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Abstract: The measurement of the emitted electromagnetic energy in the UHF region of the spectrum
allows the detection of partial discharges and, thus, the on-line monitoring of the condition of the
insulation of electrical equipment. Unfortunately, determining the affected asset is difficult when
there are several simultaneous insulation defects. This paper proposes the use of an independent
component analysis (ICA) algorithm to separate the signals coming from different partial discharge
(PD) sources. The performance of the algorithm has been tested using UHF signals generated by
test objects. The results are validated by two automatic classification techniques: support vector
machines and similarity with class mean. Both methods corroborate the suitability of the algorithm
to separate the signals emitted by each PD source even when they are generated by the same type of
insulation defect.
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1. Introduction

One of the causes of power failures and blackouts is the breakdown of the insulation systems
of electric assets, produced, in some cases, by their deterioration. This aging can be premature
and originates due to small and persistent discharges, called partial discharges (PDs). Thus, their
measurement is crucial in the monitoring and maintenance of electric equipment.

One of the most common methods of PD detection is the measurement of the electromagnetic
radiation emitted by the discharge. Therefore, monitoring is done with antennas with the
capability of performing online supervision of wide areas in substations and aerial power lines [1–3].
However, automatic monitoring using these antenna based systems is hampered by the presence of
series of pulses coming from different sources of electromagnetic emissions derived from interferences
or several PD sources. This problem has to be faced in the post-processing of the received data to
separate the pulses coming from each of the involved processes [4,5]. In this paper, we propose
the application of independent component analysis (ICA) to distinguish the signals originating
in each defect. The ICA approach has been widely used for blind source separation (BSS) in
applications where a mixture of statistically independent sources is decomposed into individual
source components [6]. ICA has been extensively applied in wireless communications [7], audio
and speech signal processing [8], and many other applications based on sensor array [9]. In the
field of partial discharge detection, ICA has been proposed to separate mixed PD signals using the
acoustic detection method [10], to separate UHF signals mixed synthetically in gas-isolated switchgear
(GIS) [11] and to determine the time of arrival for PD location using a UHF detection method [12].
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In this paper, we test the proposed ICA algorithm with real measurements and with the PDs of the
same type that are generated in different places and detected with the same antennas. The algorithm
is able to separate the individual signals from the two PD processes. To corroborate the results,
a validation technique based on a supervised classification effectively confirms that the signals
recovered by ICA accurately match those originating from the sources. This validation was carried out
using two automatic classification techniques: support vector machines (SVMs) [13,14] and a naive
approach consisting of classifying each datum with the class of the closest mean. These experiments
show that the reconstructions achieved by ICA are very close to the original signals, therefore validating
the proposed approach.

The rest of the paper is organized as follows: in Section 2 we present a brief introduction to partial
discharges and the experimental setup used to generate the signals. Section 3 describes the theory
underlying the proposed ICA algorithm. Section 4 contains the review of the automatic classification
techniques used in the validation of ICA. In Section 5 we show the results with their validation, and the
paper ends with conclusions in Section 6.

2. Partial Discharge Detection

Electrical assets can have parts of their insulation system susceptible to premature aging. Gas fills
voids inside dielectrics, vacuoles in the paper-oil insulation in power transformers, or the cross-linked
polyethylene (XLPE) in HV cables. Contaminated surfaces or interfaces among different materials
such as capacitor bushings or sharp metallic geometries surrounded by air or gases are prone to partial
discharges. In these sites, the air is easily and quickly ionized because the intensity of the electric
field is higher than in the surrounding insulation system. This electric stress produces a series of
small electric discharges that causes harmful aging processes that gradually debilitate the dielectric
and bring about the ultimate failure even at operational voltages. Identifying this critical activity is
paramount for preventing breakdowns and performing reliable maintenance of the asset, for instance,
through the electromagnetic radiation emitted by the discharges using UHF sensors [15]. Nevertheless,
the detection and the subsequent identification of the problematic points are difficult when there
is more than one deterioration process, and even more so when their activity comes from similar
defects. Hence, the motivation to use ICA to separate each source in the post-processing. In this paper,
we propose an experiment to detect two sources of the same type of discharge and a reference to assess
the suitability of ICA. Each source consists of a polyethylene sheet placed between two cylindrical
electrodes. These test objects produce surface discharges in the interface between one of the electrodes
and the dielectric sheet. When high voltage is applied, the component of the electric field parallel
to the sheet ionizes the surrounding air and makes it conductive, triggering an electron avalanche.
This energy pulse emits in a broadband of frequencies, including the UHF band.

