17) for (θ̂0, . . . , θ̂3) , we can implement UR for any 2× 2 image 

with only 8 elementary gates: 4 Ry rotations and 4 CNOT gates. The UR circuit for the 2× 2 example in the 
previous section required 74 gates: 42 1-qubit and 32 CNOT gates. Indeed, we have a quadratic improvement 
in gate complexity.

This strategy generalizes to block diagonal matrices UR that have 2n Ry blocks on their diagonal14. The circuit 
structure consists of a sequence of length 2n alternating between Ry gates and CNOT gates. The Ry gates act on 
the (n+ 1) st qubit, and thus correspond to block diagonal matrices with 2× 2 blocks. The target qubit of the 
CNOT gates is set to the (n+ 1) st qubit and the control qubit for the ℓ th CNOT gate is set to the bit where the 
ℓ th and (ℓ+ 1) st Gray code differ. If UR is determined by the angles θ = (θ0, . . . , θ2n−1) , the angles of the circuit 
θ̂ = (θ̂0, . . . , θ̂2n−1) can be computed through the linear system:

As can be observed from the small-scale example (16), each angle θ̂i in the transformed domain contributes to 
every angle in θ in the original spatial domain. This means that there no longer exists a correspondence between 
an individual angle θ̂i and an individual pixel intensity gj . As we will illustrate in “Experiments”, this can be 
considered an advantage as it allows one to approximate nonlocal correlations between pixels with fewer coef-
ficients. In QPIXL++, Eq. (18) is solved with a matrix-free approach: the Gray permutation PG is performed 
in place and requires O (N) operations, the scaled Walsh–Hadamard transform Ĥ⊗n is implemented through a 
variant of the fast Walsh–Hadamard transform which requires O (N logN) operations45. Pseudocode for both 
algorithms are provided in Algorithm 1 and Algorithm 2. Algorithm 2 lists a O (N) implementation for the Gray 
code permutation that requires a copy, while the QPIXL++ implementation achieves the same complexity 

Ry(θ0)Ry(θ1) = Ry(θ0 + θ1),

X Ry(θ)X = Ry(−θ),

(16)

00 : Ry(θ̂3)Ry(θ̂2)Ry(θ̂1)Ry(θ̂0) = Ry( θ̂3 + θ̂2 + θ̂1 + θ̂0),

01 : Ry(θ̂3)XRy(θ̂2)Ry(θ̂1)XRy(θ̂0) = Ry( θ̂3 − θ̂2 − θ̂1 + θ̂0),

10 : XRy(θ̂3)Ry(θ̂2)XRy(θ̂1)Ry(θ̂0) = Ry(−θ̂3 − θ̂2 + θ̂1 + θ̂0),

11 : XRy(θ̂3)XRy(θ̂2)XRy(θ̂1)XRy(θ̂0) = Ry(−θ̂3 + θ̂2 − θ̂1 + θ̂0).







θ0
θ1
θ2
θ3






=







1 1 1 1
1 − 1 − 1 1
1 1 − 1 − 1
1 − 1 1 − 1















θ̂0

θ̂1

θ̂2

θ̂3









.

(17)







θ0
θ1
θ2
θ3






=







1 1 1 1
1 − 1 1 − 1
1 1 − 1 − 1
1 − 1 − 1 1













1
1
0 1
1 0















θ̂0

θ̂1

θ̂2

θ̂3









= (Ĥ ⊗ Ĥ)PG









θ̂0

θ̂1

θ̂2

θ̂3









,

(18)
(

Ĥ⊗n PG

)

θ̂ = θ .
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without requiring a copy. Our implementation uses double precision arithmetic which suffices as the problem 
is well-conditioned, i.e., κ(Ĥ⊗n PG) = 1 . 

To show that our approach scales to large-scale images, we present benchmark data for solving the linear 
system (18) with the matrix-free methods that are implemented in QPIXL++. The results are shown in Fig-
ure 1 for randomly generated image data ranging from 23 pixels up to 234 pixels. The latter corresponds to the 
equivalent of an image with a resolution of more than 17 gigapixels, a 4K video fragment with 2070 frames, or 
a 1080p video fragment with 8285 frames. These timing results are obtained on a single core of an AMD Ryzen 
Threadripper 3990X 64-Core Processor @ 2.9 GHz with 256 GB RAM. Computing the coefficients for the data 
with 234 pixels requires just over 5 min. This shows that our method easily scales to high resolution image and 
video data. The only current drawback is that this computation is memory bound due to the memory required 
to store the image data.

