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Abstract
Background  Both the triglyceride-glucose (TyG) index, a predictor of insulin resistance (IR), and inflammation are 
risk factors for stroke in hypertensive patients. However, only a handful of studies have coupled the TyG index and 
inflammation indices to predict stroke risk in hypertensive patients. The C-reactive protein-triglyceride-glucose index 
(CTI) is a novel marker that comprehensively assesses the severity of IR and inflammation. The present study explored 
the association between CTI and the risk of stroke in patients with hypertension.

Methods  A total of 3,834 hypertensive patients without a history of stroke at baseline were recruited from the China 
Health and Retirement Longitudinal Study (CHARLS). Multivariate Cox regression and restricted cubic spline (RCS) 
analyses were employed to assess the relationship between CTI and stroke risk in hypertensive patients. Furthermore, 
the Boruta algorithm was applied to evaluate the importance of CTI and construct prediction models to forecast the 
incidence of stroke in the study cohort.

Results  After 7 years of follow-up, the incidence of stroke in hypertensive patients was 9.6% (368 cases). Multivariate 
Cox regression analysis revealed a 21% increase in stroke risk with an increase in each CTI unit (hazard ratio (HR) = 1.21, 
95% confidence interval (CI) = 1.08–1.37). The top quartile group was 66% more likely to have a stroke than the 
bottom quartile group (HR = 1.66, 95% CI = 1.23–2.25). RCS analysis confirmed a linear relationship between CTI and 
stroke risk. The Boruta algorithm validated CTI as a crucial indicator of stroke risk. The Support Vector Machine (SVM) 
survival model exhibited the best predictive performance for stroke risk in hypertensive patients, with an area under 
the curve (AUC) of 0.956.

Conclusions  An increase in CTI levels is associated with a higher risk of stroke in hypertensive patients. This study 
suggests that CTI may emerge as a unique predictive marker for stroke risk.
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Introduction
Stroke is a major public health concern worldwide. 
According to the 2021 estimates, the total number of 
stroke cases has exceeded 100 million globally, with over 
7.3 million stroke-related fatalities per year, making it the 
third leading cause of death worldwide [1]. It is projected 
that stroke-related mortality may escalate to 9.7 million 
by 2050, creating significant global financial pressure [2]. 
High systolic blood pressure is one of the most significant 
risk factors for stroke, accounting for 56.8% of all stroke-
related poor outcomes [1]. Chronic hypertension leads 
to vascular remodeling, atherosclerosis or plaque forma-
tion, inflammation, endothelial dysfunction, and oxida-
tive stress, which all contribute to the development of 
stroke [3]. Consequently, early diagnosis of stroke risk in 
hypertensive individuals is critical for stroke prevention 
and improved patient outcomes.

Insulin resistance (IR) is defined as a decline in the 
body’s insulin sensitivity that affects glucose absorption 
and utilization [4]. IR is associated with metabolic dis-
eases such as hypertension, diabetes, and dyslipidemia. 
IR impairs endothelial cell function in hypertensive indi-
viduals by promoting inflammation, oxidative stress, and 
platelet adhesion and aggregation, leading to the forma-
tion of thrombi [5]. IR-induced metabolic dysfunction 
also accelerates the progression of atherosclerosis [6]. 
Both thrombus and plaque formation play crucial roles in 
stroke development [7]. In recent years, the triglyceride-
glucose (TyG) index, an emerging index for assessing IR 
[8], has been closely associated with hypertension [9], 
atherosclerosis [10], stroke [11], and the poor prognosis 
of cardiovascular diseases [12, 13]. Additionally, inflam-
mation has been recognized as a risk factor for stroke 
[14]. Hypertension is correlated with elevated levels of 
inflammatory markers, which promote vasculopathy 
and thrombosis, ultimately contributing to poor stroke 
outcomes [15]. The non-specific inflammatory marker 
C-reactive protein (CRP) has emerged as a promising 
biomarker for stroke risk assessment [16, 17].

Although the TyG index has been used to predict 
stroke risk in hypertensive patients, the effect of inflam-
mation on stroke risk is often overlooked [18, 19]. Con-
sidering that both IR and inflammation are strongly 
associated with the occurrence of adverse stroke out-
comes in hypertensive patients, developing a composite 
index as a predictive tool is paramount. The C-reactive 
protein-triglyceride-glucose index (CTI) developed by 
Ruan et al. combined inflammation and IR to predict sur-
vival in cancer patients [20]. Accumulating evidence has 
supported CTI application as a measure of inflamma-
tion and IR. CTI demonstrated good predictive value in 
predicting the prognosis of patients with cancer cachexia 
[21], cancer mortality in the general population [22], and 
the risk of erectile dysfunction [23].

