
Poly(A) polymerase (PAP) diversity in gene expression – Star-
PAP vs canonical PAP

Rakesh S. Laishram*

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, 
India

Abstract

Almost all eukaryotic mRNAs acquire a poly(A) tail at the 3′-end by a concerted RNA processing 

event: cleavage and polyadenylation. The canonical PAP, PAPα, was considered the only nuclear 

PAP involved in general polyadenylation of mRNAs. A phosphoinositide-modulated nuclear PAP, 

Star-PAP, was then reported to regulate a select set of mRNAs in the cell. In addition, several non-

canonical PAPs have been identified with diverse cellular functions. Further, canonical PAP itself 

exists in multiple isoforms thus illustrating the diversity of PAPs. In this review, we compare two 

nuclear PAPs, Star-PAP and PAPα with a general overview of PAP diversity in the cell. Emerging 

evidence suggests distinct niches of target pre-mRNAs for the two PAPs and that modulation of 

these PAPs regulates distinct cellular functions.
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1 Introduction

In eukaryotes, nuclear mRNA synthesis is a multistep process that begins with transcription 

and ends with processing at the 3′-UTR [1–5]. The various steps of mRNA synthesis – 

transcription, splicing, and 3′-end formation are functionally interconnected through a 

network of synergistic interactions [3,6]. The 3′-end processing of a precursor mRNA (pre-

mRNA) is an essential step in eukaryotic gene expression, which is comprised of two steps – 

cleavage and addition of poly(A) tail [1,4,5,7,8]. Almost all eukaryotic mRNAs are 

polyadenylated, a step critical for stability, export and translation efficiency of mRNAs 

[1,4,5,7,9,10]. Pre-mRNAs are polyadenylated by enzymes called poly(A) polymerases 

(PAPs) which function in a 3′-end processing complex comprised of a large number of 

protein constituents [11].
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The canonical PAP exists in multiple isoforms and at least three forms of canonical PAP – 

PAPα, PAPβ (PAPT), and PAPγ (neoPAP) have been reported [12–18]. Canonical PAPs 

were considered the only PAPs that controlled all co-transcriptional polyadenylation in the 

nucleus. Apart from PAPα, PAPγ also functions in the similar CPSF and AAUAAA signal 

dependent polyadenylation of pre-mRNAs in the nucleus [13]. Another nuclear non-

canonical PAP, Star-PAP [Speckle Targeted PIPKIα Regulated Poly(A) Polymerase] 

(RBM21, TUT1), was then reported to polyadenylate certain mRNAs involved in various 

cellular processes such as oxidative stress response and apoptosis [19,20]. Based on 

similarities in domain architecture, Star-PAP belongs to a subfamily of non-canonical PAPs 

(ncPAPs). So far, seven known ncPAPs have been reported in humans with diverse cellular 

functions [21,22].

PAPα and Star-PAP participate in both cleavage and polyadenyalation reactions. In addition, 

Star-PAP exhibits terminal uridylyl transferase activity toward U6 snRNA [23]. Do the two 

PAPs compete for target mRNAs? Emerging evidence suggests distinct niches of target 

mRNAs for each PAP and there appears to be no cross regulation of their targets [19,20,24]. 

Such specificities in target poly(A) site recognition could potentially modulate alternative 

polyadenylation (APA). This review presents an overview of diverse PAPs in the cell and 

compares two functionally similar but distinct nuclear PAPs, Star-PAP and PAPα. Here, we 

explore the differences in properties, mechanism, target mRNA selection, and regulation of 

the two PAPs in 3′-end pre-mRNA processing.

2 3′-end pre-mRNA processing in gene expression

The 3′-UTR of an mRNA is critical for the regulation of gene expression. During eukaryotic 

mRNA maturation, the nascent pre-mRNA undergoes processing at the 3′-UTR. This 

processing at the 3′-end is a two-step event: first, the pre-mRNA is endonucleolytically 

cleaved at the cleavage site, followed by the addition of poly(A) tail to the upstream 

fragment of the cleaved RNA, while the downstream fragment is rapidly degraded 

[1,4,5,7,8,10]. 3′-end processing is intricately coupled to transcription and splicing, and also 

regulates the type, and the amount of mRNA and protein levels of a particular gene. Thus, 

mRNA 3′-end formation links transcription of a gene with the translation of its mRNA [2,6].

Mass spectrometry analysis identified ~85 protein factors associated in the 3′-end 

processing complex [11]. Some of the critical proteins required for the cleavage and 

polyadenylation reactions include subunits of Cleavage and Polyadenylation Stimulatory 

Factor (CPSF), Cleavage stimulatory Factor (CstF), Cleavage Factor Im (CF Im), and 

Cleavage Factor IIm; Symplekin, PAP, and the nuclear Poly(A) Binding Protein (PABPN1) 

(for review [5,25]). Mammalian CPSF consists of six polypeptides – CPSF 160 (CPSF1), 

CPSF 100 (CPSF2), CPSF 73 (CPSF3), CPSF 30 (CPSF4), hFip1 and WDR33. CPSF 160 

recognises the poly(A) signal, PAS (AAUAAA), a sequence located approximately 15–30 

nucleotide upstream of cleavage site and interacts with PAP and CstF [26]. Although CPSF 

160 binds to the AAUAAA signal and cooperates with other factors, the assembly of the 

stable cleavage complex requires an intact CPSF complex [26–28]. The CPSF interaction 

also requires cooperation with CstF and CF Im for stable association with pre-mRNA [29–

32]. Studies suggest that other trans-acting factors such as splicing factor U1 snRNP 
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interacts with CPSF 160 and promotes its binding to PAS on the pre-mRNA [33]. In HIV, 

CPSF 160 can also interact with sequence element upstream of the poly(A) site other than 

the classical AAUAAA signal at the 3′-UTR [34,35]. Another subunit of CPSF, CPSF 73, 

acts as endonuclease, binds directly to the cleavage site in a AAUAAA dependent manner 

and then cleaves the pre-mRNA at the cleavage site [36,37]. CPSF 30 may cooperate with 

CPSF 160 in RNA binding [38]. hFip1, one additional CPSF subunit, also binds PAP and 

directs PAP to the cleavage site [39]. The exact functions of CPSF 100 and WDR33 subunits 

are yet undefined [11,40].