Our new UR circuit requires only N Ry rotation and N CNOT gates for an image with N pixels. As this 
scales linearly in the number of pixels, the asymptotic complexity of our approach is optimal. This is a quad-
ratic improvement compared to the approach proposed by Le et al.5 that we described in “FRQI in the QPIXL 
framework”. The asymptotic complexities of both approaches are summarized in Table 1. We remark that as we 
require just 2 gates for every pixel, our constant prefactor is also considerably smaller compared to the works 
by Le et al.5 and Khan7.

Compression
The proposed implementation of UR as presented in “Optimal linear gate complexity” lends itself to an efficient 
circuit and thus image compression technique. As an example, we describe this idea for an FRQI image with 8 
pixels.

Figure 1.   Scaling for scaled fast Walsh–Hadamard transform (sFWHT) and in-place Gray permutation with 
QPIXL++.
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Assume that the FRQI angle representation of an image is given by the vector θ ∈ R
8 and that we have com-

puted the transformed vector θ̂ ∈ R
8 according to Eq. (18). The coefficients of θ̂ are then used in the following 

circuit for UR:

For conciseness, we omit the Ry labels and only state the rotation angle for the Ry gates. Now assume that the 
image after the permuted Walsh-Hadamard transform is of the form θ̂ = (θ̂0, θ̂1, δ, δ, δ, δ, δ, θ̂7) , where δ are 
angles that can be considered negligible according to some compression criterion. A good approximation of the 
image is then given by θ̂ = (θ̂0, θ̂1, 0, 0, 0, 0, 0, θ̂7) . This corresponds to the circuit below on the left where all Ry 
rotations that have 0 angle after compression have been removed. This corresponds to a 62.5% reduction in gates 
or compression level. This step results in a sequence of consecutive CNOT gates all with the same target qubit 
and different control qubits. All these CNOT gates commute with each other, so we can place them in arbitrary 
order. Furthermore, two consecutive CNOT gates that have the same control qubit cancel each other since their 
product is the identity. The circuit below on the left has in the middle 1 CNOT with the first qubit as control, 2 
CNOT s with the second qubit as control that cancel out, and 3 CNOT s with the third qubit as control of which 
two cancel with each other. It follows that the circuit on the left is equivalent to the circuit on the right with the 
redundant CNOT gates removed.

Figure 2 illustrates the compression algorithm for an actual image of 8 pixels where all transformed angles θ̂o 
below the tolerance δ = 0.01 are set to zero. Note that, although the compression can influence all the angles θc , 
the changes of the grayscale values are only in the range of [−3, 3] . The reason for this is that Eq. (18) is well-
conditioned so that small changes in θ̂ only lead to small changes in θ and its corresponding grayscale values.

As we describe next, this procedure easily generalizes to images of arbitrary size. After having computed 
θ̂ , apply a compression criterion to set the negligible coefficients θ̂i to 0. Next, remove the corresponding Ry 
rotations with 0 angle from the UR circuit. Finally, perform a parity check on the control qubits of consecutive 
CNOT s in the UR circuit: no CNOT is required for control qubits with even parity, one CNOT is required for 
control qubits with odd parity.

This algorithm is implemented in QPIXL++15. The compression criterion that we adopted selects a fixed 
percentage of the coefficients θ̂i with largest magnitude and thus of most importance. For example, a compression 
setting of 0% retains all nonzero coefficients in θ̂ , while a compression of 40% sets the 40% smallest coefficients 
|θ̂i| to zero. As we show in “Experiments”, this method can achieve high compression ratios while maintaining 
many features of the uncompressed image. The advantage of our approach is that we can discard coefficients after 
the Walsh-Hadamard transformation has been applied. In this way nonlocal correlations can be approximated 
with fewer coefficients compared to the untransformed data which can allow for improved compressibility. 

Table 1.   Summary of gate complexities and qubit count for preparing the FRQI state |IFRQI� for an image with 
N = 2

n pixels with the approaches of Le et al.5 and Khan7 compared to our method.

