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Abstract

Cells use surface receptors to estimate concentrations of external ligands. Limits on the

accuracy of such estimations have been well studied for pairs of ligand and receptor spe-

cies. However, the environment typically contains many ligands, which can bind to the same

receptors with different affinities, resulting in cross-talk. In traditional rate models, such

cross-talk prevents accurate inference of concentrations of individual ligands. In contrast,

here we show that knowing the precise timing sequence of stochastic binding and unbinding

events allows one receptor to provide information about multiple ligands simultaneously and

with a high accuracy. We show that such high-accuracy estimation of multiple concentra-

tions can be realized with simple structural modifications of the familiar kinetic proofreading

biochemical network diagram. We give two specific examples of such modifications. We

argue that structural and functional features of real cellular biochemical sensory networks in

immune cells, such as feedforward and feedback loops or ligand antagonism, sometimes

can be understood as solutions to the accurate multi-ligand estimation problem.

Author summary

Cells live in chemically complex environments with many different chemical ligands

around them. Can cells estimate concentrations of more ligands than they have receptor

types? In this paper, we show that, surprisingly, the answer is “yes”, and the estimation

can be implemented with simple biochemical components already present in many cells.

Therefore, cells may “know” a lot more about their environment and thus may be able to

implement more complex and accurate response strategies than was previously thought.

Introduction

Cells obtain information about their environment by capturing ligand molecules with recep-

tors on their surface and estimating the ligand concentration from the receptor activity. Limits
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on the accuracy of such estimation have been a subject of interest since the seminal work of

Berg and Purcell [1], with several substantial extensions found recently [2–8]. Most of these

assume one ligand species coupled to one receptor species, and the actual detection in most of

these models is rather simple, involving counting the number or the duration of binding /

unbinding events over a specific period of time.

However, cells carry many types of receptors and have many species of ligands around

them. The same ligand can bind to many receptors, albeit with different affinities, and vice

versa. This is commonly referred to as cross-talk. At the same time, real cellular sensory sys-

tems are incredibly complex, involving many dozens of identified biochemical species

downstream of a typical receptor [9]. Functionally many of such signaling motifs are proba-

bly related to solving the cross-talk problem [10, 11], and are a topic of active research.

In traditional deterministic chemical kinetics, one cannot estimate concentrations of

more ligands than there are receptor types. Further, even a weak cross-talk prevents determi-

nation of concentrations of individual chemical species since the activity of a receptor is a

function of a weighted sum of concentrations of all ligands that can bind to it. In contrast,

here we argue that, with cross-talk, concentration of more than one chemical species can be

inferred from the activity of one receptor, provided that the stochastic temporal sequence of

receptor binding and unbinding events is accessible instead of its mean occupancy. This is

an important departure from the traditional view of cellular signaling that posits as many

receptor types as there are ligand concentrations to be estimated. Indeed, previous works

studying temporal sequences of receptor occupancy for ligand detection [11] and concentra-

tion estimation [5, 13, 12] have only considered the detection/estimation of a single ligand

present in a mixture. We argue that the receptor occupancy sequence contains much more

information about the mixture. In fact, based on the maximum likelihood techniques, which

have been used previously to study receptor occupancy, we show that all components of the

ligand mixture can be estimated by just one receptor, at least in principle. This surprising

result can be understood by noting that a typical duration of time that a ligand remains

bound to the receptors depends on its unbinding rate. Thus observing the statistics of the

receptor’s unbound time durations allows estimation of a weighted average of all chemical

species that interact with it [5]. Then the statistics of the bound time durations tells how com-

mon each ligand is.

The result is very general and independent on the choice of a downstream biochemical

kinetics scheme that actually performs the estimation. In this article, we derive the result for

the simplest problem of this class, namely one receptor interacting with two ligand species.

While the exact solution of the inference problem for finding both ligand concentrations is

hard to implement using common biochemical machinery, we show that an accurate

approximation is possible using simple extensions of the familiar kinetic proofreading

mechanism [14, 15]. We identify examples of such motifs implementing such estimation of

multiple concentrations in signaling networks found downstream of many immune recep-

tors [9], arguing that real biological systems may be implementing such multivariate con-

centration sensing. The kinetic schemes that we analyze detect rare ligands more accurately

than a simple kinetic proofreading does, and we argue that the involved biochemical com-

putation can explain properties like ligand antagonism, commonly observed in receptor

signaling.

Overall, these different arguments support our main idea, that the temporal sequence of
binding and unbinding on a single receptor can provide an accurate estimate of the concentration
of multiple ligands that bind to the receptor, and that the involved calculations can be performed
reliably by known biochemical networks.

Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor
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Results

The model

Consider a single receptor interacting with a cognate and a non-cognate ligand (Fig 1) that

have the concentrations cc and cnc, respectively. The binding rate of the ligands to the receptor

are kc and knc. The binding rates are diffusion limited and hence kc*knc. It is the unbinding or

off-rates, rc and rnc, that distinguish the two ligands: rnc > rc, and a cognate molecule typically

stays bound for longer. The binding and unbinding rates (kα’s and rα’s) are fixed and can be

assumed known for each receptor-ligand pair. Thus we are interested in the estimation of the

ligand concentrations only, cc and cnc. Following Ref. [5], we estimate cc and cnc from the time-

series of binding, ftb
i g, and unbinding, ftu

i g, events of a total duration T using Maximum Like-

lihood techniques, paralleling a recent similar independent discussion, which focused on

detection of a single ligand concentration [12]. The numbers of binding and unbinding events

are different by, at most, one, which is insignificant since we consider T!1. Thus without

loss of generality, we assume that the first event was a binding event at tb
1
, and the last one was

the unbinding at tu
n . We write the probability distribution of observing the sequence

ftb
1
; tu

1
; . . . ; tb

n; t
u
ng, or alternatively the sequence of binding and unbinding intervals

tb
i ¼ tu

i � tb
i , and tu

i ¼ tb
iþ1
� tu

i :

P � Pðftb
i ; tu

i gjcc; cncÞ ¼
1

Z

Yn

i¼1

e� tu
i ðkcccþknccncÞ kccc rc e

� tb
i rc þ knccnc rnc e

� tb
i rnc

� �h i
: ð1Þ

Here the first term under the product sign is the probability of the receptor staying unbound

for tu
i . The second term, which from now on we denote by Dðcc; cnc; t

b
i Þ, is proportional to the

probability of staying bound for tb
i . Dðcc; cnc; t

b
i Þ has contributions from binding events from

both the cognate and the noncognate ligands, with odds of cc and cnc, respectively. Finally, Z is

the normalization,

Z ¼
X

Pðftb
i ; tu

i gjcc; cncÞ; ð2Þ

where the sum is over all sequences of duration T and n binding-unbinding events. Note that

here we define tu
n ¼ tb

1
þ ðT � tu

nÞ, so that the n’th unbound interval includes the “incomplete”

unbound intervals before the first binding and after the last unbinding.