The CstF complex recognises the GU/U rich downstream sequence element (DSE) and 

cooperates with CPSF. CstF has three subunits – 50 (CSTF1), 64 (CSTF2) and 77 (CSTF3) 

KDa of which CstF 64 binds the GU/U rich downstream sequence element (DSE) 

[30,41,42]. CstF 77 functions as a homodimer and bridges the 64 and 50 KDa subunits and 

cooperates with CPSF 160; CstF 50 interacts with the RNA Polymerase II (Pol II) C-

terminal domain (CTD) [26,43,44]. The interaction of CstF and CPSF complexes and their 

corresponding associations with DSE and PAS is considered the most significant event in 

defining the cleavage site. CF Im is a heterotetramer with two 25 KDa subunits (CPSF5 or 

NUDT21) that forms the core of the complex along with two larger polypeptides of 68 KDa 

(CPSF6) and/or 59 KDa (CPSF7) subunits. CPSF5 binds pre-mRNA upstream of PAS to a 

sequence element that contains the U(G/A)UA motif. In addition, CF Im cooperates with 

CPSF for RNA binding and enhances the recognition of the cleavage site [31,45–47] CF Im 

can also direct a sequence-specific AAUAAA-independent polyadenylation by recruiting the 

CPSF subunit hFip1 and PAP in vitro [48]. CF IIm consists of two subunits, hPcfl 1 and 

hClp1, and possibly links CF Im and CPSF within the cleavage complex [49]. Symplekin is a 

scaffolding protein that putatively joins a large number of proteins together in the complex 

[50–53]. CPSF, CstF, Symplekin and CF Im interact with each other stabilising the 3′-end 

processing complex assembled on pre-mRNA and promotes recruitment of PAPα. 

Mammalian PAPα is also required for the cleavage reaction, however, the mechanism as to 

how PAPα is involved in cleavage is not precisely defined [5,25]. After cleavage of the 

transcript, PAPα adds a poly(A) tail to the upstream fragment of cleaved RNA. The nuclear 

poly(A) binding protein (PABPN1) binds the nascent poly(A) tail, confers processivity to 

PAP and controls poly(A) tail length. PABPN1 also interacts with PAPα and CF Im and 

enhances the efficiency of polyadenylation [54–60]. Thus, a large number of protein factors 

cooperate with each other and assemble at the 3′-UTR to accomplish cleavage of the 

transcript followed by polyadenylation.

3 Polyadenylation

Polyadenylation is a process of template-independent addition of a long poly(A) tail to the 

3′-end of an mRNA. Polyadenylation activity was first identified some 50 years ago from 

calf thymus nuclei extracts [61]. However, it was only a decade later that poly(A) tails were 

recognised as a product of post-transcriptional processing of the mRNA 3′-UTR [62–64]. 

Almost all mammalian mRNAs have a poly(A) tail at their 3′-end, with the exception of 

histone mRNA which ends after a highly conserved RNA stem-loop structure, and lacks a 

poly(A) tail [65]. The length of a nascent polyadenylated tail on an mRNA in mammalian 

cells varies from 200 to 300 adenosine residues [1,9]. In the nucleus, the poly(A) binding 
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protein, PABPN1 helps to define the length of the newly synthesised poly(A) tail during de 

novo mRNA synthesis [9,54,56]. PABPN1 interacts with the first 11 polyadenosine residues 

added, stimulates PAPs affinity for RNA substrate, and in presence of CPSF induces PAP 

from its distributive mode to a processive polyadenylation [54,60,66]. When polyadenylation 

reaches ~250 residues, PAP switches back to its distributive mode resulting effectively in 

termination of polyadenylation [58]. The precise mechanism of this length control is not 

fully known, it appears to occur through the formation of a ~20 nm spherical structure 

involving the poly(A) tail and the bound PABPN1 disrupting the tripartite, CPSF-PAP-

PABPN1 processive polyadenylating complex [56,67]. Additionally, a role of multi-

functional protein nucleophosmin (NPM1) in poly(A) tail length determination has also been 

proposed [68,69]. However, a recent poly(A) tail profiling indicated much shorter average 

lengths of poly(A) tails from various eukaryotic species (<100 in mammalian cells) [70] 

likely due to the shortening in the cytoplasm [71]. Another genome wide measurement of 

poly(A) tail length also demonstrated a median tail length of 50–100 adenosine nucleotides 

in HeLa and NIH 3T3 cells [72]. The observed length of mammalian poly(A) tails is at least 

influenced or maybe determined by the shortening reaction in the cytoplasm. In addition, 

there was diversity in the tail length not only among the transcripts from different individual 

genes but also within different mRNA transcripts from the same gene. Intriguingly, shorter 

tails were observed for mRNAs encoding ribosomal or housekeeping proteins [70]. In 

general, poly(A) tails play crucial roles in maintaining mRNA stability and turnover, 

transport of message from nucleus to cytoplasm, and translation efficiency of mRNA 

[1,5,9,10]. Moreover, defective polyadenylation has been linked to various human diseases 

[73].

3.1 Alternative polyadenylation (APA)

In humans, pre-mRNAs are polyadenylated in several different ways due to the existence of 

more than one polyadenylation site, allowing a single gene to encode multiple mRNA 

transcripts [74,75]. More than half of the genes in the human genome are alternatively 

polyadenylated [76]. APA regulation is an important event in the gene expression pathway, 

critical for a number of diseases [73,75,77–79]. Specific changes in the APA pattern have 

been observed during cancer progression, stem cell development, and tissue specific 

expression of genes, yet the mechanism determining particular APA site(s) remains elusive 

[78,80–90]. APA changes the length of the 3′-UTR thus affecting the miRNA binding sites, 

or in certain cases the coding region in the mRNA resulting in proteins with different 

domains [78,81,84,91,92]. Therefore, APA potentially alters the dynamics and properties of 

a transcript affecting stability, translation and/or subcellular localisation.