FRQI Gate complexity Ancilla qubits Total qubits

Le et al.5 O (N2) 0 n+ 1

Khan7 O (N log2 N) n− 2 2n− 1

QPIXL O (N) 0 n+ 1

Figure 2.   Compressing image data with 8 pixels arranged in a 2× 4 grid.
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Furthermore, removing negligible angles in θ̂ is guaranteed to lead to small perturbations of the original angles 
θ as Eq. (18) is well-conditioned.

Other QPIXL mappings
In this section, we extend our novel circuit implementation for UFRQI for grayscale data to different image rep-
resentations that fit in Definitions 1 and 2. The key difference between all representations is the definition of the 
color encoding in the quantum state |ck� from Definition 2. As long as we express this color mapping in terms 
of a combination of Ry rotations, we can use our compressed implementation for the uniformly controlled Ry 
rotations.

IFRQI.  The improved FRQI method introduced by Khan 7 combines ideas from the FRQI and NEQR repre-
sentations. It improves upon the measurement problem for FRQI by allowing for only 4 discrete superpositions 
that are maximally distinguishable upon projective measurement in the computational basis. The IFRQI color 
mapping for a grayscale image with bit depth 2p is defined as follows.

Definition 5  (IFRQI mapping) For a grayscale image of N pixels where each pixel pk has a grayscale value 
gk ∈ [0, 22p − 1] with binary representation b0kb

1
k · · · b

2p−1
k  , the IFRQI state |IIFRQI� is defined by Definition 2 

with the color mapping used in (2) given by

where, for i = 0, . . . , p− 1

We observe that the IFRQI mapping combines two bits of color information into one rotation. It follows that 
for an image with bit-depth 2p, we can prepare |IIFRQI� using the circuit presented in Fig. 3a with p uniformly 
controlled Ry rotations. The rotation angles θ i correspond to bits 2i and 2i + 1 of all N pixels according to the 
values defined in Definition 5. These uniformly controlled rotations can be compressed independently with our 
compression algorithm. The gate and qubit complexites for IFRQI with our method compared to Khan 7 are 
listed in Table 2.

NEQR.  The idea for NEQR is to use a color mapping that directly encodes the length ℓ bitstring for the gray-
scale information in the computational basis states on ℓ qubits. The NEQR states for different colors are thus 
orthogonal and can be distinguished with a single projective measurement in the computational basis. In our 
QPIXL framework, the NEQR mapping can be defined as follows.

Definition 6  (NEQR mapping) For a grayscale image of N pixels where each pixel pk has a value gk ∈ [0, 2ℓ − 1] 
with binary representation b0kb

1
k · · · b

ℓ−1
k  , the NEQR state |INEQR� is defined by Definition 2 with the color map-

ping used in (2) given by

where

(19)|ck� = |c0kc1k · · · c
p−1
k �,

|cik� = cos(θ ik)|0� + sin(θ ik)|1�, θ ik =



























0, if b2ik b
2i+1
k = 00

π
5
, if b2ik b

2i+1
k = 01

π
2
− π

5
, if b2ik b

2i+1
k = 10

π
2
, if b2ik b

2i+1
k = 11

.

(20)|ck� = |c0kc1k · · · cℓ−1
k �,

Table 2.   Summary of gate complexities and qubit count for preparing the different QIR states covered in this 
paper and QPIXL for an image with N = 2

n pixels. For the IFRQI state, the bit depth is given by 2p and for the 
(I)NEQR, MCRQI, and (I)NCQI states the bit depth is given by ℓ.

Method

Literature QPIXL

Reference Gate complexity Ancilla qubits Total qubits Gate complexity Total qubits

FRQI
Le et al.5 O (N2) 0 n+ 1 O (N) n+ 1

Khan7 O (N log2 N) n− 2 2n− 1

IFRQI Khan7 O (pN log2 N) n− 2 2n+ p− 2 O (pN) n+ p

NEQR Zhang et al.8
O (ℓN log2 N) n− 2 2n+ ℓ− 2 O (ℓN)  n+ ℓ

INEQR Jiang et al.9

MCRQI Sun et al.10
O (3N2) 0 n+ 3 O (3N) n+ 3

NCQI Sang et al.12 O (3ℓN log2 N) n− 2 2n+ 3ℓ− 2 O (3ℓN) n+ 3ℓ

INCQI Su et al.13 O (4ℓN log2 N) n− 2 2n+ 4ℓ− 2 O (4ℓN) n+ 4ℓ
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By choosing the rotation angles θ ik orthogonal, we ensure that the color information in |INEQR� can be retrieved 
through a single projective measurement. The NEQR state can be prepared through the circuit shown in Fig. 3b, 
where the uniformly controlled rotations can again be compressed with our method. The gate complexities for 
the uncompressed circuits are listed in Table 2.

