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Abstract

Background: Morbidity due to Schistosoma haematobium and hookworm infections is marked in those with intense co-
infections by these parasites. The development of a spatial predictive decision-support tool is crucial for targeting the
delivery of integrated mass drug administration (MDA) to those most in need. We investigated the co-distribution of S.
haematobium and hookworm infection, plus the spatial overlap of infection intensity of both parasites, in Ghana. The aim
was to produce maps to assist the planning and evaluation of national parasitic disease control programs.

Methodology/Principal Findings: A national cross-sectional school-based parasitological survey was conducted in Ghana in
2008, using standardized sampling and parasitological methods. Bayesian geostatistical models were built, including a
multinomial regression model for S. haematobium and hookworm mono- and co-infections and zero-inflated Poisson
regression models for S. haematobium and hookworm infection intensity as measured by egg counts in urine and stool
respectively. The resulting infection intensity maps were overlaid to determine the extent of geographical overlap of S.
haematobium and hookworm infection intensity. In Ghana, prevalence of S. haematobium mono-infection was 14.4%,
hookworm mono-infection was 3.2%, and S. haematobium and hookworm co-infection was 0.7%. Distance to water bodies
was negatively associated with S. haematobium and hookworm co-infections, hookworm mono-infections and S.
haematobium infection intensity. Land surface temperature was positively associated with hookworm mono-infections and
S. haematobium infection intensity. While high-risk (prevalence .10–20%) of co-infection was predicted in an area around
Lake Volta, co-intensity was predicted to be highest in foci within that area.

Conclusions/Significance: Our approach, based on the combination of co-infection and co-intensity maps allows the
identification of communities at increased risk of severe morbidity and environmental contamination and provides a
platform to evaluate progress of control efforts.
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Introduction

Parasitic infections caused by Schistosoma haematobium (the

aetiological agent of urinary schistosomiasis) and hookworm (a

soil-transmitted helminth; STH) are widely endemic among

human populations in sub-Saharan Africa (SSA) [1,2]. The

geographical distribution of these infections is known to be driven

by environmental and climatic factors that influence parasite

populations and those of the snail intermediate host of schisto-

somes [3]. Additionally, socioeconomic inequalities in human

populations at risk, particularly in access to clean water and

sanitation, housing, and the access to treatment impact on the

observed distribution of these parasitic infections [2,4]. Control

efforts rely on accurate geographical identification and enumer-

ation of populations most at risk of morbidity (i.e. co-infected and/

or with intense infections) [5,6]. Morbidity, including iron-

deficiency anaemia, reduced growth and impaired cognition, is

exacerbated by multiple species infections (co-infection) and high

parasite burden (i.e. high infection intensity) [7]. Although co-

infection and infection intensity are the indirect morbidity

indicators most sensitive to changes in parasite transmission,

contemporary control programs based on mass drug administra-

tion (MDA) are planned according to the identification of

communities above established single-species prevalence of

infection thresholds [8,9].
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The number of adult worms is particularly difficult to measure

and a proxy for infection intensity is often used such as the egg

concentration in urine (in the case of S. haematobium) or in stool (in

the case of intestinal schistosomiasis and STHs). The number of

eggs that are passed in the urine or stool is determined by

important non-linearities in worm life-cycles such as fecundity of

female worms and density-dependent development [10,11]. In

endemic populations, the occurrence of infections that lead to high

egg output determines the level of environmental contamination

which partly contributes to transmission. Therefore, targeting

treatment delivery to communities with a high proportion of co-

infected and/or to those with high egg output could lead to more

efficient reduction of transmission and severe morbidity compared

to targeting treatment based on prevalence of single infections.

With the aim of assisting the planning and implementation of

MDA, model-based geostatistics (MBG) has been used to produce

predictive empirical maps of prevalence of infection at different

spatial scales [12–16]. The MBG approach provides an extensive

set of spatial modeling tools for assessing the geographical overlap

of multiple parasite infections [17]. One approach is overlaying

prevalence of infection maps for multiple parasites (i.e. co-

endemicity mapping) [18]; alternatively, spatial multinomial

models can be used to predict the prevalence of mono- and co-

infection [3,19]. Recently, Brooker et al. [3] have mapped S.

mansoni and hookworm mono- and co-infection in the East African

region; thus far no studies have been reported at the national or

regional scale in West Africa.

