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Abstract

For accurate respiration gated radiation therapy, compensation for the beam latency of the

beam control system is necessary. Therefore, we evaluate deep learning models for predict-

ing patient respiration signals and investigate their clinical feasibility. Herein, long short-term

memory (LSTM), bidirectional LSTM (Bi-LSTM), and the Transformer are evaluated.

Among the 540 respiration signals, 60 signals are used as test data. Each of the remaining

480 signals was spilt into training and validation data in a 7:3 ratio. A total of 1000 ms of the

signal sequence (Ts) is entered to the models, and the signal at 500 ms afterward (Pt) is pre-

dicted (standard training condition). The accuracy measures are: (1) root mean square error

(RMSE) and Pearson correlation coefficient (CC), (2) accuracy dependency on Ts and Pt,

(3) respiratory pattern dependency, and (4) error for 30% and 70% of the respiration gating

for a 5 mm tumor motion for latencies of 300, 500, and 700 ms. Under standard conditions,

the Transformer model exhibits the highest accuracy with an RMSE and CC of 0.1554 and

0.9768, respectively. An increase in Ts improves accuracy, whereas an increase in Pt

decreases accuracy. An evaluation of the regularity of the respiratory signals reveals that

the lowest predictive accuracy is achieved with irregular amplitude patterns. For 30% and

70% of the phases, the average error of the three models is <1.4 mm for a latency of 500 ms

and >2.0 mm for a latency of 700 ms. The prediction accuracy of the Transformer is superior

to LSTM and Bi-LSTM. Thus, the three models have clinically applicable accuracies for a

latency <500 ms for 10 mm of regular tumor motion. The clinical acceptability of the deep

learning models depends on the inherent latency and the strategy for reducing the irregular-

ity of respiration.

1. Introduction

Radiation therapy can achieve high dose conformity with intensity-modulated radiation ther-

apy and particle therapy, which can deliver a prescription dose to the target volume while min-

imizing undesirable doses near critical organs [1, 2]. However, respiratory movements of the
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patient can result in the administration of undesired doses to the target volume and nearby

organs at risk (OARs) [3–5]. Several studies have shown that patient respiration causes organ

movements up to 40.0, 39.0, 23.0, and 10.0 mm for the liver, pancreas, kidney, and prostate,

respectively [6, 7].

To reduce the dose delivery uncertainty associated with patient respiration during radiation

treatment, various methods and technologies, such as deep inspiration breath-hold (DIBH),

chest compression, real-time tracking, and respiratory gating, have been introduced.

The DIBH and chest compression methods can reduce dose uncertainty by physically mini-

mizing the movement of the patient’s chest caused by respiration during both computed

tomography (CT) simulation and treatments [8–11]. However, for patients who find it difficult

to maintain a breath-hold or sustain a chest compression, DIBH or chest compression is not

clinically feasible [12, 13]. The real-time tracking method controls beam irradiation by follow-

ing the tumor position, detected from X-ray fluoroscopy images taken simultaneously during

the treatment. Respiratory phase or amplitude gating is a widely used four-dimensional radia-

tion therapy (4DRT) strategy. It synchronizes treatment beam irradiation with patient respira-

tion, represented by an external surrogate, and delivers a beam only at the planned respiration

phases (amplitudes). A respiratory-gated treatment plan is developed, as follows. First, the

beam delivery phases (amplitudes), such as 30–70% phases (amplitudes) of CT images, are

selected from 10 time-resolved phases (amplitudes) of four-dimensional (4D) CT images. Sec-

ond, the target and OARs are delineated in each of the selected phases (amplitudes) from the

CT images, and a dose distribution is computed by average intensity projection (AIP) or maxi-

mum intensity projection. Finally, the radiation beam is delivered when the patient’s respira-

tion reaches and is within the selected phases (amplitudes). Although the respiratory gating

technique may extend treatment time, it promises an improvement in treatment outcomes

and reduces the probability of complications [14, 15].