The test objects are excited with a high-voltage transformer at 6 kV obtaining controlled PD
activity (see Figure 1). The electromagnetic radiation of PD will be detected and registered with UHF
sensors located around the test objects. The sensors are two simple and inexpensive monopoles that
have a resonant response at λ/4, λ being the wavelength of the main frequency. Setting the length
to 10 cm (λ is then 40 cm), the resonant frequencies are 750 MHz and its multiples, and it is possible
to acquire all types of partial discharges at relatively far distances without the use of a wideband
amplifier. The monopoles are connected to a Tektronix DPO7254 8-bit, 40 GS/s, 4-channel oscilloscope
through coaxial cables with the same length.

The positions of the antennas are chosen in such a way that the detected signal is in the far-field
region of the PD electromagnetic activity. Figure 2 shows the positions of the antennas and sources
used in the experiment, where x1 and x2 correspond to the monopole antennas with the positions
indicated in Cartesian coordinates, and s1 and s2 are the test objects.
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Figure 1. Picture of the experimental arrangement showing the two sources and the two antennas
(UHF sensors) for partial discharge (PD) detection.
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Figure 2. Positions of sources and sensors. Cartesian coordinates are in centimeters.

The experiments were carried out as follows. First, each source was excited individually to verify
that they produced controlled and permanent activity at the same voltage level. These signals also
help to train the automatic classifiers used in the validation stage (see Section 4). Then, both sources
were excited simultaneously and the registered pulses were delivered to the ICA algorithm to separate
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them. In each experiment, each sensor registered a series of 100 consecutive pulses with a duration of
100 ns, giving a total time interval of 10 µs.

3. ICA for PD Activity Signal Processing

The UHF sensors, x1 and x2, indiscriminately capture the signals coming from the two active
PD sources, s1 and s2, when there is a simultaneous excitation. The result is a combination of signals
that does not give information suitable for monitoring the equipment effectively. To undertake this
challenge, an approach based on blind source separation (BSS) is proposed using a separation method
for retrieving the original source signals when there is little or no knowledge about the sources. In this
work, we follow the ICA implementation of Choi et al. [16].

Figure 3 shows the separation scheme of the algorithm for two PD sources. The measured signals,
x1(t) and x2(t), containing a combination of the two sources, s1(t) and s2(t), are processed by the
recurrent finite impulse response (FIR) filters Wk. The aim of this processing is to estimate and place
a single source, yi(t), in each channel. The scheme presented in Figure 3 represents the architecture of
the recurrent network of separation and can be expressed by a discrete time equation as follows:

y(t) = x(t) +
L

∑
k=0

Wky(t− k) (1)

where y(t) = [y1(t), y2(t)]T and x(t) = [x1(t), x2(t)]T are the estimated sources and the signals
measured by the sensors, respectively; Wk is the matrix of filter coefficients at delay k and L defines
the maximum order of the FIR filters. The filters consist of 2 × 2 matrices with zeros in the diagonals:

Wk =

[
0 w12k

w21k 0

]
. (2)

Figure 3. Schematic representation of the independent component analysis (ICA) algorithm. W12k and
W21k are two recurrent filters whose coefficients are determined using an unsupervised learning rule.