Examples of MBG studies that have analysed the spatial

distribution of single-species intensity of infection are available in

the literature [13,20,21]. We have recently suggested extending

this approach to the overlay of predictive maps of intensity of

infection (i.e. mapping co-intensity) to allow the identification of

common areas of high transmission of multiple parasite species

where integrated treatment could be prioritized [17]. To date

there are no reported studies in the literature that have mapped

co-intensity profiles.

Recently, with financial and technical support from the

Schistosomiasis Control Initiative (SCI), three contiguous coun-

tries in the Sahelian zone of West Africa (Burkina Faso, Mali and

Niger) conducted coordinated national cross-sectional school-

based parasitological surveys [22]. Based on these surveys,

Bayesian geostatistical analyses were conducted for estimating

the geographical distribution of S. haematobium and S. mansoni

infection metrics in these countries [13,14,23]. An important

country in the region with respect to helminth transmission is

Ghana. The construction of the Akosombo dam from 1962 to

1967, created a vast area now known as Lake Volta (approxi-

mately 8,500 km2) suitable for the breeding of freshwater snails

that serve as intermediate hosts of schistosomiasis. Since then,

schistosomiasis in Ghana assumed major importance as a public

health problem in the country, and the prevalence of S.

haematobium rose from 5–10% before the construction of the dam

to .90% in most communities along lake Volta [24–28].

Similarly, the construction of numerous agricultural dams

throughout the Upper East Region between 1958 and 1964

resulted in a rise in prevalence of S. haematobium from 17% to 51%

[29]. Studies in children 15–19 years of age in the North Western

Region [30] and in the Southern Region of Ghana [31,32,33]

have yielded prevalence estimates of 34% and 60–83.9%,

respectively. In a study in infants (1–5 years of age) in the Central

region the prevalence of urinary schistosomiasis was estimated to

be 11% [34].

Prior to the commencement of the Ghana Health Service

Neglected Tropical Disease (GHS NTD) program in five regions

(Upper West, Upper East, Northern, Western, and Central) in

2008, national teams collected data for the national mapping of

schistosomiasis and STHs with technical assistance of SCI. Before

the inception of the GHS NTD program, limited effort had been

carried out in a few areas around Lake Volta and no sizeable

MDA of schistosomiasis had been implemented in the country.

Incidentally for STHs, the Global Program to Eliminate

Lymphatic Filariasis (GPELF) was ongoing in lymphatic filariasis

(LF)-endemic areas (mainly in the west and north of the country),

distributing ivermectin plus albendazole. Therefore the data

collected truly represent the burden of schistosomiasis and STH

infections before the implementation of the nationwide program.

In this paper, we describe data from the 2008 pre-intervention

national helminth survey in Ghana and predict for the first time

the prevalence of S. haematobium and hookworm mono- and co-

infections and intensity of infection, as measured by egg counts, in

Ghana. We hypothesize that the combined use of co-infection and

co-intensity maps has the potential to further broaden the range of

spatial predictive decision-support tools to aid targeting the

delivery of integrated MDA and may constitute an important

cartographic resource to evaluate progress in morbidity control.

The aims are to identify communities in Ghana where the

integrated distribution of praziquantel and albendazole could be

prioritized to maximize the impact on morbidity and generate

output maps which can constitute an evidence base to be used by

GHS NTD program managers for the evaluation of ongoing

interventions.