The log-likelihood of cc and cnc is the logarithm of P, Eq (1). Taking the derivatives of the

log-likelihood w. r. t. cc and cnc and setting them to zero gives the Maximum Likelihood (ML)

equations for the concentrations. Denoting by Tu ¼
Pn

i¼1
tu
i , the total time the receptor is

Fig 1. The model. (a). Two ligands, cognate and non-cognate having concentrations cc and cnc, bind to a

receptor R with binding rates kc and knc, respectively. The cognate unbinding rate is defined as lower than the

non-cognate one (rc < rnc). (b) Time series of receptor occupancy is used to determine both on-rates.

https://doi.org/10.1371/journal.pcbi.1005490.g001
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unbound, these ML equations are (see Methods for the derivation):

� kcT
u þ

Xn

i¼1

kcrce� tb
i rc

Dðc�c ; c�nc; t
b
i Þ
¼ 0; ð3Þ

� kncT
u þ

Xn

i¼1

kncrnce� tb
i rnc

Dðc�c ; c�nc; t
b
i Þ
¼ 0; ð4Þ

where c�c and c�nc denotes the ML solution. Multiplying Eqs (3) and (4) by c�c and c�nc, respec-

tively, and adding them gives

kcc
�

c þ kncc
�

nc ¼
n
Tu
: ð5Þ

As in Ref. [5], the total on-rate (the weighted average of the external concentrations) is deter-

mined only by the average duration of the unbound interval, (n/Tu)−1, because no binding is

possible when the receptor is already bound. For the special case of kc� knc� k (for ligands

with binding rate determined by diffusion), Eq (5) determines the maximum likelihood esti-

mate of the sum of the two concentrations, similar to the result in Ref. [5, 12]:

c�tot ¼ c�c þ c�nc

� �
¼

n
Tuk

: ð6Þ

This shows that the estimates are negatively correlated. For general ki’s, a weighted sum of the

concentrations is determined, but the negative correlation persists.

To get the individual concentrations, we need to solve the ML equations Eqs (3) and (4). In

general, they can only be solved numerically. However, as all ML estimators, they are unbiased

to the leading order in n (we verified this numerically). The standard errors of the ML esti-

mates can be obtained by inverting the Hessian matrix,

@
2 logP
@ca@cb

�
�
�
�
�
c�c ;c�nc

¼
Xn

i¼1

� 1

Dðcc; cnc; t
b
i Þ

2
�

k2
cr

2
c e
� 2tb

i rc kckncrcrnce� tb
i ðrcþrncÞ

kckncrcrnce� tb
i ðrcþrncÞ k2

ncr
2
nce
� 2tb

i rnc

 !" #

; ð7Þ

where greek indices stand for {c, nc}. Each term in the Hessian matrix is a sum of n numbers,

each smaller than zero. The inverse of
@2 log P
@ca@cb

, which scales as/ 1/n, sets the minimum vari-

ance of any unbiased estimator according to the Cramer-Rao bound. It has straightforward

analytical approximations in various regimes. For example, when the noncognate ligand is

almost absent (cc/cnc� 1), and its few molecules do not bind for long (rc/rnc� 1), one gets

s2ðc�cÞ � ð@
2 logP=@c2

cÞ
� 1

cc¼c�c
� 1=n, matching the accuracy of sensing one ligand with one

receptor [5]. A regime relevant for detection of a rare, but highly specific ligand [11, 12, 16]

can be investigated as well. For now, we focus on how the receptor estimates (rather than

detects) concentrations of both ligands simultaneously, which requires us to explore the full

range of on- and off-rates.

The estimates of the concentration cc and cnc are obtained by numerically solving ML equa-

tions, Eqs (3) and (4). We study the variability of these ML estimators in terms of their poste-

rior variances. Notice that these posterior variances scale as 1/n, so we define the error of the

ML estimators, E, as the squared coefficient of variation times the number of binding-unbind-

ing events, n. Hence, we have, Ec ¼ ns2ðc�cÞ=c
2
c and Enc ¼ ns2ðc�ncÞ=c

2
nc for cognate and non-

cognate ligands, respectively. These quantities have a finite limit at n!1. Specifically, E = 1

is the accuracy that a receptor that binds only a single ligand can obtain [5]. Thus Ec and Enc

Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor
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compare the performance of our multi-ligand ML estimator to the limit achievable by a single

ligand ML estimator. We show log10 Ec and log10 Enc for different concentrations and off-rates

in Fig 2. If the two ligands are readily distinguishable, rc� rnc, then the ligand with the larger

concentration has E * 1. When cc * cnc, Ei * 4. . .5, and it grows to 10. . .30 for a ligand with

a very small relative concentration. Emphasizing the importance of the time scale separation,

E> 100 if the ligands are hard to distinguish, rc * rnc. Here the correlation coefficient ρ of the

two estimates reaches −1 because the same binding event can be attributed to either ligand.

Finally, the asymmetry of the plots w. r. t. the exchange of cc and cnc is because the cognate

ligand can generate short binding events, while long events from the noncognate ligand are

exponentially unlikely. In summary, it is possible to infer two ligand concentrations from one

receptor, with the error of only 1. . .10 times larger than for ligand-receptor pairs with no cross

talk, as long as the two off-rates are substantially different. This complements the findings of

[12] that a single concentration can be inferred from a time series of “on” and “off” events in a

background of noncognate bindings using Maximum Likelihood estimation. We have verified

that the analytical expression for the estimation error derived in Ref. [12] for a single cognate

ligand matches our numerical results (see Methods).