Therefore, the present study sought to investigate the 
effectiveness of the CTI as a predictive tool for stroke risk 
among patients with hypertension utilizing data from 
the China Health and Retirement Longitudinal Study 
(CHARLS). This study provides a new perspective and 
evidence-based strategies for preventive care and thera-
peutic management of stroke.

Methods
Study population
The CHARLS database is an extensive research project 
designed to collect information on the social, economic, 
and health aspects of the Chinese population aged 45 and 
older. CHARLS employs multi-stage probability sam-
pling to construct a representative longitudinal survey, 
and its data covers 150 districts throughout 28 provinces 
in China. The scope of the study encompasses various 
domains, including demographic information and blood 
tests, physical exams and health assessments. Beginning 
with its baseline survey in 2011, CHARLS has consis-
tently conducted biannual follow-up surveys, resulting in 
five nationwide cycles of baseline and follow-up research 
[24].

A total of 11,847 individuals who provided blood infor-
mation in the CHARLS database 2011 baseline survey 
were chosen as potential study participants of whom, 
1,405 were excluded due to missing data, including fast-
ing blood glucose (FBG), triglycerides (TG), total choles-
terol (TC), and CRP. In addition, 6,312 participants who 
were not diagnosed with hypertension or had missing 
information on the hypertension questionnaire, and 260 
with a history of stroke or incomplete stroke informa-
tion were excluded. Thirty-six aged < 45 years at baseline 
were also excluded. Finally, the cohort consisted of 3,834 
hypertensive patients aged 45 or older at baseline with-
out a stroke history, with complete data for CTI calcula-
tion. Follow-up data for stroke incidence were collected 
during visits in 2013, 2015, and 2018 (Fig. 1).

Calculation of CTI
CTI was defined as 0.412* Ln (CRP [mg/L]) + Ln (TC 
[mg/dl] × FBG [mg/dl])/2 [20].

Hypertension and stroke diagnosis
Blood pressure measurements were conducted three 
times by a medical professional using a sphygmomanom-
eter with subjects instructed to remain relaxed and quiet 
throughout the procedure. For data analysis, the mean 
values of systolic blood pressure (SBP) and diastolic 
blood pressure (DBP) were calculated based on the three 
measurements obtained. Hypertension was defined as 
any of the following: SBP ≥ 140mmHg or DBP ≤ 90mmHg; 
participants who answered ‘yes’ to the following ques-
tion in the household questionnaire: ‘Have you been 
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diagnosed with hypertension by a doctor?’, ‘Do you know 
that you have hypertension?’ and ‘Are you now taking any 
treatments to treat hypertension?’.

The study outcome event was a stroke. Stroke was 
defined based on subjects who answered ‘yes’ to the fol-
lowing questions in the household questionnaire: ‘Have 
you been diagnosed with stroke by a doctor?’ and ‘Are 
you now taking any treatments to treat stroke?’ and the 
person who filled in the time of stroke diagnosis.

The date of stroke onset was defined as the “time of 
last stroke diagnosis” in the questionnaire or the date of 
follow-up for the reported stroke occurrence. The gap 
from the date of stroke onset to the baseline was used 
to calculate the time to stroke. Participants who did not 
report suffering a stroke during the follow-up period 
were identified based on the time between the date of the 
last examination and baseline [25].

Potential impact factor
Various potential predictors that may influence hyper-
tensive stroke were selected, including demographic 
variables: gender (male, female), age, Hukou (agricul-
tural, urban, other), education level (illiterate, junior 
high school and below, above junior high school), mari-
tal status (married, divorced, other). Health status: dys-
lipidemia, diabetes, heart disease, reduced blood lipid, 
cardiology treatment, hypertension treatment, diabetes 
treatment, smoking status (never, former, current), and 
drinking status (never, moderate, vigorous). Labora-
tory data: body mass index (BMI) (calculated as weight/
height2 (kg/m2)), SBP, DBP, CRP, TG, FBG, urea nitro-
gen (BUN), creatinine (Scr), TC, high-density lipopro-
tein (HDL), low-density lipoprotein (LDL), glycosylated 
hemoglobin (HBA1C), hemoglobin (HGB), and uric 