4 Poly(A) polymerase (PAP)

PAPs are the enzymes involved in the polymerisation of adenosine residues to form long 

poly(A) tails at the 3′-end of eukaryotic mRNAs. PAPs are involved not only in the 

polyadenylation reaction but also in the CPSF mediated cleavage reaction [1]. The gene 

structure of PAP indicated possible different PAP isoforms by alternative RNA processing 

[93]. Consistently, different PAP isoforms have been isolated from various sources [18,94–

96].
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4.1 Canonical PAP (PAPα) – the nuclear enzyme

Canonical PAPα belongs to a nucleotidyl transferase superfamily of DNA Polymerase β 
[97,98], and is responsible for the polyadenylation of nascent mRNAs in the nucleus. PAPα 
has three distinct domains: a catalytic domain at the N-terminus, an RNA binding region, 

and two C-terminal nuclear localisation signals (NLS1 and NLS2) followed by a ~20 KDa 

extended region enriched in serine (S) and threonine (T) residues [99–102]. Crystal structure 

of mammalian PAPα showed an aspartate triad in the active site similar to the DNA pol β 
coordinating the metal ions required for catalysis and ATP recognition [99,101,103,104]. 

Interestingly, the C-terminal S/T enriched region is highly phosphorylated 

[99,100,102,105,106]. Moreover, there are seven cyclin dependent phosphorylation sites in 

this region [106–108]. Phosphorylation at these sites represses the PAP activity. 

Phosphorylation of PAP will be discussed in a later section. In addition, interaction sites for 

U1A and U2AF65 splicing factors are present at the C-terminus [109–111] indicating the 

regulatory potential of the C-terminal end.

4.2 Multiple isoforms of canonical PAP

In humans, three genes encode the canonical PAP – PAPOLA (PAPα), PAPOLB (PAPβ or 

T) and PAPOLG (PAPγ or neoPAP). While PAPα is ubiquitously expressed, PAPβ is testis-

specific and regulates transcripts expressed during spermatogenesis [12,14,15]. Both PAPT 

and PAPγ share similar structural motifs and sequence identity with PAPα, except for the 

divergent C-termini. These different forms of PAP (PAPα, β, or γ) are believed to have 

arisen from a common PAP by gene duplication [12,13,15]. PAPγ appears to have the same 

function in cleavage and polyadenylation as that of PAPα. Interestingly, PAPγ exhibits 

monoadenylation activity towards small RNAs in addition to its normal PAP activity [112]. 

Furthermore, PAPγ was found to be specifically active during tumourigenesis, thus 

suggesting functional diversity [13,17]. Apart from these different forms of PAP, there exists 

other PAP related genes in humans. At least two such PAP related gene sequences have been 

identified from the in silico searches in the human genome [113].

There are at least six isoforms of canonical PAPα generated by alternative splicing, PAP I–

VI [16,18,96]. PAPs I, II and IV are longer versions with the full length catalytic domain 

while III, V and VI are truncated PAPs lacking parts of the catalytic domain. PAPs I, II and 

IV are functionally active, and are generated by alternative splicing of the last three exons 

[16,18]. PAP II is the predominant PAP isoform in most cell types [16,94,114]. Truncated 

PAPs, PAPs III, V and VI lack NLSs, the extended C-terminus in addition to parts of the 

catalytic domain. These PAPs are generated by alternative polyadenylation and/or splicing 

events, and do not encode functional proteins in vivo [18,100,115]. Two additional longer 

PAP isoforms (PAP VIII and IX) generated by alternative splicing of exons 20, 21 and 22 

have also been reported [116]. However, at this time the significance of divergent C-termini 

of the full length PAPs is unclear. Interestingly, the C-terminal S/T rich region which is 

present in all longer PAP isoforms is dispensable for its activity in vitro [16,102]. Therefore, 

it is likely to act as a regulatory domain, and it could have a selective advantage of 

differential interaction with other distinct trans-acting cleavage factors or regulators resulting 

in functional diversity. Moreover, studies have shown distinct cellular functions for different 
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PAP isoforms in plants [117]. Schematics of various human PAP isoforms have been 

depicted in Fig. 1.

4.3 Non-canonical PAP (ncPAP) – PAPs with functional diversity

ncPAPs are PAP-related members of the Pol β superfamily involved in diverse cellular 

functions as detailed below. Unlike the canonical counterparts, which add long poly(A) tail 

during mRNA maturation, ncPAPs typically add short terminal tails and target a variety of 

substrates (snRNA, miRNA, aberrant rRNA, snoRNA, histone mRNA, etc.). Surprisingly, 

there are reports of polyadenylation of select pre-mRNAs by one of the ncPAP, Star-PAP 

(discussed in detail in the following sections) [19,20]. This is an unusual function for an 

ncPAP as most ncPAPs add short tails. In addition, ncPAPs have distinct domain 

architecture. For example, all ncPAPs contain a conserved (among ncPAPs) PAP associated 

domain immediately following the catalytic (PAP) domain (Fig. 1). There are at least seven 

potential ncPAPs in humans (PAPD1, PAPD4, PAPD5, POLS, RBM21, ZCCHC6, 

ZCCHC11). PAPD1 (hmtPAP) is a mitochondrial PAP that polyadenylates mitochondrial 

mRNA [118]. PAPD1 mediated polyadenylation can generate UAA stop codon in some 

mitochondrial mRNAs, which is not encoded by the mitochondrial DNA [119–121]. 

However, the functional significance of mitochondrial polyadenylation is still a topic of 

debate [118,121,122]. PAPD1 was also reported to uridylate histone mRNA along with 

PAPD5 to target it for degradation [123] although the actual PAP that uridylates histone 

mRNA is somewhat controversial [124]. hGLD2 (PAPD4) is a cytoplasmic PAP that 

polyadenylates short (A)-tailed mRNAs in the cytoplasm [125,126] and is involved in 

diverse functions such as embryonic development, cell cycle, germline maturation, synaptic 

plasticity, learning and memory [126–131]. hGLD2 also polyadenylates p53 mRNA in the 

cytoplasm [128,132]. hGLD2 targets mRNAs containing a cytoplasmic polyadenylation 

element (CPE) at the 3′-UTR that is recognised by the regulatory protein CPEB (CPE 

binding protein). Phosphorylated CPEB interacts with CPSF 160 and helps recruit the CPSF 

complex (CPSF 160, 100 and 30) to the PAS. This complex is then stabilised by another 

processing factor, symplekin. This processing complex then recruits the cytoplasmic PAP, 

hGLD2 at the 3′-end to elongate the poly(A) tail [129,133,134]. Unlike the nuclear 

polyadenylation complex, the CPSF 73 subunit is not present in the cytoplasmic 

polyadenylation complex [135].