MCRQI.  If we want to extend the applicability of the FRQI from grayscale to color image data, we have to 
allow for different color channels. This approach was dubbed multi-channel representation of quantum images 
(MCRQI)11. We adapt their definition for RGB image data to our formalism and make some minor modifica-
tions.

Definition 7  (MCRQI mapping) For a color image of N RGB pixels, where the color of each pixel pk is given by 
an RGB triplet (rk , gk , bk) ∈ [0,K] , the MCRQI state |IMCRQI� is defined by Definition 2 with the color mapping 
used in (2) given by

where

We see that to encode the color information for an RGB image, we only require 2 additional qubits compared 
to grayscale data, which is a significant improvement over the classical case. Furthermore, we encode the color 
mapping as a tensor product of three qubit states, while Sun et al.11 encodes the information in the coefficients 
of the color qubits, which entangles their state. Our implementation has the advantage that the different color 
channels are easily treated separately, while the color information can still be retrieved thanks to the normaliza-
tion constraint.

The circuit implementation of |IMCRQI� for the RGB mapping defined in Definition 7 then simply combines 
three uniformly controlled rotation circuits with different target qubits and coefficient vectors determined by 
the respective color intensities as shown in Fig. 3c. As the RGB color channels are independent of each other 
and the uniformly controlled Ry gates have different target qubits, each of them can be compressed separately. 
The asymptotic gate complexity of our method compared to the work by Sun et al.11 is listed in Table 2. As that 
work essentially uses the construction of Le et al.5, we obtain a quadratic improvement before compression.

INCQI.  Similarly to the NEQR, the (I)NCQI uses a color mapping directly encoding the length ℓ bitstring for 
each color value in a RGBα image in the computational basis stated on ℓ qbits. Consequently, this QIR can also 
be easily represented by our QPIXL framework through the mapping defined as follows.

|cik� = cos(θ ik)|0� + sin(θ ik)|1�, θ ik =
{

0, if bik = 0
π
2 , if b

i
k = 1

.

(21)|ck� = |rkgkbk�,

|rk� = cos(θk)|0� + sin(θk)|1�, θk =
π/2

K
rk ,

|gk� = cos(φk)|0� + sin(φk)|1�, φk =
π/2

K
gk ,

|bk� = cos(γk)|0� + sin(γk)|1�, γk =
π/2

K
bk .

Figure 3.   Circuits for the preparation of the IFRQI, NEQR, MCRQI, and INCQI states, where the uniformly 
controlled rotations can be compressed with our method.
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Definition 8  (INCQI mapping) For a color image of N RGBα pixels, where the color of each pixel pk is given 
by a tuple (rk , gk , bk ,αk) and each channel value in the range [0, 2ℓ − 1] has a binary representation, the INCQI 
state |IINCQI� is defined by Definition 2 with the color mapping used in (2) given by

where

The definition above applies very similarly to the NCQI12, only removing channel α from the equation. The 
INCQI state can be prepared through the circuit shown in Fig. 3d. This circuit is built using an NEQR circuit 
for each channel of the ICNQI. Similarly to previous QIRs, the uniformly controlled rotations used here can 
also be compressed with our method. The gate complexities for the uncompressed circuits are listed in Table 2.

Further extensions.  We remark that multiple extensions and combinations of the ideas presented in this 
section are possible. For example, where MCRQI is a color version of FRQI and (I)NCQI is a color version of 
NEQR, we can similarly define a color version of IFRQI. We can also adapt IFRQI to group an arbitrary number 
of bits instead of the two bit pairing from Definition 5. This reduces the required number of qubits and gates at 
the cost of quantum states that are less distinguishable and thus require more measurements. It is even possible 
to use different QPIXL mappings for different RGB color channels. For example, we can use an FRQI mapping 
for the red channel, an IFRQI mapping for the green channel, and an NEQR mapping for the blue channel. Also, 
a generalized version of NEQR (GNEQR) was proposed by Li et al46, which is based on NEQR, INEQR, and 
NCQI. GNEQR uses n+ 4ℓ+ 2 qubits to represent an image with 2n pixels and bit depth of ℓ for 4 color chan-
nels. Using similar ideas described in this section, a QPIXL-based GNEQR would need n+ 4ℓ total number of 
qubits.