Approximate solution

It is not clear if there exist biochemical networks that can solve the ML equations, Eqs (3) and

(4), exactly. Luckily, an approximate solution exists. Note that most of the long binding events

come from the cognate ligand since the noncognate one dissociates faster. Defining long

events as tb
i � Tc and using Eq (5), we rewrite Eq (3) as

kcn
kcc�c þ kncc�nc

¼
X

tb
i �T

c

þ
X

tb
i <Tc

0

@

1

A kcrce� tb
i rc

Dðc�c ; c�nc; t
b
i Þ

ð8Þ

Assuming that all long events are cognate, Tc� 1/rnc, gives

kcn
kccac þ knccanc

� � ¼
nl

ca
c

þ
X

tb
i <Tc

kcrce� tb
i rc

Dðca
c; ca

nc; t
b
i Þ
; ð9Þ

Fig 2. Variability of the ML estimators, represented by log10 Ec (left), log10 Enc (center), and the correlation

coefficient ρ between c�
c

and c�
nc

(right) as functions of the ratio of unbinding rates. Here we use rnc = 1, kc =

knc = 1, cc + cnc = 1. The legend and the colors represent different ratios of concentrations of the cognate and the

non-cognate ligands
cc
cnc

� �
. We plot averages over 30,000 randomly generated binding/unbinding sequences for

each combination of the rates. Each sequence itself consists of n = 30,000 binding events, simulated using the

Gillespie algorithm. Standard errors are too small to show.

https://doi.org/10.1371/journal.pcbi.1005490.g002
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where nl is the number of long events, and the superscript “a” stands for the approximate solu-

tion. If further T is long enough so that there are many short events, and a single binding dura-

tion hardly affects k�c , then the sum in Eq (9) can be approximated by the expectation value:

n
kccac þ knccanc

� � ¼
nl

kcca
c

þ ðn � nlÞ

Z Tc

0

rce� tbrcPðtbjca
c; c

a
ncÞdtb

Dðca
c; ca

nc; t
bÞ

; ð10Þ

where Pðtbjca
c; c

a
ncÞ is the probability of observing a binding event of duration τb for the given

binding rates,

Pðtbjca
c; c

a
ncÞ ¼

Dðca
c; c

a
nc; t

bÞ

kccac þ knccanc

� � : ð11Þ

Plugging Eq (11) into Eq (10), we obtain

1

kccac þ knccanc

� � ¼
nl

nkcca
c

þ 1 �
nl

n

� � 1 � e� rcTc

kccac þ knccanc

� � : ð12Þ

Finally, since nl� n, using Eq (5), we get (see Methods for a detailed derivation):

ca
c ¼

1

kc

nl

Tu
erc Tc

; ð13Þ

ca
nc ¼

1

knc

n
Tu
�

nl

Tu
erc Tc

� �
: ð14Þ

In other words, the approximate cognate ligand concentration is proportional to the number

of long events.

We can estimate the bias and the variance of ca
c and ca

nc in a limiting case. If rc and rnc are

not very different from each other, then one needs to focus on extremely long events in order

to identify cognate bindings. This is only possible if Tc is much larger than the inverse of

both of the unbinding rates, Tc � fr� 1
nc ; r

� 1
c g. Large Tc ensures that the long binding events

get no or minimal contribution from non-cognate ligands. However, since the time for

which the receptor stays bound is exponentially distributed, under this condition, the

number of “long” events (such that τb> Tc) would be very small, nl� n. Thus most of the

variance of ca
c and ca

nc in Eqs (13) and (14) comes from the variability of nl, but not Tu (since

Tu / n). Thus we write hca
ci �

hnli

hTui
ercT

c

kc
. Further, the individual unbound periods are indepen-

dent, so that hTui = nhτui = n/(kccc + knccnc) (notice the use of c rather than ca here). Further,

hnli ¼ n Pðtb > TcÞ ¼ n
ðkcccþknccncÞ

kccce� rcTc
þ knccnce� rncTc

ð Þ. Combining these expressions, we

get

hca
ci � cc þ

knccnc

kc
e� ðrnc � rcÞTc

: ð15Þ

Thus for large Tc, the bias of the approximate estimator,
knccnc
kc

e� ðrnc � rcÞTc
, grows with the rela-

tive number of noncognate long bindings events. In turn, the latter is proportional to cnc, but

decreases exponentially with Tc.

Within the same approximation, the variance of the estimator is given by

s2ðca
cÞ �

s2ðnlÞ

hTui2
e2rcT

c

k2
c

. However, long binding events are rare, independent of each other, and

Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor
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hence obey the Poisson statistics. Thus σ2(nl) = hnli, so that

s2ðca
cÞ � hc

a
ci

cc þ knccnc=kcð Þ

n
ercTc

: ð16Þ

The variance obviously grows with Tc.

Knowing that the bias and the variance of the approximation change in opposite directions

with Tc, we can find the optimal cutoff (Tc
�
) by minimizing the overall error. We define such

error L as the sum of the variance and the squared bias of the estimator, i. e.,

Lc ¼ s2ðca
cÞ þ cc � hc

a
ci

� �2
h i

; ð17Þ

Lnc ¼ s2ðca
ncÞ þ cnc � hc

a
nci

� �2
h i

: ð18Þ

The optimal cutoff is obtained by minimizing Lc or, in other words, solving the bias-variance

tradeoff:

Tc
�
¼ arg min

Tc
Lc: ð19Þ

Near the optimal cutoff, the bias is small, and we use cc instead of ca
c for the variance of the esti-

mator, Eq (16). Then solving Eq (19) gives:

Tc
�
¼

1

ð2rnc � rcÞ
log 2Tu rnc

rc
� 1

� �
k2

ncc
2
nc

kccc

� �

: ð20Þ

Plugging this into Eqs (15) and (16), we get the minimal error of the estimator, which we omit

here for brevity.