PAPD5 and POLS (PAPD7) are two human orthologues of yeast Trf4 involved in nuclear 

surveillance of a wide range of nuclear target RNAs [136–139]. Both PAPs also 

polyadenylate aberrant rRNA precursors to target them for degradation [139,140]. PAPD5 

has also been implicated in the processing of small nucleolar RNAs (snoRNAs). PAPD5 

oligoadenylates late intermediates of H/ACA box snoRNAs during 3′-end shortening, which 

are then trimmed by the exonuclease PARN to generate mature 3’-ends [141]. Another 

ncPAP, Star-PAP (RBM21), controls 3′-end processing of mRNAs involved in oxidative 

stress response [20]. Star-PAP also shows uridylation activity toward U6 snRNA substrate 

[23] (discussed in detail in subsequent sections). ZCCHC11 (TUT4) and ZCCHC6 (TUT7) 

are orthologues of yeast Cid1 uridyl transferase with extensive homology to each other and 

regulate diverse RNA species [21,124,142–145]. ZCCHC11 and ZCCHC6 uridylate miRNA 

let-7 precursor through interaction with Lin 28, thus controlling let-7 biogenesis [144,146–
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148]. Further, ZCCHC11 mediated uridylation controls microRNA, miR-26 activity [145]. 

and has also been implicated in histone mRNA degradation [124]. Thus, the existence of 

various canonical and non-canonical PAPs suggests diverse functional significance of PAPs 

in the cell. A list of various human canonical and non-canonical PAPs can be found in Table 

1.

4.4 Star-PAP – a schizophrenic polymerase

Star-PAP (Speckle Targeted PIPKIα Regulated Poly(A) Polymerase) is a nuclear ncPAP 

regulated by lipid messenger phosphatidyl inositol 4,5 bisphosphate (PI4,5P2) [20,149–151]. 

Star-PAP was identified as an interacting partner of phosphatidyl inositol phosphate kinase 

Iα (PIPKIα) [20]. Star-PAP contains a PAP domain split by a proline rich region (PRR) of 

~200 amino acids that is phosphorylated by casein kinase I (CKI) isoforms α and ε 
[152,153]. Star-PAP has two polynucleotide binding domains – a zinc finger (ZF) and an 

RNA recognition motif (RRM), both required for Star-PAP RNA binding [24]. Star-PAP and 

PAPα have similar function but with a distinct mechanism regulating a select set of mRNAs 

[20,24]. Star-PAP along with PIPKIα specifically control genes involved in the oxidative 

stress response such as heme oxygenase-1 (HO-1) and NAD(P)H:Quinone Oxidoreductase 
(NQO-1) [20,152] and the pro-apoptotic gene Bcl-2 interacting killer (BIK) [19].

Star-PAP was initially identified as U6 terminal uridylyl transferase (TUTase), which 

uridylates U6 snRNA [23] involved in cellular splicing [23,154]. Concomitantly, siRNA 

knockdown of Star-PAP was reported to dramatically reduce cell viability. However, the 

exact reason for loss in cell viability is unclear. Given Star-PAP’s apparent role in 3′-

terminal modification of U6 snRNA, it is tempting to think of a global impact of Star-PAP 

on splicing efficiency. However, at present, there is no direct evidence to suggest any role for 

Star-PAP or a U6-TUTase-catalysed reaction in cellular splicing [23,155,156]. Alternatively, 

Star-PAP as a PAP is involved in various cellular processes including stress response and 

apoptosis. Microarray data indicated that a number of Star-PAP targets are genes critical for 

cell survival [19,20]; thus, loss of Star-PAP could result in cell death. Surprisingly, the study 

that identified Star-PAP as a PAP did not report any significant effect of siRNA Star-PAP 

knockdown on the cell viability [20]. In addition, the yeast counterpart Cid11 is not required 

for cell viability [22]. Nevertheless, Star-PAP uridylation activity has been confirmed in 

vitro [20,23].

Is Star-PAP a PAP or a TUTase or both in vivo? Although Star-PAP has both PAP and 

TUTase activities, at the physiological concentration of ATP adenylation activity competes 

over uridylation suggesting a possible predominance of polyadenylation function in the cell 

[20]. Nonetheless, with a clear in vitro TUTase activity of Star-PAP, one can envisage a 

distinct physiological role of Star-PAP uridylation function in the cell. In fact, many ncPAPs 

have both uridylation and adenylation functions [118,121–123,140]. Therefore, it is 

conceivable that Star-PAP has a complex role, for example, while polyadenylation regulates 

a select set of mRNAs, uridylation regulates U6 or other target RNAs. Another possibility is 

that both activities combined result in a heterogeneous 3′-end tail with both A’s and U’s. A 

related example has been reported in fission yeast where few Us were incorporated at the 

end of the 3′-poly(A) tail [157,158]. This modification has been implicated in a new 
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pathway of 5′–3′ mRNA degradation in fission yeast, where addition of short terminal Us at 

the end of polyadenylated mRNAs appears to stimulate decapping and initiates the mRNA 

degradation pathway [158]. Widespread uridylation has also been reported downstream of 

the mammalian mRNA poly(A) tail [72]. Furthermore, Dis3L2, a new 3′–5′ exonuclease, 

involved degradation of oligouridylated RNAs, was recently identified in multiple 

eukaryotes [159–161]. Dis3L2 functions independent of the exosome, and uridylation of its 

targets acts as an RNA decay signal for Dis3L2. Moreover, addition of >10 uridines to the 

3′-end of its miRNA target stimulates Dis3L2’s enzymatic activity in vitro [159–161]. These 

studies also suggest a possible general role of terminal uridylation as signal for RNA decay 

in eukaryotes. Thus, presence of U’s in the poly(A) tail will have a profound impact on the 

functional dynamics of an mRNA. Unfortunately, no sequence information of Star-PAP 

target poly(A) tails is available so far, and hence worthwhile exploring. Such properties, as 

mentioned above, would make Star-PAP schizophrenic in nature, or a truly non-canonical 

enzyme.