acid (UA). Dyslipidemia was defined as TC ≥ 200 mg/dL, 
TG ≥ 200 mg/dL, LDL ≥ 130 mg/dL, or HDL ≤ 40 mg/dL, 
or diagnosed by a physician as dyslipidemia or receiving 
lipid-lowering therapy. Diabetes was defined as FBG ≥ 6 
mmol/L, physician diagnosis of diabetes, or receiving 
hypoglycemic therapy.

Multicollinearity was detected before screening the 
covariates, and variables with a variance inflation factor 
(VIF) < 5 were included in the analysis (Table S1). The 
stepAIC (Akaike Information Criterion, AIC) was uti-
lized for feature selection to assess the model’s quality of 
fit by computing the AIC value for each latent factor and 
selecting the model with the minimum AIC value for fur-
ther investigation.

Missing data processing
Missing data included a history of heart disease (11, 
0.29%), smoking status (2, 0.05%), drinking status (2, 
0.05%), BMI (140, 3.65%), SBP (418, 10.90%), DBP (418, 
10.90%), Scr (2, 0.05%), HBA1C (28, 0.73%), and HGB 
(23, 0.60%). To mitigate the impacts of missing values on 
data analysis and modeling, a random forest imputation 
method was applied to ensure data completeness and 
correctness.

Statistical analysis
All data were analyzed using R version 4.2.1 and SPSS 
27.0.1. Two-sided P < 0.05 was considered statistically sig-
nificant. Normally distributed continuous variables were 
expressed as mean ± standard deviation (SD) and com-
pared using t-tests. Non-normally distributed continuous 
variables were expressed as the median and interquartile 
range (IQR) and compared using Wilcoxon rank sum 
tests. Categorical variables were presented as numbers 

Fig. 1  Study population screening flowchart
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and percentages and compared using the Pearson chi-
squared test.

Kaplan-Meier survival curves were utilized to deter-
mine the cumulative hazard of stroke based on the CTI 
quartile. The association between CTI and stroke inci-
dence in hypertensive patients was studied using multi-
variate Cox regression analysis. The stepAIC algorithm 
was applied for variable selection, and four models were 
built: the unadjusted model; Model I: selected based on 
demographic variables and adjusted for age and edu-
cational level; Model II: selected from demographic 
variables and health status and adjusted for Huko, gen-
der, heart disease, and hypertension treatment. Model 
III: selected from all predictors and adjusted for gender, 
heart disease, hypertension treatment, SBP, LDL, and 
UA. Subsequently, restricted cubic splines (RCS) curves 
were generated using the aforementioned models to test 
whether there is a nonlinear association between CTI 
and stroke risk in hypertensive patients. Subgroup anal-
yses stratified by gender, age (45–60 years, ≥ 60 years), 
Hukou (agricultural, non-agricultural), education level 
(illiterate, non-illiterate), marital status (married, other), 
dyslipidemia, diabetes, and heart disease populations 
were performed to investigate the prediction of CTI in 
the different groups and potential interactions. Mean-
while, sensitivity analyses were performed to verify out-
come stability, eliminating subjects with missing data. 
Subjects who died between 2011 and 2018 were also 
excluded in the reanalysis.

Boruta algorithm
The Boruta algorithm is a feature selection strategy based 
on the random forest framework that iteratively com-
pares the significance (Z-value) of original features with 
their artificial counterparts (“shadow features”) gener-
ated by random forest. If the Z-value of the original fea-
tures is significantly higher than the maximum Z-value 
of the shadow features at each step of the iteration, the 
feature is deemed important; otherwise, it is considered 
unimportant or tentative [26]. The selection of impor-
tant characteristics for model refinement is thought to 
improve model accuracy and stability. The Boruta algo-
rithm was utilized to determine essential variables and 
evaluate the role of CTI in predicting the risk of stroke in 
the hypertensive population.