The optimal cutoff is proportional to 1/rnc if rnc� rc, and it grows with rc, allowing for bet-

ter disambiguation of cognate and noncognate events. Crucially, the off-rates are dictated by

the ligand identities. In contrast, the concentrations, cc and cnc, are what the receptors mea-

sures. Therefore, it is encouraging that Tc
�

depends only logarithmically on the concentrations

(and also on the duration of the measurement, Tu). Thus even if Tc is fixed as Tc
�

at some fixed

values of cc, cnc, it remains near-optimal for a broad range of external concentrations. To illus-

trate this, we use Tc ¼ Tc
�
ðkccc ¼ knccnc ¼ 1=2Þ � T0 and analyze the quality of the

Fig 3. Comparison of errors of the approximate and the ML solutions. We plot log10ðLcðT0Þ=s2
c�c
Þ (left),log10ðLncðT0Þ=s2

c�nc
Þ (center)

and the covariance of the approximate estimates (right) as functions of on- and off-rates. Simulations are performed in the same

way as in Fig 2. Legends and color scheme are the same as in Fig 2.

https://doi.org/10.1371/journal.pcbi.1005490.g003
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approximation in Fig 3, where we plot the ratio LcðT0Þ=s2
cc

and LncðT0Þ=s2
cnc

. Notice that s2
cc

and s2
cnc

, the variances of the exact ML estimators, are proportional to Ec and Enc, respectively.

Since ML estimators are unbiased, the ratios LcðT0Þ=s2
cc

and LncðT0Þ=s2
cnc

compare the errors of

the approximate solution to the errors Ec and Enc. Since these ratios approach 1 when rc/rnc!

0 (specifically, for rc/rnc = 0.1, LcðT0Þ=s2
kc
� 1:47, and LncðT0Þ=s2

knc
� 1:21), we conclude that

the approximation is accurate even at fixed Tc = T0 when its assumptions are satisfied. This

happens even though Tc
�

depends on cc and cnc, but apparently the approximate estimates are

as good as the ML estimates even at fixed Tc = T0 and work well for a large range of concentra-

tion ratios. This is important, as the molecular mechanisms that sets the delays in the cell does

not need to be modified for different ligand concentrations.

In contrast, when the ligands are nearly indistinguishable (rc/rnc * 1), both LcðT0Þ=s2
kc
�

100 and LncðT0Þ=s2
knc
� 100, but here one would not use one receptor to estimate two concen-

trations since even the ML solution is bad (cf. Fig 2). Note also that both Lc and Lnc are smaller

for rc * rnc if cc� cnc. This is because our main assumption (that almost all long events are

cognate) holds better when cognate ligands dominate. Finally, the correlation coefficient

between the approximate estimates, ρa (right panel) reaches -1 earlier than in Fig 2. This is a

direct consequence of Eqs (13) and (14).

Kinetic proofreading for approximate estimation

The approximate solution can be computed by cells using the well-known kinetic proofreading

(KPR) mechanism [14, 15, 17, 18]. In the simplest model of KPR [19], intermediate states

between an inactive and an active state of a receptor delay the activation. Thus bound ligands

can dissociate before the receptor activates, at which point it quickly reverts to the inactive

state. Since rc < rnc, cognate ligands dominate among bindings that persist to activation. The

resulting increase in specificity in various KPR schemes has led to their exploration in the con-

text of detection of rare ligands [11, 12, 16, 18]. Instead, here we analyze their ability to measure
concentrations of both ligands simultaneously. We first consider the case where both the cog-

nate and the non-cognate ligand concentration are comparable, cc * cnc and the dissociation

rates are distinct, rc� rnc. In the following sections, we explore another case, cc� cnc and rc ≲
rnc, a situation common in immunology.

Consider a biochemical network in Fig 4(a): the receptor, R, activates two messenger mole-

cules, A and B. The former is activated with the rate kA only if the receptor stays bound for lon-

ger than a certain Tc (with the delay achieved using the KPR intermediate states). The latter is

activated with the rate kB whenever the receptor is bound. The molecules deactivate with the

rates rA and rB, respectively, and all activations/deactivations are first-order reactions. Then

the mean concentrations of the messenger molecules are (see Methods):

�A ¼
kccc=rce� rcTc

þ knccnc=rnce� rncTc

1þ kccc=rc þ knccnc=rnc

kA

rA
; ð21Þ

�B ¼
kccc=rc þ knccnc=rnc

1þ kccc=rc þ knccnc=rnc

kB

rB
: ð22Þ

Assuming again that most bindings longer than Tc are cognate (Tc� 1/rnc), Eq (21), can be

written as:

�A ¼
kccc=rce� rcTc

1þ kccc=rc þ knccnc=rnc

kA

rA
: ð23Þ
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Further, it is easy to see that Eq (22) can be rewritten as:

kccc

rc
þ

knccnc

rnc
¼

�B
kB=rB �

�B
: ð24Þ

Now solving Eqs (23) and (24) for the on-rates, we get

cc ¼
�AercTcrcrA

kckA
1þ

�B
kB=rB �

�B

� �

; ð25Þ

cnc ¼
rnc

knc

�B
kB=rB �

�B
�

�AercTcrA

kA
1þ

�B
kB=rB �

�B

� �� �

: ð26Þ

The corrections of the form �B=ðkB=rB �
�BÞ appear because bindings only happen to unbound

receptors, as emphasized in Ref. [5]. However, these nonlinear relations are still hard to imple-

ment with simple biochemical components. We solve this by further assuming

� ¼ �B=ðkB=rBÞ � 1, which is true if the receptor is mostly unbound, which happens at low

Fig 4. Kinetic proofreading for estimating multiple concentrations. Two different kinetic schemes that allow

using kinetic proofreading for estimation of chemical concentrations. (A) Molecules A and B are produced when

the receptor R is bound, but A is produced only for long bindings, implemented through the KPR delay. Another

chemical species C subtracts A from B, so that A approximates cc and C approximates cnc. This kinetic scheme

would simultaneously estimate relatively similar concentrations of two ligands with substantially distinct off-rates

rc,nc. (B) Molecules A and I (inhibitor of A) are produced when the receptor is bound (possibly after a KPR delay).