Finally, although we have presented this discussion for image data in an RGB(α ) space, as in the work by Sun 
et al.11, our approach can be readily adapted to different color spaces and even multi-spectral or hyper-spectral 
data. In fact, different scientific applications frequently use images in different color spaces depending on the 
type of analysis needed. For example, the Y’CbCr space is known for its applicability to image compression. The 
I1I2I3 was created targeting specifically image segmentation. The HED space is advantageous in the medical field 
for the analysis of specific tissues. Similarly, multi-spectral and hyper-spectral data are used in areas such as geo-
sciences and biology, for example, where experts acquire different satellite images and mass spectrometry images 
respectively. In all these cases, our general definition of quantum pixel representations can be directly applied.

Experiments
This section describes a series of experiments that illustrate our proposed tools implemented in QPIXL++15. 
The current version of QPIXL++ supports the FRQI mapping from Definition 3 for grayscale image data of 
arbitrary dimensions.

Our first experiment replicates a result from Le et al.6 with our UR circuit and compares the gate complexi-
ties. In this test, we consider 10 images with an 8× 4 resolution containing representations of the digits 0–9 as 
shown in Fig. 4. These binary images only contain black and white pixels. We require 5 qubits to encode the pixel 
location as we have 32 pixels in total.

The method of Le et al.5 requires one C5(Ry) gate for every pixel, bringing the total up to 32 C5(Ry) gates. 
Every C5(Ry) gate is further decomposed into 93 Ry and 92 CNOT gates. The experiment described by Le et al.6 
reduces the number of C5(Ry) gates through a compression algorithm that groups pixels with the same grayscale 
value. This method is effective for the binary data in Fig. 4 as they report lossless compression ratios between 
68.75% and 90.63% . Figure 4 compares the number of 1-qubit Ry and CNOT gates for our method with the results 
from Le et al.6. We ran our compression algorithm with a compression level of 0% to the UR circuit. Thus only 
coefficients in θ̂ that are exactly 0 are removed, which means that our circuits are exact. Figure 4 shows that our 
method always provides more than 95% reduction in gate count compared to the method from Le et al.5,6 for 
this example. The advantage of our method becomes even more outspoken for larger images due to the quadratic 
improvement.

The next example we present concerns an image taken from the MNIST database47,48 of handwritten digits. 
The image of the digit “3” has a resolution of 28× 28 pixels that is zero padded to an image with 1024 pixels in 
QPIXL++ which means that roughly 75% of the coefficients are used for the actual image data. Figure 5 shows 
the images that are simulated with QPIXL++ at 5 different compression levels. There are no visual artifacts at 
30% compression and also the image at 60% compression is close to the original quality. The image with a 75% 
compression ratio has more visual artifacts but is still clearly recognizable, while at 90% compression the quality 
begins to drop significantly. The corresponding gate complexities for the UR circuits are also listed in Fig. 5, all 

(22)|ck� = |rkgkbkαk� = |r0k r1k . . . rℓ−1
k g0k g

1
k . . . g

ℓ−1
k b0kb

1
k . . . b

ℓ−1
k α0

kα
1
k . . . α

ℓ−1
k �

|rik� = cos(θ ik)|0� + sin(θ ik)|1�, θ ik =
{

0, if bik = 0
π
2 , if b

i
k = 1

.

|gik� = cos(φi
k)|0� + sin(φi

k)|1�, φi
k =

{

0, if bik = 0
π
2 , if b

i
k = 1

.

|bik� = cos(γ i
k)|0� + sin(γ i

k)|1�, γ i
k =

{

0, if bik = 0
π
2 , if b

i
k = 1

.

|αi
k� = cos(ψ i)|0� + sin(ψ i

k)|1�, ψ i
k =

{

0, if bik = 0
π
2 , if b

i
k = 1

.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7712  | https://doi.org/10.1038/s41598-022-11024-y

www.nature.com/scientificreports/

circuits contain 10 Hadamard gates to create the superposition in the first register. We observe that the reduc-
tion in Ry gates is in perfect agreement with the compression ratio, but that there is generally a smaller reduc-
tion in CNOT gates. This is in line with the expectations for our proposed compression algorithm described 
in “Compression”: not all CNOT gates along a sequence of removable Ry gates will cancel out. This experiment 
in particular clearly identifies a potential application of our QIR with compression to classification algorithms 
based on machine learning in quantum computers.