Predictive models based on machine learning
Three machine learning-based predictive models were 
utilized to estimate the risk of stroke in hypertensive 
patients. The dataset was divided into two mutually 
exclusive subsets in a 7:3 ratio: the training and testing 
sets. Random Survival Forest (RSF) [27], Support Vec-
tor Machine (SVM) [28], and Gradient Boosting Deci-
sion Tree (GBDT) [29] survival models were employed 

to predict stroke risk. Furthermore, receiver operating 
characteristic (ROC) curves were constructed via the 
prediction results, and the area under the curve (AUC) 
was determined to assess the predictive performance of 
each model.

Results
Participants baseline characteristics
Demographic and clinical characteristics of the study 
cohort are stratified by stroke (Table 1). A total of 3,834 
hypertensive patients were enrolled, including 1,727 
males (45%) and 2,107 females (55%), with an overall 
average age of 62 ± 10 years. The median CTI was 8.87. 
After a seven-year follow-up, 368 participants (9.6%) 
experienced a stroke. Compared with non-stroke indi-
viduals, stroke patients had significantly higher levels of 
CTI, BMI, TyG, CRP, TG, FBG, TC, LDL, and HGB and 
lower HDL levels (P < 0.05). Participants with a history of 
dyslipidemia, diabetes, or heart disease and those taking 
therapies for dyslipidemia, heart disease, or hypertension 
were more likely to have a stroke (P < 0.05). When strati-
fied by CTI quartile, stroke incidence rates were 19.6% 
for the first quartile (Q1), 23.4% for the second (Q2), 
25.3% for the third (Q3), and 31.8% for the fourth (Q4), 
with a notable increase in stroke incidence as CTI levels 
rose (P = 0.004). Demographic and clinical characteristics 
of the participants were also stratified according to CTI 
quartile groupings (Table S2) .

Associations between CTI and stroke in the hypertensive 
population
According to the Kaplan-Meier survival curve analy-
sis (Figure S1), the cumulative risk of stroke increased 
considerably as CTI rose (Log-rank P = 0.003). Four 
Cox regression models revealed a positive association 
between CTI and stroke risk (Table 2). Using the stepAIC 
approach for covariate selection, the fully adjusted model 
revealed a 21% increase in stroke risk for each additional 
unit of CTI (hazard ratio (HR) = 1.21, 95% confidence 
interval (CI) = 1.08–1.37). Subsequently, after converting 
CTI into quartile variables, the unadjusted model showed 
that participants in Q4 had a 70% higher risk of stroke 
than those in Q1 (HR = 1.70, 95% CI 1.26–2.26, P < 0.001). 
This strong trend remained in the fully adjusted model, 
with participants in the highest CTI quartile having a 
66% higher risk of stroke than those in the lowest quartile 
(HR = 1.66, 95% CI 1.23–2.25, P = 0.001).

RCS curves were drawn to investigate the trends 
between CTI and stroke risk (Fig.  2). All four models 
demonstrated a linear association between CTI and 
stroke risk. The P for nonlinear terms was 0.164 in the 
fully adjusted model, whereas the P-value for the overall 
models was 0.003.