Production of A is delayed even further, as it results at the end of a sequence of intermediate products Pi. A and I

bind to each other nearly irreversibly, sequestering and deactivating each other. The first delay at the receptor

filters very short, nonspecific bindings. Because of the additional KPR delay on the A branch, A and I branches

are then different linear combinations of strongly (cognate) and medium (non-cognate) binding ligands. If various

kinetic parameters are tuned (see text), then even for very similar rc and rnc, and even for a rare cognate ligand,

the sequestration can remove the non-cognate contribution from the A branch.

https://doi.org/10.1371/journal.pcbi.1005490.g004
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concentrations. This gives

cKPR
c �

�AercTcrcrA

kckA
; ð27Þ

cKPR
nc �

rnc

knc

rB
�B

kB
�

�AercTcrA

kA

� �

: ð28Þ

These equations are analogous to Eqs (13) and (14). They are easy to realize biochemically (cf.

Fig 4(a)): cc is related to the concentration of the proofread species A by a rescaling, and cnc

comes from subtracting rescaled versions of B and A from each other. The subtraction can be

done by the third species C, activated by B and suppressed by A. Since �� 1, then �A and �B are

small, and many such activation-suppression schemes are linearized as the subtraction [8].

Note that such incoherent feedforward loops (the receptor activates A and B, which then affect

C incoherently by suppressing and activating it, respectively) are ubiquitous in cellular net-

works downstream of receptors [9].

The bias of ca
c and ca

nc due to long, but noncognate binding events, Eq (15), carries over to

cKPR
c and cKPR

nc . However, there is an additional contribution since the time to traverse the inter-

mediate states in KPR schemes with multiple intermediate steps is random. Thus Tc has some

variance s2
Tc [19, 20]. This variability changes the rate of occurrence of long biding events, but

they are still rare, nearly independent, and Poisson-distributed. Denoting by h�i the averaging

at a fixed Tc, and by �� the averaging over Tc, we get

hnli ¼ n Pðtb > TcÞ ¼
n

ðkccc þ knccncÞ
kccce� rcTc

þ knccnce� rncTc
ð Þ �

n kccc e
� rc �T cþ1

2
r2c s2

Tc

kccc þ knccncð Þ
; ð29Þ

where we have used the approximation �Tc � 1=rnc in the last step.

Thus s2
Tc effectively renormalizes the cutoff to �T c � 1

2
rcs

2
Tc . Replacing Tc in Eqs (27) and

(28) by its renormalized value, which is an easy change in the scaling factors, removes this

additional bias due to the random Tc in the KPR scheme.

Since long bindings are rare, the variance of the KPR estimator is dominated again generally

by �A, but not �B. The intrinsic stochasticity in the production of molecules of A contributes to

the variance. However, this contribution can be made arbitrarily small by increasing kA, and we

neglect it here. A larger contribution comes from the random number of long bound intervals

and a random duration of each of them. To calculate this, in the limit of rare long binding

events, we use well-known results in the theory of noise propagation in chemical networks [21]

s2
A

�A2
�

1þ kccc=rc þ knccnc=rncð ÞercTc � 1
2
r2c s2

Tc

kcccð1=rc þ 1=rAÞ
¼

ercTc� 1
2
r2c s2

Tc

kcccð1=rc þ 1=rAÞ
þ Oð�Þ: ð30Þ

This is a direct analog of Eq (16).

In principle, one can measure more than two concentrations similarly, as long as all species

have distinct off-rates. For example, to estimate three concentrations, one needs an additional

branch downstream of the receptor that proofreads for an intermediate time. Then the

branches with the strongest, intermediate, and no proofreading would measure approximately

the highest affinity ligand, a combination of the two higher affinity ligands, and all three

ligands, respectively. Appropriate activation and inhibition of downstream targets will then

allow identifying individual concentrations from these combined readouts. The error (the var-

iance of the ML estimator, and both the bias and the variance for the approximate and the

KPR estimators) would grow with an increasing number of ligand species, largely because a

larger range of off-rates would be required to disambiguate more ligands. However, this would
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still represent a dramatic increase in the information gained by a receptor that tracks its precise

temporal dynamics, rather than just the average binding state.

Using precise timing to disambiguate two similar ligands

Here we depart slightly from our scenario and show how a KPR-based scheme relying on

the entire temporal sequence of activation / deactivation events can estimate the concentra-

tion of a single cognate ligand even if the two ligands have very similar off-rates rc ≲ rnc, a

situation common in immunology. In such a situation, the KPR branch gets activated not

just by the cognate ligand, but also by the non-cognate ligand (though at a smaller rate).

When the goal is the accurate estimation of the cognate ligand only, then the contribution

to the KPR branch by the non-cognate ligand needs to be removed. To construct a signal

transduction network able to do this, we abstract from the existing detailed model of Fc�RI

immunological receptor [9], a well studied eukaryotic signal transduction system mediating

many allergic reactions [22]. Here the main signaling branch gets activated through the

Lyn-Syk kinase pathway following kinetic proofreading after a ligand binds to the receptor

[9]. However, receptor binding excites an additional branch early on, after only one step in

kinetic proofreading (a single phosphorylation on the β chain of the receptor). This branch

activates Inpp5d (SHIP) phosphotase, which later dephosphorylates Phosphatidylinositol

3-phosphate (PIP3), a key downstream output of the main signaling branch, and sequesters

the dephosphorylated product PtdIns(3, 4)P2 [9]. The part of this signaling motif relevant

for our analysis is summarized in a deliberately simplified signaling diagram in Fig 4(b),

where A stands for PtdIns(3, 4, 5)P3 (PIP3), I stands for PtdIns(3, 4)P2, and I is produced by

SHIP. Further, R is the Fc�RI receptor bound to an antibody, and cognate and noncognate

molecules are the antigens specific/nonspecific to the bound antibody.