5 Mechanism of 3′-end RNA processing – Star-PAP versus canonical PAP

Cis-elements present at the 3′-UTR play an important role in specific cleavage and 

polyadenylation of pre-mRNAs. There are at least four consensus cis-elements at the 

canonical 3′-UTR [7]. The first important motif is a conserved hexamer AAUAAA (PAS), 

which determines the position of the cleavage site. Mutation in this consensus hexamer 

affects the efficiency of 3′-end processing [162,163]. Point mutations in the AAUAAA 

signal have often been linked to human diseases. For example, two point mutations in the 

AAUAAA hexamer have been characterised in patients suffering from thalassaemia 

(AAUAAG in the α2-globin and AACAAA in the β-globin) [164,165]. An A-G point 

mutation (AAUAAA – AAUGAA) in FOXP3 gene results in a rare X-linked autoimmune 

disorder, IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked syndrome) 

[166]. However, variation in the second nucleotide in the consensus hexamer to U 

(AUUAAA) is the most widely occurring PAS after AAUAAA (for reviews [1,167]). Studies 

on human and mouse ESTs have indicated AAUAAA (70%) as the most common hexamer 

followed by AUUAAA (15–20%) among all PAS containing ESTs [76,168]. Analysis of 

human UTRs and ESTs has indicated alternate signals as well. AGUAAA, UAUAAA, 

CAUAAA, GAUAAA, AAUAUA, AAUACA, AUAGA, and ACUAAA are few other widely 

occurring hexamers [168,169]. However, such variants (including the common AUUAAA 

hexamer) are less efficiently processed than the classical AAUAAA [168]. The second 

important cis-element at the 3′-UTR is the cleavage site situated ~15–30 bases downstream 

of PAS. This position of the cleavage site is determined by the locations of both PAS and 

DSE [30,170]. Although the sequence at the cleavage site is not very conserved, in 

vertebrates the majority of the cleavage sites are located immediate downstream of an 

adenosine residue (with preference for A over G), the most optimal site being CA [25,163]. 

In fact, in the human prothrombin gene, the position of the cleavage site is mutated from 

weaker CG to most optimum CA, inducing the expression, to cause a mild thrombophilia 

phenotype [171–173]. The third element is a GU/U-rich DSE located ~20–40 bases 

downstream of the cleavage site, which also influences the position of the cleavage site. It is 

less conserved than the PAS and has either a GU-rich (YGUGUUYY, where Y = 
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pyrimidine) or a U-rich (UUUUU) element [174–177]. And, finally the last cis-element is a 

U-rich, upstream sequence element (USE) situated ~1–20 nucleotides upstream of PAS [7]. 

USEs can influence the efficiency of PAS and/or complement for the suboptimal PAS or 

DSE [35,178–181]. In addition, there are auxilary upstream and downstream sequence 

elements. While the auxiliary upstream sequence mostly contains either U rich (UUUU) or 

UAUA/UGUA, the auxiliary downstream sequences are generally G-rich [182–185] (for 

review [5,25]). They are less conserved in position as well as sequence than the four core 

elements.

Except for the intact AAUAAA signal, Star-PAP target messages harbour other cis-elements 

at the 3′-UTR that are distinct from that of canonical 3′-UTR [19]. Star-PAP targets have 

suboptimal DSEs, with U/GU deplete sequence, which potentially renders CstF dispensable 

for Star-PAP mediated 3′-end processing. In addition, there is no noticeable canonical motif 

like USE; instead, a ~40–60 nucleotides long GC-rich sequence of Star-PAP binding region 

upstream of the PAS is present [19,24]. These variations in the cis-regulatory elements of 

Star-PAP and canonical PAP target 3′-UTRs explain the mechanistic differences of the two 

PAPs. A comparison of the 3′-UTR cis-elements of canonical and Star-PAP regulated genes 

is depicted in Fig. 2.

Recent advances in the understanding of 3′-end processing have indicated distinct 

mechanisms for different PAPs. While PAPα is mechanistically well explored, studies on 

Star-PAP are still emerging. The two PAPs share similar cleavage factors but assemble 

distinct 3′-processing complexes and control specific sets of target mRNAs in the cell. 

Around 85 proteins are associated with the canonical 3′-end processing complex. Emerging 

evidence suggests that Star-PAP may not require all canonical cleavage factors, while 

requiring additional proteins not present in the canonical 3′-end processing machinery. In 

the canonical mechanism, CPSF 160 binds the PAS, cooperates with CstF and CF Im. CPSF 

160 then recruits PAPα through direct interaction at the cleavage site [26,28,29,45]. PAPα 
has low affinity for RNA substrate and lacks RNA binding specificity [100,114]; and no 

precise role of PAPα in the cleavage reaction has been defined. In contrast, Star-PAP 

directly binds pre-mRNA and plays a structural role to assemble the cleavage complex. Star-

PAP directly interacts with CPSF 160 and 73 [19,24]. Star-PAP binding to the pre-mRNA 

and CPSF 160 recruits CPSF 160 to the PAS. CPSF 73 is then recruited to the cleavage site 

by its interaction with CPSF 160 and Star-PAP [24]. The mechanism of canonical PAP and 

Star-PAP mediated 3′-end processing is shown in Fig. 3.

Star-PAP has two RNA binding motifs: a Zinc Finger (ZF) and an RNA recognition motif 

(RRM), both required for mRNA binding [24]. This implies a complex binding motif of 

Star-PAP on its target RNA with multiple nucleotide elements that in combination interact 

with ZF, RRM, or both. This is consistent with the large Star-PAP footprint observed on 

targets, HO-1 and BIK UTR RNA [19,24]. The multiple binding elements could in turn 

enhance both specificity and flexibility for targeting specific pre-mRNAs. Moreover, Star-

PAP and CPSF subunits 160 and 73 reconstitute cleavage of HO-1 UTR RNA in vitro. The 

resulting 3′-cleavage is specific but weak, suggesting that optimum in vivo cleavage requires 

other processing factors [24]. In contrast, no combinations of recombinant cleavage factors 

from the canonical mechanism could reconstitute in vitro cleavage reaction. This 
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demonstrates that Star-PAP mediated 3′-end processing requires different sets of cleavage 

factors. In addition, due to low U/GU DSE on Star-PAP target mRNAs CstF which 

otherwise cooperates with CPSF-RNA binding in the canonical mechanism is likely 

dispensable in the Star-PAP mediated 3′-end processing mechanism [19]. Alternatively, 

different combinations of cleavage factors might function with specific PAPs (Star-PAP and 

PAPα) to regulate distinct target messages.