Page 5 of 12Tang et al. Diabetology & Metabolic Syndrome          (2024) 16:277 

Characteristic Overall (N = 3,834) Non-stroke (N = 3,466) Stroke (N = 368) P-value
Age, years, mean ± SD 62 ± 10 62 ± 10 62 ± 9 0.629
CTI, median (IQR) 8.87 (8.34, 9.48) 8.86 (8.32, 9.45) 8.99 (8.51, 9.60) < 0.001
SBP, mmHg, mean ± SD 148.03 ± 19.31 147.89 ± 19.16 149.35 ± 20.70 0.197
DBP, mmHg, mean ± SD 83.31 ± 11.51 83.26 ± 11.48 83.85 ± 11.78 0.355
BMI, kg/m2, median (IQR) 24.30 (21.72, 26.97) 24.22 (21.69, 26.94) 24.82 (22.15, 27.31) 0.030
CRP, mg/L, median (IQR) 1.23 (0.65, 2.61) 1.22 (0.65, 2.58) 1.42 (0.70, 2.80) 0.025
TG, mg/dL, median (IQR) 115.93 (81.42, 169.04) 115.05 (81.42, 167.26) 125.23 (86.07, 188.50) 0.013
FBG, mg/dL, mean ± SD 114.34 ± 41.05 113.86 ± 40.78 118.93 ± 43.31 0.032
TyG, median (IQR) 8.73 (8.34, 9.17) 8.73 (8.33, 9.16) 8.79 (8.41, 9.31) 0.005
BUN, mg/dL, mean ± SD 15.85 ± 4.69 15.84 ± 4.68 16.01 ± 4.80 0.517
Scr, mg/dL, mean ± SD 0.80 ± 0.28 0.80 ± 0.28 0.82 ± 0.20 0.184
TC, mg/dL, mean ± SD 198.03 ± 39.78 197.60 ± 39.84 202.08 ± 39.99 0.037
HDL, mg/dL, mean ± SD 49.74 ± 15.17 49.92 ± 15.31 48.10 ± 13.70 0.017
LDL, mg/dL, mean ± SD 119.12 ± 36.83 118.71 ± 36.96 122.92 ± 35.32 0.031
HBA1C, %, median (IQR) 5.20 (4.90, 5.50) 5.20 (4.90, 5.50) 5.20 (4.93, 5.60) 0.026
HGB, g/dL, median (IQR) 14.40 (13.20, 15.70) 14.40 (13.20, 15.70) 14.70 (13.40, 15.80) 0.011
UA, mg/dL, mean ± SD 4.64 ± 1.32 4.64 ± 1.32 4.65 ± 1.31 0.948
Huko, N (%) 0.604
Agriculture 3,016 (78.7%) 2,721 (78.5%) 295 (80.2%)
Urban 795 (20.7%) 725 (20.9%) 70 (19.0%)
Other 23 (0.6%) 20 (0.6%) 3 (0.8%)
Gender, N (%) 0.145
Male 1,727 (45.0%) 1,548 (44.7%) 179 (48.6%)
Female 2,107 (55.0%) 1,918 (55.3%) 189 (51.4%)
Educational level, N (%) 0.155
Illiteracy 1,232 (32.1%) 1,130 (32.6%) 102 (27.7%)
Junior high school and below 2,216 (57.8%) 1,991 (57.4%) 225 (61.1%)
Above junior high school 386 (10.1%) 345 (10.0%) 41 (11.1%)
Marital status, N (%) 0.706
Married 3,235 (84.4%) 2,922 (84.3%) 313 (85.1%)
Other 599 (15.6%) 544 (15.7%) 55 (14.9%)
Dyslipidemia, N (%) 0.019
No 1,219 (31.8%) 1,122 (32.4%) 97 (26.4%)
Yes 2,615 (68.2%) 2,344 (67.6%) 271 (73.6%)
Diabetes, N (%) 0.003
No 3,053 (79.6%) 2,782 (80.3%) 271 (73.6%)
Yes 781 (20.4%) 684 (19.7%) 97 (26.4%)
Heart disease, N (%) < 0.001
No 3,157 (82.3%) 2,879 (83.1%) 278 (75.5%)
Yes 677 (17.7%) 587 (16.9%) 90 (24.5%)
Reduce blood lipid, N (%) 0.003
No 3,476 (90.7%) 3,158 (91.1%) 318 (86.4%)
Yes 358 (9.3%) 308 (8.9%) 50 (13.6%)
Cardiology treatment, N (%) 0.009
No 3,352 (87.4%) 3,046 (87.9%) 306 (83.2%)
Yes 482 (12.6%) 420 (12.1%) 62 (16.8%)
Hypertension treatment, N (%) < 0.001
No 1,908 (49.8%) 1,763 (50.9%) 145 (39.4%)
Yes 1,926 (50.2%) 1,703 (49.1%) 223 (60.6%)
Diabetes treatment, N (%) 0.051
No 3,582 (93.4%) 3,247 (93.7%) 335 (91.0%)
Yes 252 (6.6%) 219 (6.3%) 33 (9.0%)
Smoking status, N (%) 0.164

Table 1  Characteristics of the study population based on stroke
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Subgroup analysis
Subsequently, we examined possible variations in the 
relationship between CTI, a continuous variable, and 
stroke risk within different subgroups (Fig. 3). Subgroup 
analysis of gender, age, Hukou, education level, marital 
status, diabetes, and heart disease revealed a positive cor-
relation between CTI and the risk of stroke in hyperten-
sive patients. Intriguingly, a significant interaction effect 
was only observed in the dyslipidemia subgroup (P-value 
for interaction = 0.002).