From a technical point of view, an important prerequisite of precise respiratory-gated radi-

ation therapy in the aforementioned methods is compensating for any system latency of the

beam control or modulation system. The system latency is the time delay between the

instructed and the actual beam on/off during respiratory-gated radiation therapy. Medical lin-

ear accelerators (linacs) have system latencies ranging from 300 ms to 800 ms; the Elekta

(Stockholm, Sweden) linacs have latencies of 300–800 ms, and the Varian (Crawley, United

Kingdom) linacs have latencies of 300–500 ms [16–18]. The system latency can cause position

errors to the target and OARs of up to 7.6 mm [19]. Various mathematical models, such as the

autoregressive moving average model (ARIMA) [20, 21], sinusoidal model [22, 23], and Kal-

man filter [24, 25], have been used to predict respiratory signals. Moreover, recent studies

based on machine and deep-learning models demonstrated that the prediction accuracy of

such models was superior to that of mathematical models in predicting time series data, and

that they resulted in a 150% accuracy improvement [26].

Among various deep-learning models, the recurrent neural network (RNN) is designed to

be suitable for time sequence data [27] and has been used with mathematical filters for respira-

tion data prediction [28]. However, the RNN exhibited a deficiency in vanishing or exploding

gradients problem [29, 30]. To resolve this deficiency, long short-term memory (LSTM) was

introduced with the gradient clipping method by a forget-gate [31]. LSTM is characterized by

a three-gate architecture that stores long-term memory and performs well on long time-series

data [32]. Lin et al. [33] applied LSTM to respiration data acquired by a real-time patient mon-

itoring (RPM) system and demonstrated good performance by optimizing the hyperpara-

meters of the model. A bidirectional long short-term memory network (Bi-LSTM), another

RNN variant, was developed to enhance prediction accuracy by using both directions of infor-

mation on time sequence data [34]. Wang et al. [35] reported the superior performance of a
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seven-layer Bi-LSTM over a mathematical model (autoregressive integrated moving average)

and an artificial neural network model (adaptive boosting and multi-layer perceptron neural

network) in predicting respiration with a 400 ms latency of the CyberKnife robotic radiosurgery

system (Accuray, Sunnyvale, CA. USA). However, comparing the performance of Bi-LSTM

with LSTM is somewhat controversial because a model based on Bi-LSTM achieves a superior

performance with stock market prediction data [36], whereas a model based on LSTM has bet-

ter accuracy in research on reservoir inflow forecasting [37]. Another deep-learning algorithm

that is suitable for time sequence data is the Transformer. The Transformer is based on an atten-

tion mechanism approach, but without recurrent layers [38]. It has the potential to achieve a

higher prediction accuracy for time-varying patient respiratory signals [39, 40].

These state-of-the-art deep learning algorithms can be used to realize accurate 4DRT tech-

nology. However, none of the studies thus far have evaluated these three models using the

same set of clinical data. Moreover, only statistical measures, such as the mean absolute error

and root mean square error (RMSE), have been provided as performance metrics in previous

studies, thereby limiting clear understanding of the relevant error associated with each model

in clinical practice.

Therefore, the performances of LSTM, Bi-LSTM, and the Transformer were evaluated for

clinical respiratory signals acquired from patients undergoing proton therapy. In addition, the

associated tumor targeting error in gated radiation therapy was measured for various machine

latency models, and its clinical applicability was evaluated.

2. Materials and methods

2.A. Patient respiratory signal data

The data used in this study consisted of 540 respiration signals obtained from 442 patients,

who received proton therapy for liver, lung, and breast cancer treatments. The patients took

CT simulation with guided free-breathing and were trained in advance by a medical physicist

to ensure regular respiratory signals could be obtained using an in-house developed respira-

tion guiding system. Respiration signals were recorded during CT simulation using a respira-

tion gating system (AZ-733VI, Anzai Medical Co. Ltd, Tokyo, Japan). The respiration gating

system continuously recorded the respiratory pattern by measuring the distance from the self-

emitting laser source to the body surface of the patient at 20 Hz [41]. The recorded time series

of the patient’s respiratory signal ranged from 84.35 to 272.50 s, with an average recording

time of 145.26 s. This was a retrospective study of patients who received proton therapy. The

patient’s respiratory data were recorded from January 01, 2020 to December 31, 2021. The

study protocol was approved by the Institutional Review Board of Samsung Medical Center

(IRB number 2019-10-159). All respiratory data were fully anonymized before they were

accessed.