6 Implications of PAP diversity – Star-PAP vs canonical PAP

While the diversity of cellular PAPs is well known, the significance of PAP multiplicity is 

not clear. Multiple lines of evidence suggest the involvement of different PAPs in distinct 

cellular functions as illustrated by the functional specificities of various canonical isoforms 

and non-canonical PAPs. For example, ncPAPs such as hGLD2 or PAPD1 have specific 

roles in regulating cytoplasmic or mitochondrial mRNAs [118,121,126,135] while canonical 

PAPs such as PAPβ and PAPγ specifically regulate mRNAs during spermatogenesis and 

tumourigenesis respectively [12,15,17]. Moreover, longer canonical PAPα isoforms, I and 

IV exhibit tissue dependent expression [18]. On the other hand, Star-PAP regulates specific 

mRNA targets in the nucleus, which are otherwise inaccessible to PAPα [20,24]. Therefore, 

the regulation of distinct PAPs might differentially control expression of specific mRNAs.

6.1 Multiple types of 3′-end tail formation

There are two basic types of 3′-end tails reported so far: poly(A) tail and short terminal (U)-

tail, both of which can have either destabilising or stabilising functions on RNA target. For 

example, poly(A) tails on mRNAs primarily confer stability to the transcript, while 

polyadenylation of aberrant tRNAs targets them for degradation [139,140]. Such 

destabilising function of poly(A) tail is well established in prokaryotic polyadenylation 

[186,187]. In general, polyadenosine tail present on mRNA 3′-ends can be either long 

poly(A) tail with stabilising function as in regular mRNA formation, or shorter (A) tail that 

destabilises RNA for degradation [9]. Further, small RNAs such as miRNAs as well as 

histone mRNAs are 3′-uridylated, apparently destabilising the RNA [123,124,188,189]. In 

contrast, oligo (U)-tailing of human U6 snRNA has a stabilising function [23,188]. In yeast, 

an additional type of 3′-end tail has been reported where the poly(A) tail is followed by a 

short U tract that results in degradation of the mRNA [158]. PAPα forms poly(A) tail at the 

3′-end, and Star-PAP makes both poly(A) tails (like canonical PAPα) and also short 

terminal U tails (like a non-canonical PAP) to distinct target RNAs. Given the enzymatic 

character of Star-PAP and the number of target mRNAs it controls [20,23], there could be 

yet another type of a heterogeneous 3′-end tail having both As and Us in the cell. Such tails 

would have entirely different properties from that of either poly(A) or U tails [157,190].

6.2 Specificity for target mRNAs

It is clear that the two nuclear PAPs PAPα and Star-PAP control distinct mRNA targets in 

the nucleus. However, it is unclear why Star-PAP target mRNAs are specific to Star-PAP and 

not accessible to PAPα, and vice versa. A possibility for the specificity is the Star-PAP 

binding to its target pre-mRNA. Star-PAP footprint on its targets HO-1 and BIK pre-mRNA 

indicated a GC-rich sequence ~40–60 nucleotides upstream of the cleavage site [19,24] 
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which is present on all Star-PAP target mRNAs [19]. RNA-compete analysis has also 

identified a specific Star-PAP (TUT1) binding oligonucleotide (-AUA-) motif [191]. This 

motif is present within the GC-rich sequence of Star-PAP footprints of all target mRNAs so 

far studied [19,24], suggesting that this motif might provide selectivity to Star-PAP for its 

target messages. However, this fails to explain why PAPα cannot process Star-PAP target 

messages even though intact canonical AAUAAA signal and cleavage site are present. 

Sequence analysis has shown a U/GU deplete DSE in Star-PAP target pre-mRNAs, which is 

critical for CstF binding [19]. Therefore, another possible explanation for PAPα exclusion 

from the Star-PAP regulated transcripts could be the low U/GU sequence (suboptimal DSE), 

which renders the pre-mRNA inaccessible to CstF, thus preventing the recruitment of PAPα. 

However, some of the Star-PAP target pre-mRNAs still possess DSE albeit weaker than the 

canonical counterparts [24]. Therefore, yet another explanation is the involvement of trans-

acting factors that bind the pre-mRNA along with Star-PAP and confer specificity to Star-

PAP targets. Like Star-PAP, other PAPs are also likely to have distinct sequence elements at 

the 3′-UTRs that determine the specificity of each PAP.

6.3 Signalling mediated regulation of polyadenylation

Star-PAP is regulated by signalling pathways through distinct kinases. Like Star-PAP, PAPα 
too is regulated by phosphorylation; however, the extracellular signal that triggers PAPα 
phopshoryation is unclear. Several serine and threonine residues within the extended C-

terminus of PAPα are phosphorylated by cdc2-cyclin B [105,106]. During the mitotic phase 

of the cell cycle, this region is hyperphosphorylated to inhibit PAP activity, which is then 

reversed in the G1 phase [106]. Thus, this exemplifies a conditional or temporal regulation 

of PAP by phosphorylation as per cellular requirements. In addition, reports suggest that 

phosphorylation of PAPα by ERK kinase promotes the PAP activity [192]. PAP 

phosphorylation could also modulate the interaction with other cleavage factors to regulate 

distinct cellular functions. Thus, regulation of PAP could be an important mechanism for the 

cellular control of gene expression.

On the other hand, Star-PAP activity and its target gene expressions are stimulated by 

oxidative stress and nuclear PI4,5P2 [20,24]. The kinases and upstream signalling events 

modulating Star-PAP upon stress induction or DNA damage are well defined. Star-PAP 

associates with Ser/Thr kinase casein kinase I (CKI) [193,194], and protein kinase Cδ 
(PKCδ) [195–197]. Star-PAP is phosphorylated at the proline rich region (PRR) in the 

catalytic domain by CKI isoforms α and ε, which is critical for Star-PAP activity [152,153]. 