Our final example image stems from scientific data. This is a 256× 256 pixels region from a cross-section 
of a ceramic matrix composite (fiber reinforced polymer)49 imaged with X-ray micro computed tomography 
(microCT) at the LBNL ALS beamline 8.3.2. This type of image is frequently acquired by material scientists to 
study the development of material deformation under stress. Consequently, image analysis algorithms to detect 
the circular patterns present in the image for example (cross-sections of fibers) become extremely important. 
As the dimensions of this grayscale image are already a power of 2, it does not need to be zero-padded. It con-
tains both large scale structure and fine scale details. We require 16 qubits to encode the pixel locations and 1 
for the grayscale intensities such that the UFRQI circuit has a total of 17 qubits. The uncompressed UR circuit 
contains 216 or 65,536 CNOT and Ry gates. We ran our compression algorithm on the data and the results are 
summarized in Fig. 6.

As can be observed, the compression algorithm is very effective for this image. Up to 75% compression can 
be achieved while still maintaining both the large scale structure and the finer details. The large scale structure 
is still preserved at 95% compression, but the acuteness in the finer details is lost at this compression level. It is 
only at 99% compression that the image becomes completely dominated by compression artifacts. It becomes 
clear from this last example that our compression approach becomes extremely interesting when analyzing 
scientific data: (1) the amount of data to be processed is reduced, and (2) the approach maintains details in the 
image necessary for further analysis, such as feature extraction for example.

Figure 4.   8× 4 image data containing digits 0–9, experiment replicated from Le et al.6. Gate complexities for 
the 6-qubit UR circuits that prepare an exact representation of the image data. The last two rows provide the 
reduction in gate count for our method compared to Le et al.5,6. All circuits contain 5 Hadamard gates to create 
an equal superposition over the first register.

Figure 5.   256× 256 image data from of a ceramic matrix composite sample49 acquired using microCT 
simulated with QPIXL++ at various compression levels and corresponding gate counts of the 17-qubit UR 
circuit. The final two rows list the reduction in Ry and CNOT gates compared to the uncompressed circuits.
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Conclusion
We have introduced an overarching framework for quantum pixel representations and showed how previously 
introduced image representations can be incorporated in the QPIXL framework. Among these methods are (I)
FRQI, (I)NEQR, MCRQI, and (I)NCQI. We have proposed a novel circuit synthesis technique for preparing 
the quantum pixel representations on a quantum computer. This technique makes use of uniformly controlled 
Ry rotations and significantly reduces the gate complexity for all aforementioned methods. Hence, the obtained 
circuits only require Ry and CNOT gates which makes them feasible for the NISQ era. Our method requires 
the solution of a particular linear system which can be solved classically in O (N logN) time with a matrix-free 
approach. Furthermore, it allows for an efficient image compression algorithm that works on the transformed 
image data. Our experiments show that this compression approach is very effective for the FRQI mapping and 
can further reduce the number of gates by as much as 90% while still retaining the most prominent features of 
the image in the FRQI state. We repeatedly show how our method can have great impact on the analysis of sci-
entific data and for quantum machine learning applications in the future. We have implemented and tested our 
algorithms in a publicly available software package QPIXL++15 which supports QASM output. Benchmark tim-
ings show that QPIXL++ has excellent scaling properties and can handle high resolution image and video data.

Data availability
The datasets analyzed during the current study are available in the QPIXL++ repository at https://​github.​com/​
Quant​umCom​putin​gLab/​qpixl​pp.

Figure 6.   28× 28 image data from the MNIST47,48 database simulated with QPIXL++ at various compression 
levels and corresponding gate counts of the 11-qubit UR circuit. The final two rows list the reduction in Ry and 
CNOT gates compared to the uncompressed circuits.

https://github.com/QuantumComputingLab/qpixlpp
https://github.com/QuantumComputingLab/qpixlpp
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