In addition, the actual target motion in the 4DCT of the patients was analyzed for clinical

evaluation. In the anterior-posterior direction, the mean tumor motion was 6.53 mm and the

standard deviation was 3.70 mm. In the superior-inferior direction, the mean tumor motion

was 11.42 mm and the standard deviation was 8.28 mm. According to the recommendation of

the American Association of Physicists in Medicine (AAPM) task group 76a (TG-76a), the

maximum tumor motion caused by respiratory motion was limited to 5.0 mm (peak to peak)

for external-beam radiation therapy [42].

2.B. Data preparation

Of the total 540 respiration data, 480 respiration data were used as training and validation

data, and the remaining 60 respiration data were assigned to the test dataset. Each signal of the
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480 respiration data was divided into training and validation data for the deep learning models

in a 7:3 ratio (Fig 1).

The input of a deep-learning model predicting the respiratory signal was a training

sequence (Ts), and the output of the model was the prediction point (Pt) far away from the last

point in the Ts by the system latency. An example of input and output for the prediction

model is shown in Fig 1. In Fig 1, if t = t0 and the Ts is eight time-points, the sequence consist-

ing of eight points was used as an input and the point Pt was predicted by the network. When

t = t0 + tn, the start point of Ts moved forward by tn; furthermore, Pt moved forward by tn. In

the numerical experiments, the standard condition was set to Ts = 1000 ms and Pt = 500 ms.

In the case of preprocessing procedures, Z-score normalization was performed to match

the baseline of the patient’s respiration signal and to quickly converge the deep learning model

[43]. The Savitzky–Golay finite impulse response smoothing (S–G) filter can improve preci-

sion without distorting the signal trend [44]. The S–G filter was applied only to the output of

the training and test data in the postprocessing step while raw respiratory signals were entered

to network. AZ-733VI, a respiration measurement device, had no real scale value because res-

piration was measured using the phase gating method (there is no unit). Therefore, the quan-

tity can be interpreted as a normalized amplitude.

To analyze the effect of the regularity of the respiratory pattern on the prediction accuracy,

the respiration data were classified into four different groups: patterns with regular periods,

patterns with irregular periods (type 1), patterns with irregular amplitude (type 2), and pat-

terns with irregular periods and amplitudes (type 3). We defined a respiratory irregularity

value using the mean of the standard deviation (STD) in the peaks and the valleys (Eq 1) [45].

Irregularity value ¼
STDðpeaksÞ þ STDðvalleysÞ

2
: ð1Þ

The amplitude irregularity was computed using the mean value of the STDs of the ampli-

tudes at the peaks and valleys. For phase irregularity, the periods were computed from the

peak and valley times in the signal. The phase irregularity values were computed using the

Fig 1. Process of learning a respiratory signal prediction model using deep learning.

https://doi.org/10.1371/journal.pone.0275719.g001
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mean of the STDs of the peak-to-peak periods and valley-to-valley periods. After computing

both types of irregularity values for all signals, the 48 signals with high amplitude irregularity

values were assigned to the type 1 group, and 48 signals with high phase irregularity values

were include in the type 2 group. After summation of both types of irregularity values, the 48

signals with high summation values were assigned into the type 3, and 48 signals with low val-

ues were assigned to the regular type.

2.C. Deep learning models for respiratory signal prediction

This section described the three deep learning model characteristics, and the structure of each

model is presented in Fig 2.