Materials and Methods

Ethics Statement
Ethical approval for these surveys was obtained from Imperial

College Research Ethics Committee UK and the Ghana Health

Service Ethical Review Committee in Ghana. The official letters

were sent by the Ghana Health Service to the Regional and

District health and educational authorities in advance. All data

Author Summary

Urinary schistosomiasis and hookworm infections cause
considerable morbidity in school age children in West
Africa. Severe morbidity is predominantly observed in
individuals infected with both parasite types and, in
particular, with heavy infections. We investigated for the
first time the distribution of S. haematobium and
hookworm co-infections and distribution of co-intensity
of these parasites in Ghana. Bayesian geostatistical models
were developed to generate a national co-infection map
and national intensity maps for each parasite, using data
on S. haematobium and hookworm prevalence and egg
concentration (expressed as eggs per 10 mL of urine for S.
haematobium and expressed as eggs per gram of faeces
for hookworm), collected during a pre-intervention base-
line survey in Ghana, 2008. In contrast with previous
findings from the East Africa region, we found that both S.
haematobium and hookworm infections are highly focal,
resulting in small, localized clusters of co-infection and
areas of high co-intensity. Overlaying on a single map the
co-infection and the intensity of multiple parasite infec-
tions allows identification of areas where parasite envi-
ronmental contamination and morbidity are at its highest,
while providing an evidence base for the assessment of
the progress of successive rounds of mass drug adminis-
tration (MDA) in integrated parasitic disease control
programs.

Helminth Co-Infection and Co-Intensity
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collection activities were carefully explained to, and oral consent

was obtained from traditional authorities and other opinion

leaders in the village (the village head, elders and political leaders),

the school headmasters, the parent-teachers association, the

representative of the pupils’ parents and the local health

authorities. All parents/guardians of all children involved in the

study provided consent; parents/guardians who did not want their

children to participate informed the school authorities. Child

participants were given an explanation of the data collection

activities and were free not to participate if they so chose. Written

consent was not obtained and oral consent was approved by the

ethics committee involved because the survey was considered by

the UK and Ghanaian ethical committees as part of the

monitoring and evaluation of routine health activities carried out

by the GHS NTD control program. Representatives of parent-

teacher associations were invited to be present during the sample

collection process. Most of the parents who showed up at the

school were there to ensure that their children had the opportunity

to participate. They were also given the opportunity to have a look

at microscope slides that had the parasite eggs present.

Data
The parasitological data for this study were collated from

national, school-based parasitological surveys conducted in Ghana

in 2008 with the support from the SCI [9]. These surveys were

originally designed and implemented with the objective of

mapping urinary schistosomiasis, which is the most prevalent

form of schistosomiasis in West Africa [22,35]. As the geographical

coordinates of the schools were not known, but the district and

locality (rural or urban) of each school is known, a stratification

procedure was used to select the schools such that schools in rural

communities or districts that were adjacent to Lake Volta were

twice as likely to be sampled as schools in urban communities or

districts that were not adjacent to Lake Volta. Districts were

stratified into 4 strata: a) those adjacent to Lake Volta (stratum 1);

b) districts not adjacent to the lake (stratum 2); c) schools which are

located in rural areas (stratum 3); and d) schools which are located

in urban areas (stratum 4). The stratum that is adjacent to the lake

(stratum 1) was sampled twice as densely as the stratum away from

the lake (stratum 2) to ensure that accurate estimates of

schistosomiasis are obtained. The rural stratum was sampled

more densely than the urban stratum to ensure there were enough

data for rural areas which are expected to have higher prevalence

of both schistosomiasis and soil-transmitted helminths. To ensure

good geographical coverage of the survey area the number of

schools to be selected from each district was calculated

proportional to the size of the district. The area of each district

was calculated using a geographical information system (GIS).

The sample size was calculated to give the same spatial density

of schools as for similar surveys from neighbouring West African

countries also supported by SCI (i.e. Burkina Faso, Mali and

Niger) [13,14]. It was decided to survey 77 schools and select at

random 60 children (30 boys and 30 girls) in each school when

possible. The sampling frame for school selection consisted of a list

of all schools in the country, stored in a Microsoft Excel

2007spreadsheet. Children were selected from within the selected

schools using systematic random sampling of class lists. Selected

children were assembled and asked to provide a stool and urine

sample. A total of 4,577 children aged 2–19 year old were tested;