Knockdown of casein kinase or dephosphorylation of Star-PAP resulted in diminished Star-

PAP activity. The PRR contains several putative CKI phosphorylation sites, and is likely to 

be phosphorylated at multiple sites. Both CKI isoforms together regulate 3′-processing of 

Star-PAP target HO-1 mRNA [153]. Oxidative stress treatment resulted in the induction of 

Star-PAP phosphorylation indicating the involvement of a stress signalling pathway coupled 

with phosphorylation to regulate Star-PAP.

Unlike the CKI isoforms, PKCδ regulates Star-PAP activity downstream of DNA damage 

signalling [19]. PKCδ interacts with and phosphorylates Star-PAP. Interestingly, PKCδ is 

required for the DNA damage signal induced Star-PAP activity, but not for the oxidative 
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stress induced pathway. While CKI and the stress induced pathway regulate genes involved 

in oxidative stress response such as HO-1 and NQO-1, DNA damage and PKCδ regulate the 

pro-apoptotic gene BIK. This signifies a signal mediated differential regulation of Star-PAP 

target genes. Thus, modulation of PAP by different signalling pathways regulates genes 

involved in distinct cellular functions suggesting that PAPs act as regulatory molecules that 

alter gene expression to mediate selective or conditional gene expression. Differential 

regulation of Star-PAP by distinct signalling pathways is depicted in Fig. 4.

6.4 Alternative polyadenylation

The requirements of distinct cis-elements at the 3′-UTR of Star-PAP target genes have been 

discussed above. All nuclear pre-mRNA UTRs can have either Star-PAP specific or 

canonical PAP specific cis-element (poly(A) site). Reports indicate that more than 50% of 

mRNAs have multiple poly(A) sites at their 3′-UTRs [76]. It is likely that at least few of 

such mRNAs contain both Star-PAP and PAPα specific cis-elements at the 3′-UTR. This 

would result in alternate selection of poly(A) sites by poly(A) polymerases. The regulation 

of specific mRNAs or target 3′-UTRs by distinct canonical PAP isoforms has been reported 

in plants [117]. Several Star-PAP target genes identified in the microarray analysis also 

harbour more than one poly(A) site [20]. For example, NQO-1 has three poly(A) sites of 

which mRNA encoded by the most distal site is induced by the toxin dioxin.[198]. 

Knockdown of Star-PAP resulted in the loss of NQO-1 expression [20] suggesting that Star-

PAP controls one or more poly(A) sites of NQO-1. In addition, expressions of some Star-

PAP target genes are only partially diminished upon Star-PAP knockdown [20]. Such genes 

could represent a set of APA regulated genes where loss of Star-PAP regulated mRNA 

isoform is compensated by the expression of alternate isoforms from PAPα controlled 

poly(A) site(s) – a novel mechanism of APA site selection by PAPs.

7 PAP switch/PAP selection enigma at the 3′-end

It is evident that Star-PAP and PAPα assemble distinct 3′-end processing complexes. PAPα 
is not detected in the Star-PAP 3′-end processing complex and vice versa [20,24]. 

Intriguingly, there has been growing evidence that 3′-end processing factors are closely 

linked to the promoter, and at least in some cases may ride with RNA Pol II complex to 3′-

end [199–204] (for review [205]). Evidence suggests that 3′-processing factor(s) such as 

CPSF are delivered to the promoter by transcription factor TFIID and then transferred to the 

elongating RNA pol II CTD [200,201]. Other studies also suggest the recruitment of 3′-end 

processing factors such as CPSF and CstF at the 5′-end [206]. Consistently, in yeast 

cleavage factors CFI and PFI have been detected with RNA Pol II starting at the promoter 

[201]. Since 3′-end processing factors exist in a tight complex, it is likely that they may all 

be detected in association with RNA Pol II either at the promoter, or after RNA Pol II clears 

the promoter (for reviews [205,207,208]). Since PAPs directly interact with CPSF [24,26], it 

is possible that PAPs associate with RNAP-CPSF complex during transcription. However, at 

this point there is no direct evidence that shows PAP association with RNA Pol II. 

Nevertheless, ChIP experiments have shown that yeast PAP1 is localised at the promoter, 

though it is preferentially bound at the 3′-UTR [209]. Thus, PAPs could join RNA Pol II via 
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CPSF interaction during transcription elongation/initiation, or be recruited specifically to the 

3′-end.

Both scenarios raise an important question: what determines the choice between the two 

PAPs (Star-PAP and canonical PAPα) to function at a particular 3′-UTR? There are two 

possible models for the PAP specificity at the 3′-UTR: PAP selection, or 3′-PAP switch. In 

the PAP selection model specific cis-elements on the 3′-UTR RNA select the required PAP. 

Alternatively, in the PAP switch model the canonical PAPα predominantly associates with 

3′-RNA processing-transcription complex at the 3′-UTR of all pre-mRNAs. However, a 

PAP switch occurs at the 3′-UTR of Star-PAP target mRNAs, to Star-PAP due to its specific 

binding to mRNA to assemble a stable 3′-processing complex. This model is shown in Fig. 

5. This mechanism of PAP selection/switch can be extrapolated to other PAP isoforms as 

well. However, at present what factors drive the PAP selection/switch remains to be 

determined.

8 Conclusion

In recent years, much progress has been made towards the understanding of 3′-end 

processing mechanisms mediated by the two nuclear PAPs. Nevertheless, some key 

questions remain unaddressed, including the physiological significance for such variations in 

polyadenylation mechanisms. Indeed, the Star-PAP mediated 3′-processing complex could 

offer an advantage of selective regulation while employing canonical 3′-processing factors 

[24]. Star-PAP target genes such as HO-1 and NQO-1 are inducible stress response genes 

stimulated during oxidative stress [210–212]. The particular mechanism of Star-PAP 

dependent cleavage and its selective stimulation by oxidative stress will help home in and 

induce stress response genes while excluding global processing events that should remain 

unaffected during oxidative stress. Thus, temporal and/or specific stimulation of genes can 

occur through modulation of distinct PAPs, under different signalling conditions.