In this network, we consider the main activator branch (A), activated after the usual KPR

delay, and hence sensitive to long binding events only (which now have contributions both

from kc and knc). The secondary inhibiting branch (I) is activated by many more binding

events, though the shortest, nonspecific background binding events may be removed from

both branches by additional proofreading steps (an early cross-phosphorylation event in the

Fc�RI system). The messengers in both branches later form a complex AI, and only A not in

the complex activates further downstream signaling. If the production rates of A and I are

appropriately matched (which can be done if the off-rates are known a priori, which they

should be for such a molecular signal detection system), this sequestration of A by I can effec-

tively remove the contribution to the A branch coming from the non-cognate ligand. The

kinetic diagram can be described with the following rate equations (where, for simplicity, we

neglect the first proofreading common to both branches):

dA
dt
¼ bA � rAA � rAIAI; ð31Þ

dI
dt
¼ bI � rII � rAIAI; ð32Þ

where rA/I are the degradation rates of the messengers A and I, rAI is the sequestration rate,

and βA/I are the messenger production rates, derived as above:

bA ¼
kccc=rce� rcTc

þ knccnc=rnce� rncTc

1þ kccc=rc þ knccnc=rnc
kA; ð33Þ
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bI ¼
kccc=rc þ knccnc=rnc

1þ kccc=rc þ knccnc=rnc
kI: ð34Þ

Here kA/I are the rates of production of A and I, respectively, when the receptor has been

bound for a sufficiently long time to produce either.

We assume for simplicity rA = rI. Further, we choose rA = rI� rAIA * rAII, so that seques-

tration rather than degradation is primarily responsible for the disappearance of the messen-

gers. Then the steady state solution of the rate equations (Eqs 31 and 32) is [23] (see Methods):

�Ass ¼
bA � bIð Þ

2rI
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bA � bI

2rI

� �2

þ
bA

rAI

s

; ð35Þ

�I ss ¼
bI � bAð Þ

2rI
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bI � bA

2rI

� �2

þ
bI

rAI

s

: ð36Þ

The numerators of both βA and βI are linear combinations of cc and cnc. If the parameters of

the biochemical networks are such that the production rate of the proofread branch is

kA ¼ kIerncTc
, then ðbA � bIÞ ¼

kccc=rcðeðrnc � rcÞTc
� 1Þ

ð1þkccc=rcþknccnc=rncÞ
kI > 0, which has a cnc-independent numera-

tor. Thus the contribution of non-cognate ligand to the activator branch is largely sequestered.

Moreover, for large rAI, we have �Ass / ð1þ kccc=rc þ knccnc=rncÞ
� 1

, so that the activation of the

A branch decreases as cnc increases. In contrast, if cc = 0 (no cognate ligands present), then

�Ass ¼
�I ss ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kI
rAI

knccnc
knccncþrnc

q
, which grows with cnc. This behavior is reminiscent of the agonist-

antagonist picture in Fc�RI receptor activation [24]: a weak ligand by itself can activate the cel-

lular response, but it inhibits (antagonizes) activation of the response by a stronger agonist if

both are present.

Discussion

The realization of Refs. [5, 13, 12] and others that the detailed temporal sequence of binding

and unbinding events carries more information about the ligand concentration than the mean

receptor occupancy is a conceptual breakthrough. It parallels the realization in the computa-

tional neuroscience community that precise timing of spikes carries more information about

the stimulus than the mean neural firing rate [25–30], and it has a potential to be equally

impactful. This extra information when measuring one ligand concentration with one receptor

[5, 12] amounted to increasing the sensing accuracy by a constant prefactor, or, equivalently,

getting only a finite number of additional bits from even a very long measurement [31]. In

contrast, here we show that two concentrations can be measured with one receptor with the

variance that decreases inversely proportionally to the number of observations, n, Eq (16), or

to the integration time, 1/rB, Eq (30), so that the accuracy is only an (often small) prefactor

lower than would be possible with one receptor per ligand species. Asymptotically, this doubles

the information obtained by the receptor [31].

Crucially, such improvement would not be possible without the cross-talk, or binding

among noncognate ligands and receptors. Normally, the cross-talk is considered a nuisance

that must be suppressed [32, 33]. Instead, we argue that cross-talk can be beneficial by recruit-

ing more receptor types to measure the concentration of the same ligand. In particular, this

allows having fewer receptor than ligand species, potentially illuminating how cells function

reliably in chemically complex environments with few receptor types. Further, the cross-talk

can increase the dynamic range of the entire system: a ligand may saturate its cognate receptor,
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preventing accurate measurement of its (high) concentration, but it may be in the sensitive

range of non-cognate receptors at the same time. Finally, the increased bandwidth may lead to

improvements in sensing a time-dependent ligand concentration [11, 13]. In forthcoming

publications, we plan to explore such many-to-many sensory schemes, extending ideas of

Ref. [34] to tracking temporal sequences of activation of the receptor and to temporally varying

environments.

While the exact maximum likelihood inference of multiple concentrations from a temporal

binding-unbinding sequence is rather complex, we showed that when the cognate and the

non-cognate off-rates are substantially different, there is a simpler, approximate, but accurate

inference procedure for joint measurements of cognate and noncognate ligands. And even if

the off-rates are close, one can still measure the cognate ligand concentration reliably. Cru-

cially, this inference can be performed by biochemical motifs readily available to the cell.

Namely, one needs two branches of activation downstream of the receptor, with at least one of

them having a kinetic proofreading (KPR) time delay. Then the individual ligand concentra-

tions can be obtained by mutual inhibition between the two branches, or by incoherent feed-

forward loops. We emphasize again that this allows estimation of multiple concentrations from

activity of a single receptor, in contrast to a better estimation of just one concentration [12].

Our simple models only illustrate a wide class of models that can use the temporal structure

of the receptor binding sequence to measure more that one ligand concentrations for various

ligand combinations, including similar and dissimilar ligands. Additional branches from dif-

ferent points in the proofreading cascade provide additional information about the binding

affinities of the mixture of ligands present in the environment, and then algebraic operations

on these readouts can be performed by a large diversity of feedforward and feedback loops,

competitions for the substrate and the enzyme, and so on. For example, in our simple model,

the action of the antagonist is due to the competition for available receptors, while experiments

suggest competition for a critical initiating kinase [24], which would require a straightforward

modification of the model. Similarly, antagonists are usually “medium” affinity ligands, while

very weak ligands do not antagonize receptors. As illustrated in Fig 4(b), this can be achieved

by having an additional KPR time delay common to both A and I branches, which occurs in

practice [9].