Boruta algorithm
The results of the evaluation of variables related to stroke 
risk in hypertensive patients via the Boruta feature 
selection algorithm are depicted in Fig.  4. The screened 
important variables were heart disease, CTI, HDL, and 
SBP. Cox regression analysis was further performed on 
the key variables identified by the Boruta algorithm. The 
results revealed a positive association between CTI (con-
tinuous variable) and stroke risk (HR = 1.18, 95% CI 1.03–
1.34, P = 0.015) (Table S2).

Predictive modeling
Three prediction models were constructed utilizing 
machine learning methods. Additionally, the capacity 
of CTI to predict stroke risk was evaluated using model 
3 and Boruta algorithm-adjusted models, respectively. 
ROC curves were plotted based on the five predictions 
(Fig.  5). The SVM survival model performed extremely 
well in predicting stroke risk, with an AUC of 0.956 (95% 
CI = 0.948–0.965), followed by the GBDT survival model 
(AUC = 0.915, 95% CI = 0.894–0.936) and Boruta’s algo-
rithm model (AUC = 0.786, 95% CI = 0.755–0.817).

Sensitivity analysis
Two sensitivity analyses were conducted to substantiate 
the reliability of the results. Initially, to ensure data accu-
racy, it was found that CTI (continuous and categori-
cal quartiles) was positively correlated with stroke risk 
after the exclusion of 461 individuals with incomplete 
data. The fully adjusted model revealed the Q4 group 
was 71% more likely to have a stroke than the Q1 group 
(HR = 1.71, 95% CI = 1.24–2.37) (Table S4). Furthermore, 

Table 2  Multivariate COX regression of the relationship between CTI and stroke in hypertensive population
Variable Unadjusted model Model 1† Model 2‡ Model 3§

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value
CTI 1.21(1.08–1.35) < 0.001 1.21(1.08–1.35) < 0.001 1.19(1.06–1.33) 0.003 1.21(1.08–1.37) 0.001
CTI (quartile)
Q1(6.85 ≤ CTI < 8.34) Reference Reference Reference Reference
Q2(8.34 ≤ CTI < 8.87) 1.21(0.88–1.64) 0.226 1.20(0.88–1.64) 0.258 1.21(0.88–1.65) 0.241 1.19(0.87–1.63) 0.278
Q3(8.87 ≤ CTI < 9.48) 1.28(0.94-1,74) 0.111 1.28(0.94–1.47) 0.121 1.26(0.93–1.72) 0.143 1.25(0.91–1.71) 0.170
Q4(9.48 ≤ CTI ≤ 13.16) 1.70(1.26–2.26) < 0.001 1.69(1.26–2.26) < 0.001 1.63(1.21–2.19) 0.001 1.66(1.23–2.25) 0.001
P for trend 0.003 0.004 0.011 0.008
†Adjust for: age and educational level
‡Adjusted for: Huko, gender, heart disease, and hypertension treatment
§Adjust for: gender, heart disease, hypertension treatment, SBP, LDL, and UA

Abbreviation HR: hazard ratios; 95%CI: 95% confidence interval; CTI: C-reactive protein-triglyceride-glucose index; SBP: Systolic blood pressure; SBP: Systolic blood 
pressure; LDL: low density lipoprotein cholesterol; UA: uric acid

Characteristic Overall (N = 3,834) Non-stroke (N = 3,466) Stroke (N = 368) P-value
Never 2,389 (62.3%) 2,172 (62.7%) 217 (59.0%)
Former 352 (9.2%) 309 (8.9%) 43 (11.7%)
Current 1,093 (28.5%) 985 (28.4%) 108 (29.3%)
Drinking status, N (%) 0.132
Never 2,258 (58.9%) 2,054 (59.3%) 204 (55.4%)
Moderate 392 (10.2%) 344 (9.9%) 48 (13.0%)
Vigorous 1,184 (30.9%) 1,068 (30.8%) 116 (31.5%)
CTI quartile, N (%) 0.004
Q1(6.85 ≤ CTI < 8.34) 962 (25.1%) 890 (25.7%) 72 (19.6%)
Q2(8.34 ≤ CTI < 8.87) 948 (24.7%) 862 (24.9%) 86 (23.4%)
Q3(8.87 ≤ CTI < 9.48) 973 (25.4%) 880 (25.4%) 93 (25.3%)
Q4(9.48 ≤ CTI ≤ 13.16) 951 (24.8%) 834 (24.1%) 117 (31.8%)
Continuous variables are expressed as Mean ± SD or Median (IQR), categorical variables are expressed as number (percent)