2.C.1. LSTM

The LSTM structure is based on an RNN. LSTM is composed of a forget gate, input gate, and

output gate. The forget gate (ft) uses the previous LSTM output (ht−1) and the current input

(xt) to determine how much of the previous cell state (Ct−1) information is to be maintained

(Eq 2). The value of ft is between 0 and 1. If the value of the ft gate is 0, Ct−1 is not used; if it is 1,

all Ct−1 information is used in Eq 5.

The input gate decides whether to add new information to the current cell state (Ct) by

using ht−1 and xt (Eq 4). The input gate consists of two layers: a layer (it) that selects the values

to be updated using a σ (Eq 3) and a layer (~Ct) that creates a new candidate value vector using

the hyperbolic tangent function (tanh) (Eq 4).

To update the current cell state (Ct), each element-wise product of the vectors at ft and Ct−1

and it and ~Ct are calculated, and the two resulting values are added (Eq 5).

The output gate (Ot) determines the part of Ct to be updated using ht-1 and xt through σ (Eq

6). Output (ht) is calculated by taking Ct to tanh, mapping a value between –1 and 1, and

Fig 2. Network structures of the deep learning models used for respiration prediction. (a) Long-short term memory (LSTM): calculation using a forget gate

based on RNN, (b) Bidirectional-LSTM: calculations using LSTMs in the backward and forward directions, (c) Transformer: iteratively computes N encoders

and decoders.

https://doi.org/10.1371/journal.pone.0275719.g002
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determining Ot and the element-wise product of the vectors (Eq 7).

ft ¼ sðWf � ½ht� 1; xt� þ bf Þ; ð2Þ

it ¼ sðWc � ½ht� 1; xt� þ bcÞ; ð3Þ

~Ct ¼ tanhðWc � ½ht� 1; xt� þ bcÞ; ð4Þ

Ct ¼ ft � Ct� 1 þ it � ~Ct; ð5Þ

Ot ¼ sðWo � ½ht� 1; xt� þ boÞ; ð6Þ

ht ¼ Ot � tanhðCtÞ; ð7Þ

2.C.2. Bi-LSTM

Bi-LSTM has been widely used for natural language translation. Bi-LSTM is a variant of LSTM

that uses bidirectional information. It adds information in a direction opposite that of LSTM.

The Bi-LSTM output (yt) calculation multiplies and adds the h
!

t and ht
(

outputs of the forward

and backward LSTMs, respectively (Eq 8).

yt ¼W
h
!

y

h
!

t þWh
(
y
h
(

t þ by: ð8Þ

2.C.3. Transformer

The Transformer is a model that is implemented using the attention mechanism. To achieve

computational efficiency, the Transformer uses only multi-head attention mechanisms with-

out convolutional layers and reclusive structures in encoders and decoders. The details of the

Transformer are described in the original paper [38].

The Transformer encoders are composed of an input layer, four identical encoder layers,

and a position-encoding layer with cosine functions. The identical encoder layer has a multi-

head attention layer and a fully connected feed-forward network. The multi-head attention

layer is a core structure of the Transformer that can be described as mapping a query (Q), key

(K), and value (V) (Eq 9). Technically, these three entities were optimized during the training

procedures.

Attention Q;K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi
dk

p

 !

V; ð9Þ

where KT is the transpose of K, and
ffiffiffiffiffi
dk

p
is the dimension of Q and K. The role of the multi-

head attention layer was to allow the model to jointly obtain information from different repre-

sentation subspaces at different positions. The output of the multi-head attention was passed

into the fully connected feed-forward network, which consists of two linear transformations

with a rectified linear unit activation function. Subsequently, the output of the fully connected

feed-forward network was followed by layer normalization and a residual connection with a

decoder.

The decoder consists of an input layer, four identical decoder layers, and an output layer. In

the case of the decoder, a third sublayer was inserted into the two sub-layers in each identical

decoder layer. The third sublayer was a masked multi-head attention layer that could prevent

self-attention. Based on the original paper, we used look-ahead masking and one-position
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offset between the decoder input and target output in the decoder to ensure that the prediction

of a time-series data point depended only on previous data points. Finally, the output layer

mapped the output of the last decoder layer to the target time sequence.