these correspond to 43 fewer children than expected because fewer

children were sampled in some schools; these schools were evenly

distributed across the country. Stool samples provided by each

child were used to make two slides which were examined

microscopically using the semi-quantitative Kato-Katz technique

for the eggs of STHs (Ascaris lumbricoides, Trichuris trichiura and

hookworm) and Schistosoma mansoni. After collection of stool

samples these were processed immediately and slides were

prepared and examined in the field laboratory by experienced

microscopists in diagnosing schistosomiasis and STHs, within

2 hours of preparation to increase detection of the more labile

hookworm eggs, by the Kato-Katz thick smear technique using a

41.7 mg template [36]. The concentration of eggs was expressed

as eggs per gram of faeces (epg). From urine samples, up to 10 mL

were filtered through a polycarbonate membrane and the number

of eggs of S. haematobium were counted and expressed as eggs per

10 mL of urine. The geographic location of the school was

determined using a handheld global positioning system device.

The dataset for analysis included data from 4,445 children aged 5–

19 years located in 77 schools from which complete demographic

and parasitological information was available. A summary of the

prevalence of each parasite for the study area is presented in

Table 1, showing that T. trichiura was a rare STH infection in the

study area. The prevalence of S. mansoni was also very low in

comparison to that of S. haematobium. In our analyses we considered

the data for S. haematobium and hookworm only because multiple

infections with these parasites are known to be associated with

pronounced morbidity, including anaemia [21].

The survey data were summarized by prevalence of mono- and

co-infections and arithmetic mean infection intensity, by survey

location. These summary data were plotted in ArcGIS version 10

(ESRI, Inc). To provide robust confidence intervals around the

mean prevalence in Ghana prevalence estimation took into

account the clustered design of the sampling, using the school as

a primary sampling unit and including adjustments for the

probability of sampling and finite population corrections for

sampling without replacement in the Stata/SE 11.0 statistical

package (StataCorp, College Station, Texas, USA). This was based

on the assumption that children attending the same school would

be more likely to have more similar exposures than children

attending other schools. Electronic data for land surface

temperature (LST) and normalised difference vegetation index

(NDVI) were obtained from the National Oceanographic and

Atmospheric Administration’s (NOAA) Advanced Very High

Radiometer (AVHRR; see Hay et al. [37] for details on these

datasets) and the location of large perennial inland water bodies

was obtained from the Food and Agriculture Organization of the

United Nations (http://www.fao.org/geonetwork/srv/en/main.

home). Values for LST, NDVI and distance to the nearest

perennial inland water body (PIWB) were extracted in ArcGIS

version 10.0 (ESRI, Inc) for each survey location.

Spatial Risk Model of Parasite Co-Infection
The initial set of variables included the individual-level variables

of sex and age (categorized into 5–9, 10–14 years and 15–19 years)

and the school-level variables of NDVI, LST and distance to

PIWB. Fixed-effects multinomial regression models of S. haemato-

bium/hookworm co-infections were developed in a frequentist

statistical software package (Stata version 10.1, Stata Corporation,

College Station, TX). A quadratic association between LST and

prevalence was assessed and was not found to improve model fit

(using Akaike’s Information Criterion [38]); distance to PIWB was

significantly and negatively associated with prevalence of co-

infection. NDVI was not found to be significantly associated with

prevalence of co-infection in the preliminary multivariable models

and was excluded from further analysis (Wald’s P.0.2). Therefore,

it was decided to enter LST and distance to PIWB as covariates

into the final spatial models in WinBUGS. In the MBG co-

infection model, individual raw survey data were aggregated into

Helminth Co-Infection and Co-Intensity
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groups according to age group, sex and location and using four

infection outcomes (i.e. 1 = Without infection; 2 = S. haematobium

mono-infection; 3 = hookworm mono-infection and 4 = S. haema-

tobium-hookworm co-infection). In this model the baseline category

was ‘‘Without infection’’. Statistical notation of Bayesian geosta-

tistical models is presented in Text S1.