These matrices model the room effects (boundaries, floor, walls, ceiling and other obstacles) on
the UHF signals that arrive to the sensors. Therefore, the length of the filters must be long enough to
evaluate the direct wave front from the PD source and its possible reflections. The value of L can be
determined as follows:

L =
l · fs

c
(3)

with fs being the sampling frequency and c = 3 × 108 m/s (the speed of light). l has an upper limit
in the maximum path difference that a reflected wave can travel without being attenuated under the
detection limit of the sensor.
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The determination of the coefficients of the filters follows an iterative process based on optimizing
an objective function that maximizes the independence between y1(t) and y2(t). The learning algorithm
for updating the separation demixing filter coefficients Wk for each iteration n, is:

Wk(n + 1) = Wk(n)− η [I−W0(n)]ϕ(y(t))y(t− k)T (4)

where I is the identity matrix and η > 0 is the learning rate. W0 is the matrix for k = 0 and it is

equal to

[
0 1
1 0

]
. ϕ(y) = [ϕ1(y1), ϕ2(y2)]

T , is an element-wise nonlinear function selected depending

on the probability density function (PDF) assumed by the unknown sources. The PDF of the signal
measured by the UHF sensors has been assumed as super Gaussian, so the function proposed by Bell
and Sejwnoski in [17] has been used to separate the PD sources:

ϕm(ym) = tanh(ym). (5)

The source estimation procedure utilizing ICA can be summarized in the following steps:

1. Set the parameters of the algorithm: length of filter, L, learning rate, η, and number of iterations, n.
2. Apply Equation (1) in a block of size equal to the samples of each measurement.
3. Use Equation (4) to update Wk.
4. Repeat steps 2 and 3 until the number of the chosen iterations is reached.

4. Validation of ICA Through Automatic Classification

ICA decomposes the measured signals, xj(t), into independent components, yi(t), individually
per output channel. Ideally, each output channel will align with a single source si(t), meaning that
ICA has actually separated the contribution of each source. Therefore, the purpose of this section is to
present a methodology based on machine learning that enables evaluation of the degree of matching
between the yi(t) and the original sources. An optimum test would require a complete statistical
characterization of each source, followed by a measure of the likelihood of each output signal being
generated by the corresponding source. Since this complete characterization is impractical, it turns out
to be more realistic to design the test using machine learning.

The proposed test consists in training an automatic classifier with signals recorded separately at
each source (without interferences from other sources) and evaluating the classifier with the signals
reconstructed by ICA. A high classification accuracy will indicate that ICA is performing a correct
separation in components that can be matched with the original sources.

An automatic classification method essentially constructs a function f (z) that takes as input
a vector z formed with the features that define each observation and gives an output that indicates
the correct class of this observation. To continue with the case presented along the previous sections,
we consider two output classes, s1 and s2 (each PD source determines a class). The usual convention
is to assign a positive label (c = +1) to the instances of one class and a negative label (c = −1) to
the instances of the other class. With respect to the feature vectors z, we use the normalized power
spectrum density (PSD) of each recorded pulse since the shape of the spectral envelope is informative
to discriminate the source of PD [14].

From all the available automatic classification techniques we focus on kernel methods (KMs) [18]
since they are considered the de facto standard within the machine learning community. KMs rely
on the use of a kernel function to construct f (z). A kernel function κ(zp, zq) can be regarded as
a similarity measure between data samples zp and zq in a certain feature space: if zp and zq are very
similar (different), then κ(zp, zq) will take a high (low) value. In the most widely used kernel functions,
the values of κ(zp, zq) range between 1 (zp = zq) and 0 (zp and zq are orthogonal). In a classification
setting, two samples from the same class are expected to yield a higher value of the kernel function
than two samples from different classes. Therefore, most KM classifiers consist of a linear combination
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of kernel functions centered on samples that are relevant to the definition of the support of each
class. This way, a sample zp of the positive class would yield a higher value in the kernels centered
on positive samples, thus pushing the linear combination in f (zp) towards a final positive value.
Conversely, a sample zn of the negative class would yield a final negative f (zn).