2.D. Training of LSTM, Bi-LSTM, and the Transformer for respiratory

signal prediction

To train the LSTM, Bi-LSTM, and Transformer to predict a respiratory signal for respiratory-

gated radiation therapy, the hyperparameters of each model were determined as follows.

To compare the accuracies of all three models when they achieved their best performances,

the LSTM and Bi-LSTM models consisted of 15 hidden layers with a size of 3 nodes, respec-

tively [33]. The Transformer model consisted of eight multi-head layers for the attention

mechanism, six encoder layers, and six decoder layers [38]. The number of the hidden layers

and multi-head layers were empirically determined.

Adaptive moment estimation [45] was used for the three deep-learning models, with a

learning rate of 0.0001 and weight decay of 0.0002. The two beta parameters, which were

default parameters relevant to the running average of the gradient in the adaptive moment

optimizer, were set to β1 = 0.9 and β2 = 0.999. The batch size for the training was set to 300.

Model training was performed for 100 epochs, and the best validation performance model was

used for evaluation. The training procedure was performed using an NVIDIA GeForce 2080Ti

graphic processing unit on Pytorch 1.5.1. The best model was updated when the current vali-

dation loss was smaller than the previous validation loss obtained during the training

procedure.

2.F. Evaluation

To evaluate the performance of the models, the difference between the actual and predicted

respiratory signals was quantitatively assessed by computing the RMSE (Eq 10), and Pearson’s

correlation coefficient (CC, Eq 11).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1

ðŷi � yiÞ
2

n

s

; ð10Þ

where yi is the actual respiratory signal and ŷi is the predicted respiratory signal.

The CC was used to analyze the linear relationship between the two continuous variables.

The CC takes values in the interval [–1.0, 1.0]. If the value of CC is closer to 1.0, on an absolute

scale, the correlation between the ground truth and the predicted value is stronger.

CC ¼
P
ðyi � �yÞðŷi � �̂yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
ðyi � �yÞ2

P
ðŷi � �̂yÞ2

q ; ð11Þ

where yi is the actual respiratory signal; ŷi is the predicted respiratory signal; and �y and �̂y are

the average values of yi and ŷi, respectively. In addition, the statistical significance of the differ-

ences in the predictions achieved with the three models was analyzed. The P-values of the

RMSE and CC of each prediction model were computed using a one-way analysis of variance

(one-way AVOVA).

For the comparative study, the prediction accuracy was calculated on the i) standard condi-

tion of the Ts and Pt. In addition, we analyzed the ii) effect of the length of Ts and Pt on predic-

tion accuracy and iii) the effect of the regularity of the respiratory pattern prediction accuracy.

Finally, we analyzed the suitability of the three deep learning-based respiratory signal
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prediction models for respiration-gated radiation therapy to translate the statistical error into

clinical measures. For this purpose, the respiration signal was assumed as identical to the

tumor motion with an amplitude of 10 mm, and the model prediction error of 30% and 70%

of the respiration phases was computed in mm, thereby allowing for evaluation of the clinical

applicability of the models.

3. Results

3.A. Evaluation of the prediction accuracy

The prediction accuracy of the respiratory signal was calculated for LSTM, Bi-LSTM, and the

Transformer. The results were obtained under the standard conditions of Ts = 1000 ms and Pt

= 500 ms. Examples of the prediction results of LSTM, Bi-LSTM, and the Transformer are

shown in Fig 3. The averaged RMSE and CC of the validation and test sets for the three differ-

ent deep learning models are summarized in Table 1. In the test set for the LSTM, Bi-LSTM,

and the Transformer, the RMSEs were 0.1907, 0.1930, and 0.1554, and the CCs were 0.9689,