The kinetic diagram for the Fc�RI receptor is not unique, and similar (though not equiva-

lent) structures exist for other immune cells and receptors as well [9]. Such common structural

features result in a similar phenomenology of activation profiles, which are different for pure

ligands and ligand mixtures, and depend nontrivially on the details of the binding affinities

and concentrations of the ligands in the mixture [10, 16, 35–38]. Interestingly, on longer time

scales, a potentially related phenomenon in innate immune response is that of endotoxin toler-

ance (desensitization to commonly present ligands) [39], which also affects ligands of different

affinity differently, and in this case also depends on the history of exposure to other ligands

[40]. It is mediated by SHIP, a crucial player in our analysis of Fc�RI signaling [41], whose

activity may be interpreted as setting the relative gain on the A and I branches of Fig 4(b), thus

resulting in a more accurate signal estimation. In other words, one interpretation of the

known results is that, as various feedback loops increase the activity of SHIP in response to fre-

quent activation of signaling downstream of the receptor, the amount of I increases, thus

sequestering more A, lowering its steady-state activity, and inducing tolerance. An important

contribution of the understanding developed here is that one can try to interpret these various

kinetic diagrams and their phenomenological consequences as implementing estimation of

concentrations of potentially many ligands (rather detection of a single one [11, 13, 16]), and

maybe even doing it in a (nearly) Maximum Likelihood optimal fashion, under various

assumptions about the number of distinct ligands, their relative abundance, and the (dis)
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similarity of the off-rates. Exploring feasibility of such an interpretation is an additional inter-

esting venue for future research.

In summary, monitoring precise temporal sequences of receptor activation/deactivation

opens up new and exciting possibilities for environment sensing by cells.

Methods

Here we provide mathematical derivations of some of the steps ommitted in the Results.

Derivation of maximum likelihood equations

We start with:

P � Pðftb
i ; tu

i gjcc; cncÞ ¼
1

Z

Yn

i¼1

e� tu
i ðkcccþknccncÞ kccc rc e

� tb
i rc þ knccnc rnc e

� tb
i rnc

� �h i
: ð37Þ

The log-likelihood of kc,nc is the logarithm of P:

log ðPÞ ¼ � logZ �
Xn

i¼1

tu
i ðkccc þ knccncÞ þ log kccc rc e

� tb
i rc þ knccnc rnc e

� tb
i rnc

� �h i
: ð38Þ

Taking the derivatives of the log-likelihood w. r. t. cc and cnc and setting them to zero gives the

Maximum Likelihood (ML) equations for the concentrations. These are:

@ log ðPÞ
@cc

¼ �
Xn

i¼1

tu
i kc þ

Xn

i¼1

kcrce� tb
i rc

Dðc�c ; c�nc; t
b
i Þ
¼ 0; ð39Þ

@ log ðPÞ
@cnc

¼ �
Xn

i¼1

tu
i knc þ

Xn

i¼1

kncrnce� tb
i rnc

Dðc�c ; c�nc; t
b
i Þ
¼ 0: ð40Þ

Here, Dðc�c ; c
�
nc; t

b
i Þ ¼ ðkcc�c rc e� tb

i rc þ kncc�nc rnc e� tb
i rncÞ, with � denoting the ML solution.

Denoting by Tu ¼
Pn

i¼1
tu
i , the total time for which the receptor is unbound, these equa-

tions can be rewritten as

� kcT
u þ

Xn

i¼1

kcrce� tb
i rc

Dðk�c ; k�nc; t
b
i Þ
¼ 0; ð41Þ

� kncT
u þ

Xn

i¼1

kncrnce� tb
i rnc

Dðk�c ; k�nc; t
b
i Þ
¼ 0: ð42Þ

Multiplying Eqs (41) and (42) by c�c and c�nc, respectively, and adding them gives

kcc
�

c þ kncc
�

nc ¼
n
Tu
: ð43Þ

Comparison of simulations with analytical results for single concentration

estimation

Here we compare the results obtained from the numerical simulations to the analytical expres-

sions derived in Ref. [12] for detection of the concentration of the cognate ligand in a back-

ground of spurious ligands. The variance of the concentration estimation obtained from the
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simulations matches quite well with integral expression, Eq. (7) in Ref. [12], Fig 5a. Note that

this expression is inverse of the (1, 1) term of the Hessian matrix, Eq 7. The analytical results

obtained for the low concentration of the cognate ligand compared to a non cognate ligand (cc

� cnc) also match the simulations, Fig 5b.

Approximate solution

Derivation of Eqs 13 and 14. Defining long events as tb
i � Tc and using Eq (43), we

rewrite Eq (41) as

kcn
kcc�c þ kncc�nc

¼
X

tb
i �T

c

þ
X

tb
i <Tc

0

@

1

A kcrce� tb
i rc

kcc�c rc e� tb
i rc þ kncc�nc rnc e� tb

i rnc

� � : ð44Þ

Assuming that all long events are cognate, Tc� 1/rnc, we can ignore the kncc�nc rnc e� tb
i rnc in the

denominator in the first sum. This gives

kcn
kccac þ knccanc

� � ¼
nl

ca
c

þ
X

tb
i <Tc

kcrce� tb
i rc

Dðca
c; ca

nc; t
b
i Þ
;

where nl is the number of long events, and the superscript “a” stands for the approximate solu-

tion. If further T is long enough so that there are many short events, and a single binding dura-

tion hardly affects k�c , then the sum in Eq (9) can be approximated by the expectation value:

n
kccac þ knccanc

� � ¼
nl

kcca
c

þ ðn � nlÞ

Z Tc

0

rce� tbrcPðtbjca
c; c

a
ncÞdtb

Dðca
c; ca

nc; t
bÞ

; ð45Þ

where Pðtbjca
c; c

a
ncÞ is the probability of observing a binding event of duration τb for the given

binding rates,

Pðtbjca
c; c

a
ncÞ ¼

Dðca
c; c

a
nc; t

bÞ

kccac þ knccanc

� � : ð46Þ

Plugging Eq (11) into Eq (10), we obtain

n
kccac þ knccanc

� � ¼
nl

kcca
c

þ ðn � nlÞ

Z Tc

0

rce� tbrcdtb

kccac þ knccanc

� � ; ð47Þ

which gives:

1

kccac þ knccanc

� � ¼
nl

nkcca
c

þ 1 �
nl

n

� � 1 � e� rcTc

kccac þ knccanc

� � : ð48Þ

Assuming nl� n, we get:

1

kccac þ knccanc

� � ¼
nl

nkcca
c

þ
1

kccac þ knccanc

� � �
e� rcTc

kccac þ knccanc

� � : ð49Þ

This gives,

ca
c ¼

1

kc

nl

Tu
erc Tc

: ð50Þ
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Finally, using Eq 43 we get

ca
nc ¼

1

knc

n
Tu
�

nl

Tu
erc Tc

� �
: ð51Þ

Error in approximate solution at Tc
�
. Plugging Eq 20 in Eq 15 we get,

hca
ci � cc þ

knccnc

kc
e
�
ðrnc � rcÞ
ð2rnc � rcÞ

log 2Tu rnc
rc
� 1ð Þ

k2
ncc

2
nc

kccc

h i

¼ cc þ
knccnc

kc
2Tu rnc

rc
� 1

� �
k2

ncc
2
nc

kccc

� �� ðrnc � rcÞ
ð2rnc � rcÞ

ð52Þ

In the limit rnc >> rc, the second term goes as
ffiffiffifficc
p

.

Now using this in Eq 16, we get:

s2ðca
cÞ � hc

a
ci

cc þ knccnc=kcð Þ

n
e

rc

ð2rnc � rcÞ
log 2Tu rnc

rc
� 1

� �
k2

ncc
2
nc

kccc

� �

¼ cc þ
knccnc

kc
2Tu rnc

rc
� 1

� �
k2

ncc
2
nc

kccc

� �� ðrnc � rcÞ
ð2rnc � rcÞ

 !
cc þ knccnc=kcð Þ

n
2Tu rnc

rc
� 1

� �
k2

ncc
2
nc

kccc

� � rc
ð2rnc � rcÞ

:

ð53Þ

Kinetic proofreading for approximate estimation: Derivation of Eqs (21)

and (22)

In the biochemical network in Fig 4(a) of the main text, the receptor R activates two messenger

molecules, A and B. The former is activated with the rate kA only if the receptor stays bound

Fig 5. Comparison of simulations with analytical results for single concentration estimation. (a) The

variance of the estimated concentration in simulations (markers) matches quite well with the integral

expression, Eq. (7) in Ref. [12]. (b) Comparison of simulations to analytical expression derived for low

concentrations in Eq. (9) of Ref. [12].

https://doi.org/10.1371/journal.pcbi.1005490.g005

Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005490 April 14, 2017 16 / 20

https://doi.org/10.1371/journal.pcbi.1005490.g005
https://doi.org/10.1371/journal.pcbi.1005490


for longer than a certain Tc (with the delay achieved using the KPR intermediate states). The

latter is activated with the rate kB whenever the receptor is bound. The molecules deactivate

with the rates rA and rB, respectively, and all activations/deactivations are first-order reactions.

The rate equation for the two molecules can be written as:

dA
dt
¼ kAYðtb > TcÞ � rAA; ð54Þ

dB
dt
¼ kBYðtb > 0Þ � rBB: ð55Þ

The Θ functions represent the fact that A is produced only when the receptor has been bound

for longer than the cutoff time Tc, and B is produced only when the receptor is bound.

The steady state value of �A can be obtained by equating the average deactivation rate rA
�A to

kA times the fraction of time the receptor occupancy was larger than the cutoff, Tc, i.e.,

rA
�A ¼ kA

htb > Tci

htui þ htbi
: ð56Þ

Similarly, �B can be obtained as:

rB
�B ¼ kB

htbi

htui þ htbi
: ð57Þ

Therefore, the mean concentrations of the messenger molecules are:

�A ¼
kccc=rce� rcTc

þ knccnc=rnce� rncTc

1þ kccc=rc þ knccnc=rnc

kA

rA
; ð58Þ

�B ¼
kccc=rc þ knccnc=rnc

1þ kccc=rc þ knccnc=rnc

kB

rB
: ð59Þ

Using precise timing to disambiguate two close ligands: Derivation of

Eqs (35) and (36)

The rate equations are:

dA
dt
¼ bA � rAA � rAIAI; ð60Þ

dI
dt
¼ bI � rII � rAIAI: ð61Þ

Equating the r. h. s. to zero gives the steady state conditions:

bA � rA
�Ass � rAI

�Ass
�I ss ¼ 0; ð62Þ

bI � rI
�I ss � rAI

�Ass
�I ss ¼ 0: ð63Þ
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The latter of these can be rewritten as:

�I ss ¼
bI

rI þ rAI
�Ass
: ð64Þ

Plugging this in Eq (62), we get

bA � rA
�Ass �

rAI
�AssbI

rI þ rAI
�Ass
¼ 0; ð65Þ

which can be simplified to:

�A2

ss þ
rI

rAI
þ

bI � bAð Þ

rA

� �

�Ass �
bArI

rAIrA
¼ 0: ð66Þ

This quadratic equation has the solution:

�Ass ¼ �
rI

2rAI
þ
ðbI � bAÞ

2rA

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rI

2rAI
þ
ðbI � bAÞ

2rA

� �2

þ
bArI

rAIrA
:

s

ð67Þ

Now sssuming rA = rI and rA = rI� rAIA * rAII, we get:

�Ass ¼
ðbA � bIÞ

2rI
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bI � bA

2rA

� �2

þ
bA

rAI

s

ð68Þ

One can similarly can get the equation for �I ss as well.
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