In this paper, we use a kernel function based on exponentiating a symmetrization of the discrete
Kullback–Leibler (KL) divergence between zp and zq [19]:

κ(zp, zq) = exp{−0.5 · (KL(zp‖zq) + KL(zp‖zq))/σ}, (6)

with

KL(zp‖zq) =
D

∑
d=1

zd
p log

zd
p

zd
q

,

providing that zd
q = 0 implies zd

p = 0. Scalars zd
p and zd

q are the d−th components of vectors zp and
zq, respectively.

The rationale behind the use of this kernel is the following. Each z is normalized to unit area and
can therefore be regarded as a discrete probability (all their components are positive and add up to
one). A natural measure of divergence among discrete probabilities is the KL divergence, that needs
symmetrization to be considered a proper distance. Likewise, the exponentiation of a distance becomes
a kernel. Parameter σ determines the spatial resolution of the kernel. Intuitively, the KL kernel
somehow measures the overlap between the two PSDs.

We have selected two KM classification technologies that potentially present complementary
views of the classification problem for the validation of ICA: the support vector machine (SVM) [13]
and a naive classifier consisting of assigning each sample to the class of the closest mean. We talk
about complementary views because the former stresses those features that make samples in one class
look different from the samples in the other class, while the latter stresses those features that make
instances within the same class look similar (and hopefully different from instances in the other class).

The SVM classification of a test sample z is based on evaluating the sign of a linear combination
of kernels that can be split in two terms:

o(z) = ∑
p with cp>0

αpcpκ(zp, z) + ∑
n with cn<0

αncnκ(zn, z) + b. (7)

The first sum is the weighted similarity of sample z with the support vectors (SVs) of the positive
class. Analogously, the second sum is the weighted similarity of z with the SVs of the negative class.
The SVs are critical samples that define the classification boundary. They, together with the coefficients
of the linear combination αp, αn, are determined after an optimization [13].

With respect to the naive classification method, we calculate the mean of each class as:

m1 =
1

Np
∑

p with cp>0
zp; m−1 =

1
Nn

∑
n with cn<0

zn

where Np is the number of positive examples in the training set (those with label cp > 0) and Nn is the
number of negative examples. The classification of a test sample z is as follows:

f (z) = sign (κ(m1, z)− κ(m−1, z)) . (8)

5. Experimental Results

The performance of the proposed separation algorithm is tested with the measurements obtained
following the setup described in Section 2 with both sources excited simultaneously. The results
obtained applying the ICA separation algorithm will be compared with stand-alone signals registered
from each source by the nearest sensor to obtain cleaner pulses with enough amplitude. Pulses from
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s1 are recorded by sensor x1, while pulses from s2 are recorded by x2 (see Figure 4). It is important
to stress that these stand-alone measurements of each source will be only used to train the automatic
classifiers for the validation.

Figure 4. Representative UHF signals from the two surface test objects. (a) s1(t) and (b) s2(t).

5.1. ICA Results

Two series of combinations of signals from both sources, x1(t) and x2(t), are processed by the
proposed algorithm. An adequate separation of the signals into the original UHF sources is made
after several simulations and is achieved by the parameters summarized in Table 1. The length of the
filter, L = 50, was obtained for a maximum propagation l = 1.5 m and fs = 10 GS/s. The weights,
Wk, for k = 1, . . . 50, are initialized to zero. Both the learning rate and the number of iterations are
obtained empirically based on previous experimental measurements done in the radio-frequency
localization of PD sources [12].

Table 1. Parameters of the proposed ICA algorithm.