0.9661, and 0.9768, respectively. According to the data summarized in Table 1, the Trans-

former exhibited a relatively high performance in the two types of test sets compared with the

other respiratory prediction methods. Based on a one-way ANOVA, the P-values were 0.0001

and 0.0002 for the RMSE and CC for the validation set, and 0.0051 and 0.0324 for the RMSE

Fig 3. Plots of actual (solid line) and predicted respiratory signals (dotted line). (a) LSTM, (b) Bi-LSTM, and (c) Transformer. The difference is an absolute

value (true signal amplitude–predicted signal amplitude).

https://doi.org/10.1371/journal.pone.0275719.g003

Table 1. Respiratory signal prediction accuracies of LSTM, Bi-LSTM, and the Transformer.

RMSE CC

Validation set LSTM 0.2501 0.9667

Bi-LSTM 0.2554 0.9640

Transformer 0.2309 0.9715

Test set LSTM 0.1907 0.9689

Bi-LSTM 0.1930 0.9661

Transformer 0.1554 0.9768

�The values in bold are the high scores in this comparison study

https://doi.org/10.1371/journal.pone.0275719.t001

PLOS ONE Deep-Learning Models for 4DRT

PLOS ONE | https://doi.org/10.1371/journal.pone.0275719 October 18, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0275719.g003
https://doi.org/10.1371/journal.pone.0275719.t001
https://doi.org/10.1371/journal.pone.0275719


and CC for the test set. All of the P-values were less than 0.05, thereby indicating a significant

difference.

3.B. Effect of the training sequence (Ts) and prediction point (Pt) on

prediction accuracy

To analyze the effect of the training data length of Ts on prediction accuracy, the prediction

accuracy of respiratory signals among the three different models was assessed using three dif-

ferent Ts: 1000, 1200, and 1400 ms. The Pt was fixed at 500 ms. The RMSE and CC were calcu-

lated for three different Ts values. The results are summarized in Fig 4.

In the validation set with 1200 ms of Ts, the RMSEs were 0.2412, 0.2692, and 0.2398 for

LSTM, Bi-LSTM, and Transformer, respectively. In the test set with 1200 ms of Ts, the RMSEs

Fig 4. Comparison of the prediction accuracies of LSTM, Bi-LSTM, and the Transformer for different training sequences (Ts) and prediction points (Pt).

https://doi.org/10.1371/journal.pone.0275719.g004
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were 0.1769, 0.2053, and 0.1559 for LSTM, Bi-LSTM, and the Transformer, respectively. As

shown in Fig 4, the Transformer exhibited a relatively high prediction accuracy for the three Ts

values.

To analyze the effect of the length of Pt on prediction accuracy, Ts was fixed at 1000 ms, and

Pt was set as 300, 500, 700, and 900 ms. The RMSE and CC values were calculated and are sum-

marized in Fig 4. As the length of Pt increased, the performance of all models reduced. At Pt =

300 ms, the prediction errors of the three models were equivalent. However, for Pt longer than

500 ms, the performance of the Transformer was higher than that of the other models.

3.C. Evaluation of the prediction accuracy for different respiration patterns

The RMSE and CC were calculated and summarized for each irregular respiratory pattern

(Table 2). Herein, the accuracy for regular respiration is presented as a reference. For the irreg-

ular pattern of type 3, the RMSEs were 0.2882, 0.2837, and 0.2773 for LSTM, Bi-LSTM, and

the Transformer, respectively. In these quantitative assessments, the Transformer exhibited

the highest prediction accuracy for the three groups with irregular respiratory patterns. When

compared to the accuracy for regular signals, the highest increment of RMSE and the highest

decrement of CC were observed for signals with an irregular amplitude pattern. The prediction

deviated in regions where respiration signals were not smooth, and in particular, respiration

amplitude irregularity was observed (Fig 5).

3.D. Analysis of clinical feasibility

To analyze the clinical feasibility of the deep-learning methods for respiration-gated radiation

therapy, we assumed that the maximum tumor motion caused by respiration motion was lim-

ited to 10.0 mm.