Current data demonstrate that diverse PAP populations function in the cell. Is the 

multiplicity of PAPs a cellular necessity or another functional redundancy in the cell? The 

answer is unknown but growing evidence suggests that the modulation of different PAPs 

regulate distinct cellular functions. For example, Star-PAP and PAPα are modulated by 

different kinases and signalling pathways to control expression of distinct target messages. 

Not only different PAPs but also distinct isoforms of canonical PAPα are differentially 

expressed, and are likely to regulate genes conditionally, or in a tissue dependent manner 

[12,17,18]. In conclusion, the existence of differentially regulated diverse PAP populations 

immensely benefits the cellular machinery for gene regulation. Although research over the 

last decade has considerably improved our knowledge on PAP functions, further studies are 

required to unravel how distinct PAPs attain specificity for their target transcripts and/or 3′-

UTR selection.
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Fig. 1. 
Schematic representation of the domain architecture of human PAPs. Canonicals – PAPα, 

three functional splice isoforms, PAPβ (PAPT), PAPγ (neoPAP); and non-canonicals – Star-

PAP, hGLD2 (PAPD4), hmtPAP (PAPD1), ZCCHCH11 are shown. All canonical PAPs 

including the splice isoforms have similar structural organisation (except divergence at the 

C-terminus), comprising a catalytic domain (PAP domain) – red, an RNA binding domain – 

blue, nuclear localisation signals – green, and a C-terminal Ser/Thr rich regulatory region – 

brown. Non-canonical PAPs have diverse organisation comprised of a catalytic domain (PAP 

or PUP) – red, a PAP associated domain – yellow, RNA recognition motifs (such as ZF – 

orange, Lucine Zipper – magenta, an RNA binding domain – blue, RNA recognition motif – 

light blue), and Nuclear localisation signals – green. In addition, Star-PAP PAP domain is 

split by a proline rich region (pink). The size of each protein is indicated (not to scale).
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Fig. 2. 
3′-UTR consensus cis-elements of canonical and Star-PAP target 3′-UTRs. The canonical 

3′-UTR has distinct consensus elements such as the AAUAAA poly(A) signal, cleavage site 

~15–30 nucleotide downstream of PAS, G/GU rich DSE and a U-rich USE (for a review see 

Ref. [7]). In case of Star-PAP target mRNAs, except for the intact PAS (AAUAAA), they 

have suboptimal DSEs (deplete U sequence), and no regular USE present; instead, a GC-rich 

Star-PAP binding region is found around 40–50 nucleotides upstream of the cleavage site is 

present.
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Fig. 3. 
A comparative model of the assembly of canonical and Star-PAP mediated 3′-end 

processing complexes. In the canonical model, CPSF 160 recognises the PAS and cooperates 

with CstF and CF Im and other factors to assemble a stable cleavage complex. The CPSF 

complex then recruits PAPα to the cleavage site by virtue of CPSF 160 direct interaction to 

PAPα (for a review see Refs. [1,4,5,7,8]). hFIP 1 also interacts with PAP to help position 

PAPα to the cleavage site. In case of Star-PAP mediated 3′-end processing, Star-PAP 

directly binds the target pre-mRNA UTR, a GC-rich sequence upstream of poly(A) signal, 

and helps recruit CPSF 160 and 73 subunits to the cleavage site to assemble a stable 

cleavage complex (see Refs. [20–22]). This complex subsequently excludes PAPα from the 

Star-PAP target UTRs.
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Fig. 4. 
Model for signal mediated regulation of Star-PAP to differentially control the 3′-end 

processing of distinct target messages. Various signal transduction components integrate into 

the Star-PAP 3′-end processing complex downstream of the signalling pathway, to regulate 

different target genes. In this model, casein kinase (isoforms α and ε) works downstream of 

oxidative stress to specifically regulate stress response genes HO-1 and NQO-1 through 

Star-PAP. On the other hand, PKCδ works in concert with DNA damage signal to regulate 

proapoptotic gene BIK through Star-PAP. The PKCδ mediated pathway is independent of 

oxidative stress regulation and vice versa. Thus, Star-PAP acts as a central regulatory 

molecule at the 3′-end of a gene that differentially controls the expression of target genes 

through various kinases and signalling molecules.
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Fig. 5. 
3′-PAP switch/PAP selection model. In this model, a PAP switch/selection at the 3′-end of a 

gene favouring a particular PAP is determined by the cis-elements present on the target UTR 

RNA.
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Table 1

List of various human canonical and non-canonical PAPs.

Name of the PAP Localisation Functional significance Reference

Canonical PAP

      PAPα
      PAP I
      PAP II
      PAP III
      PAP IV
      PAP V
      PAP VI

Nuclear PAP II is the most predominant PAP; involves in general 3′-end 
processing of all nuclear nascent pre-mRNAs
(PAP I and IV – function not clear, likely similar to PAP II)
PAP V, III, VI are truncated inactive form, Do not encode 
functional proteins

[16,18,94,102,114]

PAP β (PAPT) Nuclear/Cytoplasmic Testes specific – spermatogenesis [12,15]

PAP γ/neoPAP Nuclear Tumourigenesis, monoadenylation activity towards small RNA [13,17,112]

Non-canonical PAP

PAPD1 (hmtPAP) Mitochondrial Mitochondrial mRNA stabilisation, histone mRNA degradation, 
stop codon regeneration

[118,120–123]

PAPD4 (hGld2) Nuclear/cytoplasmic Cytoplasmic mRNA polyadenylation, miRNA stabilisation [122,125,126,128]
For review [127,129]

PAPD5 Nuclear Aberrant rRNA degradation, histone degradation, processing of 
snoRNAs, various other RNA targets

[21,139–141]

POLS (PAPD7) Nuclear Not clearly defined, likely redundant to PAPD5 [21,140]

ZCCHC6 (TUT 4) Nuclear Similar to ZCCHC11; regulate Let 7 biogenesis [147,157]

ZCCHC11 (TUT 6) Nuclear miRNA regulation (let7, mi26a and others), histone mRNA 
degradation

[124,143,147,157]

Star-PAP (RBM 21, TUT1) Nuclear Oxidative stress response, DNA damage induced apoptosis and 
various other cellular functions

[19,20,23,24]
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