Names Values

Length of filter L = 50
Learning rate η = 10−4

Number of iterations 50

The outputs obtained are the source estimations, y1(t) and y2(t), that correspond to s1(t) and
s2(t), respectively. Figure 5 displays examples of the different signals involved in all the stages
of the proposed algorithm. Figure 5a,b presents six consecutive pulses registered by x1 and x2,
respectively. It can be observed that there is no superposition or mixing process in the signals owing
to the short duration of the UHF signals, (tens of nanoseconds). These signals are processed by the
ICA algorithm and the results are shown in Figure 5c,d, corresponding to the source estimations,
y1(t) and y2(t), respectively. In each estimation, there are two types of pulses, one with high energy,
that corresponds to the signals of the source; and the other with low energy, that corresponds to
residual signals that remain after the separation process. After the separation process, the two
automatic classification methods explained above are used to test if the separation given by ICA
is correct.
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Figure 5. Example of the signals involved in the different stages of the algorithm. (a) UHF signal at
sensor x1, (b) UHF signal at sensor x2, (c) Estimated signal y1(t), and (d) Estimated signal y2(t).

5.2. Validation with Supervised Classification

In order to corroborate the suitability of the ICA algorithm reliably and systematically, we trained
supervised classifiers to discriminate the signals coming from the two PD sources and to use them to
separate the outputs of the ICA. Since the kernel function is a similarity measure, it is expected that
the kernels between the signals coming from ICA and the training pulses of the correct class follow
a distribution close to the one followed by the training pulses of the correct class themselves.

Following the scheme of Figure 3, input signals are decomposed into two components by ICA,
and therefore the output for each input signal is double. Each channel is processed individually with
all the classifiers, i.e., we check the matching of each channel to each source and make a final decision
based on these classifications.

As mentioned before, two different classification techniques have been used to obtain robust
results. These are SVM and similarity with class mean.

With respect to the selection of the hyperparameters of the algorithms, we have followed a very
standard approach. The SVM regularization parameter C is selected in a logarithmic scale between
10−4 and 104. The width of the kernel is selected in a logarithmic scale between 0.0025 and 10.
The tuning of both parameters is carried out by a ten-fold cross validation in a grid search. Note
that the test pulses are never involved in the tuning of these parameters, since they were acquired
separately from the training pulses.
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The first outcome of the validation is that ICA is able to separate each input into two separate
components y1 and y2, and each component is always assigned to the right source, i.e., pulse y1 is
classified as s1 and pulse y2 is classified as coming from s2 in all the test cases. Since the probability
of both sources being simultaneously active during the same pulse is negligible due to the nature
of partial discharges, it turns out that, independently of the amplitude of the pulses recorded at the
sensors x1 and x2, ICA redistributes the total energy at its input in a non-uniform split, giving more
amplitude to y1 over y2 if s1 is active (and to y2 over y1 when the active source is s2). This can be
further exploited in the validation stage to enhance the visualization of the results. Notice that since
the classifiers take as input the normalized PSD of the pulses, this imbalance in the energies of y1 and
y2 is not used in the classification (i.e., the classifier would also work if both sources are active at the
same time). Therefore we can display six sets of samples in the plots:

• Pulses recorded individually from source s1(t) (labeled S1 in the plots).
• Pulses recorded individually from source s2(t) (labeled S2 in the plots). Note these two sets are

exclusively used as training sets for the machine learning algorithms used in the validation.
• Pulses from the first channel of the output of ICA when the first channel has more energy than

the second (labeled Y1 when Y1 > Y2 in the plots).
• Pulses from the first channel of the output of ICA, when the second channel receives more energy

(labeled Y1 when Y2 > Y1 in the plots).
• Pulses from the second channel of the output of ICA when the second channel has more energy

than the first (labeled Y2 when Y2 > Y1 in the plots). Notice that each member of this set has
a corresponding member in the set Y1 when Y2 > Y1 (both pulses are produced simultaneously).

• Pulses from the second channel of the output of ICA, when the first channel receives more energy
(labeled Y2 when Y1 > Y2 in the plots). Notice that each member of this set has a corresponding
member in the set Y1 when Y1 > Y2.