The treatment plan configured with respiratory-gated radiotherapy is developed typically

based on the AIP. CT images were calculated from 4D CT images by averaging or accumulat-

ing the HU number at each voxel from the CT images of selected respiration phases, such as

40–60% or 30–70% of the phases among 10 phases of respiration. Thus, each full respiration

cycle of the obtained signals was divided into 10 phases, and 30% and 70% of the phases were

selected as beam on/off phases, respectively. Because the predicted and actual respiration sig-

nals can have different peak positions, the time points of the 30% and 70% of the phases of the

two respiration signals were different. Thus, the amplitude difference between two signals at

the phases in the predicted signals was computed as an error. For the numerical validation

experiment, Ts was set to 1000 ms. In the case of Pt, three different latencies (300, 500, and 700

ms) were used.

Ten representative cases for regular and irregular period (type 1) and irregular amplitude

patterns (type 2) of motion are presented in Figs 6 and 7, respectively. The average errors of

the three models were less than 0.78 mm and 1.38 mm with a latency of 300 ms and 500 ms,

Table 2. Accuracy evaluation of the LSTM, Bi-LSTM, and Transformer methods using the RMSE and CC.

irregular regular

Type 1 (Period) Type 2 (Amplitude) Type 3 (Period and amplitude)

RMSE CC RMSE CC RMSE CC RMSE CC

LSTM 0.2601 0.9636 0.2733 0.9547 0.2882 0.9555 0.2501 0.9667

Bi-LSTM 0.2602 0.9624 0.2802 0.9517 0.2937 0.9555 0.2554 0.964

Transformer 0.2436 0.9696 0.261 0.9613 0.2773 0.9613 0.2367 0.9717

https://doi.org/10.1371/journal.pone.0275719.t002
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respectively. However, the average error was higher than 2.0 mm for 700 ms of latency. The

maximum error of the prediction was 4.41 mm, 7.80 mm, and 9.17 mm at Pt values of 300,

500, and 700 ms, respectively.

4. Discussion

For precise 4DRT with a respiratory-gated system, a model that can compensate for the latency

of the beam delivery system is essential. Thus, we compared the respiratory signal prediction

performance of three deep learning-based prediction models: LSTM, Bi-LSTM, and Trans-

former. The Transformer achieved the best prediction accuracy under standard conditions in

both the validation and test sets. In the test set, the performances of the LSTM, Bi-LSTM, and

Transformer had CC values of 0.9689, 0.9661, and 0.9768, respectively.

Additionally, we analyzed the effects of Ts and Pt on the prediction accuracy because the

beam on/off latency differs depending on manufacturer, motion detection device, and linac

model. As the training length of Ts increased, the amount of information supplied to the

model increased; thus, the prediction accuracy improved for both LSTM and the Transformer,

but not for Bi-LSTM. In the case of Pt, as Pt increased, the prediction accuracy reduced for all

Fig 5. Actual and predicted respiratory signals for three different patterns of irregular respiration. (a) irregular pattern with periods, (b) irregular pattern

with amplitude, and (c) irregular pattern with periods and amplitude.

https://doi.org/10.1371/journal.pone.0275719.g005
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three models. Therefore, the prediction accuracy was affected by the training data length (Ts)

and the time distance to the prediction (Pt.)

With regard to the prediction accuracy, when the beam on/off latency of a linac was less

than or equal to 300 ms, LSTM, Bi-LSTM, and the Transformer exhibited similar perfor-

mances, with CC values of 0.9943, 0.9942, and 0.9934, respectively. However, when the beam

on/off latency exceeded 500 ms, the prediction achieved with the Transformer was superior to

that of LSTM and Bi-LSTM. In particular, when the beam on/off latency was 900 ms, LSTM,

Fig 6. Average error results in millimeters. At 30% and 70% phases for regular and irregular patterns with three different prediction points: 300, 500, and 700

ms.

https://doi.org/10.1371/journal.pone.0275719.g006

Fig 7. Maximum error results in millimeters. At 30% and 70% phases for regular and irregular patterns with three different prediction points: 300, 500, and

700 ms.

https://doi.org/10.1371/journal.pone.0275719.g007
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Bi-LSTM, and the Transformer exhibited significant performance differences, with CC values

of 0.7797, 0.7794, and 0.8212, respectively. In the analysis of Ts and Pt, Transformer outper-

formed LSTM and Bi-LSTM.