Spatial Risk Models of Parasite Infection Intensity
Individual egg count data were used as a proxy of worm burden

in the models of infection intensity. Infection intensity can be

modeled by transforming parasite egg counts into an ordinal or

nominal categorical variable based on World Health Organization

(WHO) cut-offs (not infected, light-intensity infection, moderate

and high-intensity infection) [39] and using a multinomial

distribution for the stratified intensity outcomes. However, the

multinomial approach involves stratifying egg counts, leading to a

loss of information whereas the Poisson or the negative binomial

approach make full use of infection intensity data on a continuous

scale (as measured by number of eggs found in both slides per

individual) [40]. Usually, only a small proportion of the infected

population excretes large numbers of parasite eggs. Therefore,

infection intensity data typically contain many zero egg counts due

to the aggregation of parasite distribution among hosts (also

referred to as over dispersion) [41] and the presence of false

negatives [42]. The large number of zero counts suggests the data

are over dispersed relative to the Poisson distribution, the usual

discrete probability distribution used for count data. To address

this problem, the zero-inflated Poisson (ZIP) or the zero-inflated

negative binomial (ZINB) regression models could be used

[21,43,44]. The best fitting distributional form of parasite egg

counts was investigated using the nbvargr command in Stata version

11 (Stata Corporation, College Station, TX); this assessment

provided statistical support to consider the ZIP distribution as the

best possible fit to the data for both parasites. We then developed

univariate and multivariate models of parasite egg counts using

ZIP models for each parasite species in Stata version 11. The

variable screening approach was similar to that outlined above for

models of co-infection and for S. haematobium and hookworm it was

decided to enter untransformed LST and distance to PIWB as

environmental covariates into the final spatial models in Win-

BUGS. We have applied a MBG ZIP model following an

approach which is similar for prediction of prevalence, using the

same candidate set of predictor variables and geostatistical random

effects as the ones used in the co-infection model. The main

difference was that the outcome, rather than being binary

(infected/not infected), was a count [epg (for hookworm) or eggs

per 10 mL of urine (for S. haematobium)] modeled using a Poisson

distribution for the mean intensity models. With a ZIP model there

are two processes that have to be considered, 1) the zero inflation

model and 2) the (positive) expectation of the response for the

distribution of the Poisson (or other distribution) part of the model.

The marginal (or overall) expected value of the response is the

expected value of the Poisson part shrunken by an amount

proportional to the zero inflation probability [45]. Statistical

notation of MGB ZIP models is presented in Text S2.

Parameter Estimation, Spatial Prediction and Model
Validation

The spatial models were fitted in WinBUGS version 1.4

statistical software (Medical Research Council Biostatistics Unit,

Cambridge, United Kingdom and Imperial College London,

United Kingdom) and were based on MBG [46]. For each model

(i.e. single infection intensity models and the multinomial model of

co-infection) a burn-in of 5,000 iterations was used followed by

5,000 iteration intervals after which convergence was assessed

using visualization of history and density plots of the series of

posterior values. Bayesian model outputs for parameters of interest

and for predictions at unsampled locations are probability

distributions, termed posterior distributions, which represent the

probability of a variable of interest taking each of a range of

plausible values. The posterior distributions can be summarized by

statistics such as the posterior mean and 95% Bayesian credible

interval (BCI). For model coefficients, significance at the 5% level

is defined by a 95% BCI that excludes zero.

In all models, convergence of model parameters was successfully

achieved after 20,000 iterations and the model was run for a

further 10,000 iterations, after which the predicted prevalence for

each outcome group at unsampled locations was stored for boys of

15–19 years of age. The models developed allow production of

predictive maps of co-infection and infection intensity for all age

groups and sexes – for mapping purposes we chose to map boys

aged 15–19 years, as this was the group with the highest risk of co-

infection and the highest hookworm intensities of infection.

Predictions were made at the nodes of a 0.160.1 decimal degree

grid (approximately 12 km2) by adding (on the logit scale) the

following: 1) the sum of the products of the coefficients for the

fixed effects and the values of the fixed effects at each prediction

locations, and 2) the interpolated random effect. The latter was

Table 1. Prevalence of infection and infection intensity profile for schistosomiasis and soil-transmitted helminthiasis in Ghana,
2008.