Abbreviation CTI: C-reactive protein-triglyceride-glucose index; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; BMI: body mass index; CRP: C-reactive 
protein; TG: total cholesterol; FBG: fast blood glucose; TyG: triglyceride-glucose; BUN: urea nitrogen; Scr: serum creatinine; TC: total cholesterol; HDL: high density 
lipoprotein cholesterol; LDL: low density lipoprotein cholesterol; HBA1C, glycated hemoglobin; HGB: hemoglobin; UA: uric acid

Table 1  (continued) 



Page 7 of 12Tang et al. Diabetology & Metabolic Syndrome          (2024) 16:277 

after excluding the 94 participants who died between 
2011 and 2018, the results were consistent with the main 
analysis (Table S5).

Discussion
The current prospective cohort study identified CTI as a 
novel composite indicator of inflammation and IR levels 
that predicts the risk of stroke in hypertensive patients. 
Additionally, our data revealed a linear association 
between CTI and stroke outcomes, indicating that higher 
CTI values are correlated with a higher stroke risk. The 
introduction of the Boruta algorithm for feature selec-
tion confirmed the significant effect of CTI on stroke 
risk prediction in hypertensive individuals. The model 
adjusted with variables selected by the Boruta algorithm 
further validated the role of CTI as a predictor of stroke 
risk. Multiple prediction models, constructed by machine 
learning algorithms, demonstrated effectiveness in pre-
dicting stroke risk. This study provides an innovative 
perspective on the evaluation of stroke risk in individuals 
with hypertension.

Association between TyG and stroke
CTI, created by Ruan and colleagues, is a tool for 
the prognostic assessment of cancer patients [20]. It 

combines an inflammatory biomarker CRP with the IR 
index TyG. Previous research has demonstrated a sig-
nificant association between the TyG index and inflam-
matory markers with stroke risk. A series of cohort 
studies conducted in various types of populations, such 
as the National Health and Nutrition Examination Survey 
(NHANES) [30], the Kailuan cohort [31], the CHARLS 
[11], and the Rural Chinese Cohort Study [32], have also 
reported the connection between TyG levels and risk 
for stroke. A meta-analysis of data from 18 studies con-
firmed TyG as a prognostic marker for ischemic stroke 
[33]. The TyG index is a reliable predictor of stroke risk in 
the general population and certain populations, including 
non-diabetics [34], hypertensives [18], and liver trans-
plant recipients [35].

Association between CRP and stroke
Inflammation plays a crucial role in the formation, 
development, and burst of atherosclerotic plaques, all of 
which critically influence stroke incidence [5, 36]. The 
non-specific inflammatory marker CRP was linked to 
an increased risk of ischemic stroke in healthy men [37]. 
A previous study found that the risk of ischemic stroke 
increased significantly among individuals with elevated 
CRP levels in the highest quartile in the aged population 

Fig. 2  Restricted cubic spline of relationship between CTI and stroke events in hypertensive population. Curves represents the hazard ratios, and the au-
diovisual section represents the 95% confidence interval. (A) Unadjusted model. (B) Adjust for: age and educational level. (C) Adjusted for: Huko, gender, 
heart disease, and hypertension treatment. (D) Adjust for: gender, heart disease, hypertension treatment, SBP, LDL, and UA

 



Page 8 of 12Tang et al. Diabetology & Metabolic Syndrome          (2024) 16:277 

(over 65 years) (HR = 1.60, 95% CI = 1.23–2.08) [38]. A 
systematic meta-analysis of over 160,000 participants 
reported a log-linear association between CRP lev-
els and stroke risk, with a 27% increase in risk for every 
threefold increase in CRP levels (risk ratio (RR) = 1.27, 
95% CI = 1.15–1.40) [16]. Elevated CRP levels also pre-
dict an increased risk of recurrent strokes, with a 14% 
risk increase for each standard deviation elevation in 
CRP levels (HR = 1.14, 95% CI = 1.06–1.22) [39]. Numer-
ous studies have highlighted the prognostic significance 
of CRP for stroke risk, which may be attributable to its 
activation of inflammatory cascades, vascular dysfunc-
tion, thrombotic promotion, and plaque instability, all 
of which contribute to stroke risk. However, further 
research is needed to clarify this complex system.