Based on clinical observations, numerous patients do not have perfectly regular respiration

patterns. Respiration patterns are affected by daily conditions, stress level, and the severity of

the disease. Thus, the prediction accuracy of the models is important in the case of irregular

respiration patterns. A comparison of the irregular respiration signals revealed that irregulari-

ties in respiration amplitude have the greatest impact on prediction accuracy. Therefore, when

training and preparing a patient for respiratory-gated radiation therapy, efforts should be

made to minimize variation in the patients’ respiration amplitude.

Among the RNN-based deep learning models, Bi-LSTM perform better than LSTM in

stock market prediction studies [36]; however, LSTMs are more suitable for reservoir inflow

prediction studies [37]. In the analysis performed in this study, the predictive accuracy of

LSTM was better than that of Bi-LSTM, although the difference in the evaluation metrics was

small. There is a difference in performance between LSTM and Bi-LSTM depending on the

data used; therefore, verification is required when predicting respiration using LSTM and Bi-

LSTM.

Because the accuracy evaluation in this study deals with the average errors in predicting

respiratory signals, it does not clearly present the associated errors in clinical practice. To eval-

uate the clinical impact of a predictive model for gated radiation therapy, three representative

patterns of respiration signals were used to mimic tumor movement, the patient’s respiration

was managed to limit tumor motion to 10 mm, and the prediction error was calculated in mil-

limeters. The results in Fig 6 reveal that when the delay time was 300 ms, all three models

exhibited an average error of less than 0.78 mm, which is considered acceptable for patient

treatment. The Transformer exhibited the lowest error in three out of six in the average error

evaluations, but the maximum observed error was 4.41 mm during motion with an irregular

amplitude. When the delay time was 500 ms, the average error was less than 1.38 mm, the max-

imum value of the error increased in all models, and the maximum error of 7.80 mm was

exhibited by LSTM. The Transformer exhibited the lowest maximum error among the three

respiratory signal patterns. When the delay time was 700 ms, the maximum error was 9.17

mm, and the average error was approximately 3.11 mm. Therefore, with the beam delivery sys-

tem with delay times of 300 and 500 ms, the respiratory prediction model can achieve an

acceptable performance (< 1.38 mm on average for 10 mm of tumor motion), and with the

beam delivery system having a beam latency of 700 ms, the respiratory prediction model

potentially generates an error larger than 3.11 mm on average for 10 mm of tumor motion.

Although the movement of the external respiration signal was assumed to be quantitatively

identical to the movement of the tumor, such a scenario rarely occurs in real clinical situations.

Nevertheless, the hypothesis enables us to estimate and determine the error range when apply-

ing deep learning-based prediction models to compensate for the beam delay time of a radiation

therapy device. As the performances of the models were compared based on the relative error

using a normalized respiration signal, quantitative evaluation in clinical practice was necessary.

In a future study, we plan to use one-dimensional respiratory signals to predict three-dimen-

sional tumor motion over time through an analysis of respiratory signals and tumor motion.

5. Conclusion

We successfully evaluated the clinical feasibility of LSTM, Bi-LSTM, and Transformer models

for respiratory signal prediction. Among the deep learning-based models, the Transformer

model was superior to the LSTM and Bi-LSTM models. Prediction accuracy was found to be
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affected by the training data length and the time distance to the prediction, and was consider-

ably affected by irregular amplitude patterns. Thus, the feasibility of using a respiratory predic-

tion deep learning model for a clinical application depends on the beam on/off latencies of the

radiation therapy equipment. In addition, patient respiration management strategies are fun-

damentally important factors in 4DRT.
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