Figure 6 shows how training and test samples are processed by the SVM classifier. The top plot
shows that the output of the classifier for those ICA outputs with more energy in the first channel
is close to the output produced by the training samples recorded from PD s1. The same applies for
the ICA outputs with more energy in the second channel and the training samples recorded from
PD s2. Moreover, the 2D scatter plot shows that the shape of the pulses in the output channel with
most energy lies close to the cluster formed by the corresponding training samples, clearly separated
from the cluster formed by the samples of the other source. Furthermore, the shape of the pulses in the
channel with less energy, residual signals, are far away from the training samples, indicating that these
low energy pulses have a spectral envelope significantly different from the envelope of the training
signals and the signals recovered by ICA.

Figure 7 shows the analysis using as a classifier the difference between the similarities with the
mean PSDs of each training class. This analysis completes the one performed by SVM in the following
sense. The classification with the mean PSDs of each class focuses on the features that stress the
similarities between instances in the same class (two instances appear to be of the same class when
these features take similar values). However, the SVM classification focuses on the features that stress
differences among samples of different classes (two instances from different classes would present
different values with respect to these discriminating features).

Finally, the scatter plots in Figures 6 and 7 confirm the intuition that the signals recovered by
ICA follow the same patterns as the training signals. Although the pulses labeled as Y1 when Y2 > Y1
are classified as belonging to the same class as training pulses S1, one can check how they are in fact
residual signals not generated by source S1, because they lie far away from the points labeled as S1
in the plots (the distances in the plots are given by the kernel functions). Notice how the correctly
classified pulses labeled Y1 when Y1 > Y2 do actually lie very close to the training labels in both
scatter plots. The same applies to source S2 and pulses labeled Y2. Therefore, we can conclude that the
signals recovered by ICA are sufficiently close in spectral envelope to those training signals directly
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recorded at the PD source and such validation is enough to accept the future results given by the
proposed algorithm in other PD measurements.

Figure 6. Results of the classification with support vector machine (SVM) and the Kullback–Leibler (KL)
kernel. The top plot is a histogram of the classifier output for all the sets of samples. The bottom plot
shows a scatter plot of training and test pulses in the 2D space defined by the two sums in Equation (7).
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Figure 7. Results of the classification with the difference between the similarities of each sample and
the mean of each class. These similarities are evaluated using the KL kernel. The top plot is a histogram
of the classifier output for all the sets of samples. The bottom plot shows a scatter plot of training and
test pulses in the 2D space defined by similarity to each class mean.

6. Conclusions

This paper demonstrates that the separation of PD pulses can be effectively done using
independent component analysis. The results are more significant considering that the proposed
method is out of the common scope of ICA which is usually applied to mixtures of signals in the time
domain. Notice that the stochastic nature of PD and the short duration of the UHF pulses makes it very
uncommon to have two incoming signals simultaneously in the same time window. This highlights
the suitability of the ICA algorithm in other applications.
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A straightforward approach to validate the results given by the ICA algorithm might have been
the direct comparison of the spectra of the signals captured and labeled individually, however this
would not have been applicable in this case since both signals are surface discharges and their spectra
are very similar. Another approach might have been the use of time differences of arrival of the
pulses to the sensors but the number of antennas should be increased and the method will fail if the
sources are close to each other. Therefore, the source separation proposed by ICA has been validated
with two complementary supervised classification methods, SVM and similarity with class mean.
Both methods point out that each ICA channel matches with one of the sources, not only attending to
the classification scores (residual signals produced in the channel matched to the non-active source
could also be classified as instances of the non-active source), but also to the discriminative pattern
formed by the similarities between the PSD of the signals from the ICA channels and the training
signals recorded at each original source.

The supervised classification techniques are used in this paper to validate ICA when separating PD
signals coming from different sources. A supervised training (i.e., SVM classifiers) will not be needed
in field measurements since ICA learns how to discriminate the signals from different PD sources in an
unsupervised manner (without signal examples) even when they come from different sources with the
same type of insulation defect. Further research will focus on expanding ICA techniques in practical
settings consisting of a set of antennas deployed in substations.
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