Potential mechanisms underlying CTI prediction of stroke 
in hypertensive patients
Considering that IR and inflammation have been identi-
fied as independent risk factors for stroke, and hyperten-
sion is known to cause arterial endothelial dysfunction, 
increase the expression of inflammatory mediators 
and adhesion molecules, and accelerate atherosclerotic 
plaque formation [40], the impact of inflammatory vari-
ables should be considered when evaluating stroke risk 
in hypertensive individuals. We hypothesized that CTI, 
which combines IR and an inflammatory marker (CRP), 
may predict stroke risk among hypertensive patients. 
Previous research has demonstrated that inflammation 
mediates the relationship between IR and cardiovascu-
lar outcomes. For example, Cui et al. reported that CRP 
significantly mediated the association between TyG and 

Fig. 3  Subgroup analysis for the association between CTI and stroke incidence in hypertensive population. Adjust for: gender, heart disease, hyperten-
sion treatment, SBP, LDL, and UA
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cardiovascular events [41]. Furthermore, the role of 
CRP in the predictive potential of TyG for cardiovascu-
lar events in diabetic individuals with chronic coronary 
syndrome has been validated [42]. These studies high-
light the complex relationship between TyG, inflamma-
tion, and cardiovascular outcomes. Our findings further 
support the association between stroke risk and the 
combined CRP-TyG index, with the linear association 
between CTI and stroke emphasizing the importance of 
carefully monitoring CRP and TyG levels in hyperten-
sive patients. Regular physical exercise, dietary changes, 
weight control, and prudent pharmacological therapies 
to reduce IR and inflammation may all assist in reducing 

stroke risk. The present study provides a new perspec-
tive for predicting stroke outcomes. Furthermore, based 
on previous studies, we hypothesized that the combined 
assessment of inflammation and IR may have predictive 
value for cardiovascular events. Further research into the 
combined impact of CRP and TyG on cardiovascular dis-
ease is warranted in the future.

While our study has pointed to the potential utility of a 
combined assessment of IR and CRP in predicting stroke 
risk in hypertensive patients, the specific mechanism 
remains unknown. IR and inflammation may both trigger 
endothelial dysfunction, thereby compromising arterial 
integrity, accelerating atherosclerosis progression, and 

Fig. 4  Evaluating the importance of variables based on Boruta algorithm. Green for important variables, yellow for tentative ones and red for unimport-
ant ones
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increasing the risk of stroke [43, 44]. Moreover, inflam-
mation can exacerbate IR, since IR represents a persis-
tent low-grade inflammatory state capable of releasing 
inflammatory mediators from tissues, thereby intensi-
fying the inflammatory response throughout the body. 
These factors interact to create a vicious cycle that ulti-
mately leads to an aggravation of vascular occlusion and 
plaque instability [45].

Limitations
Nevertheless, this study has several limitations. Firstly, 
the study sample was restricted to a Chinese popula-
tion aged ≥ 45 years, necessitating further research that 
includes different cohorts from various regions and age 
groups to further validate the predictive effectiveness of 
CTI. Secondly, this study focused on the hypertensive 
cohort rather than stroke risk assessment in the overall 
population. Thirdly, the CHARLS database is based on 
self-reporting for stroke diagnosis and does not distin-
guish between stroke types. Thus, further details regard-
ing stroke types are required to ascertain the potential 
predictive value of CTI for different forms of stroke. 
Fourthly, we did not fully adjust all confounding vari-
ables due to the lack of comprehensive, detailed medi-
cation histories in CHARLS, which may influence CRP 
and TyG measures. Fifthly, the exclusion of 461 partici-
pants due to missing data may have introduced a greater 
degree of error. Although we attempted to address the 
missing values through data interpolation, this approach 
still resulted in a certain degree of error. Furthermore, 
the lack of tracking of changes in IR and inflammation 

over time made it unable to determine the association 
between CTI trajectory and stroke risk. Lastly, given that 
this was an observational study, causality between the 
risk of stroke and CTI was not established.

Conclusion
In summary, the present utilized the CHARLS database 
and a novel composite indicator of IR and inflammation, 
termed CTI, to predict the risk of stroke in a hyperten-
sive population. The findings revealed a significant asso-
ciation between a higher CTI level and an increased risk 
of stroke, suggesting that CTI may serve as a predictive 
biomarker for stroke in hypertensive patients.
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