Parasite
Without infection
(n; %)

Mean infection
prevalence (95% CI)*

Mean infection
intensity (95% CI)*

Light-intensity
infections (n; %)

Moderate-intensity
infections (n; %)

Heavy-intensity
infections (n; %)

S. haematobium1 3,803; 83.09 16.91 (15.82, 18.00) 23.09 (18.67,27.51) 447; 57.8 none 327; 42.2

S. mansoni{ 4,526; 98.89 1.11 (0.81, 1.42) 3.71 (1.94,5.47) 17; 33.3 25; 49.0 9; 17.7

Hookworms¥ 4,397; 96.07 3.93 (3.37, 4.50) 4.44 (2.95,5.92) 180; 100.0 none none

A. lumbricoidesx 4,439; 96.98 3.02 (2.52, 3.51) 9.36 (3.08,15.65) 135; 97.8 3; 0.1 2.2 none

T. trichiuraf 4,556; 99.54 0.46 (0.26, 0.66) 0.36 (0.12,0.61) 21; 100 none none

*the confidence intervals (CIs) account for clustered survey design. The total sample size is 4,577 children.
1light infection ,50 eggs/10 mL, heavy infection: .50 eggs/10 mL;
{light infection: 1–99egs per gram of faeces (epg), moderate infection: 100–399epg, heavy infection: .400epg;
¥light infection:1–1,999epg, moderate infection: 2,000–3,999epg, heavy infection: .4,000epg;
xlight infection: 1–4,999epg; moderate infection: 5,000–49,999epg, heavy infection: .50,000;
flight infection: 1–999epg, moderate infection: 1,000–9,999epg; heavy infection: .10,000epg (Source: [39]).
doi:10.1371/journal.pntd.0001200.t001
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achieved using the spatial.unipred command in WinBUGS [47],

which implements Bayesian kriging. This function implements

independent simulations that do not consider neighboring values,

as opposed to joint prediction which is conditional on the values of

neighboring locations. While joint prediction yields more accurate

measures of prediction uncertainty, it was not considered feasible

in this study due to having extremely demanding computational

requirements.

The area under the curve (AUC) of the receiver operating

characteristic was used to determine discriminatory performance

of the model predictions relative to observed co-infection

prevalence thresholds of 5% and 10% [48]. Following the same

procedure, the predicted infection intensity was compared to the

observed intensity of infection, dichotomised at 50 eggs/10 mL,

for S. haematobium and at 1 epg of stool for hookworm. An AUC

value of 0.7 was taken to indicate acceptable predictive

performance [48].

Mapping Parasite Co-Intensity
The S. haematobium and hookworm co-intensity map for Ghana

was constructed by overlaying the predicted posterior mean

intensity maps of S. haematobium and hookworm in ArcGIS version

10.0 (ESRI, Inc.). WHO classifies infection intensity based on eggs

count thresholds [39]: for S. haematobium light infections are 1–50

eggs/10 mL of urine and heavy infections are .50 eggs/10 mL of

urine, and for hookworm light infection are 1–1,999epg, moderate

infection was 2,000–3,999epg, heavy infection was .4,000epg.

For mapping purposes the predicted intensity of S. haematobium was

defined as ,25 eggs/10 mL of urine, .25–50 eggs/10 mL of

urine and .50 eggs/10 mL of urine. Due to the low mean

hookworm infection intensity in Ghana, the predicted intensity of

infection for this parasite was dichotomized according to ,1 and

$1 epg.

Results

Survey Results
The prevalence of S. haematobium and hookworm mono- and co-

infection is presented stratified by sex and age (Table 2); our results

show that males are significantly more co-infected than females

and children of 15–19 years of age were significantly more co-

infected than children of 5–9 years of age. The frequency

distribution and spatial distribution of the raw prevalence of S.

haematobium and hookworm mono- and co-infections for Ghana is

presented in Figure 1. The bar chart in Figure 1A shows that the

distribution of the school prevalence mono- and co-infection is

markedly skewed; the map in Figure 1B shows that there is a

distinct spatial heterogeneity of S. haematobium and hookworm

co-infections in Ghana where most co-infections are distributed

near the western bank of the Lake Volta in central Ghana.

Based on WHO classification guidelines [39], our results show

that all hookworm infections in Ghana are of light intensity (1–

1,999 epg) whereas 42% of the S. haematobium infections are of

heavy intensity (.50 eggs/10 mL of urine) (Table 1). The spatial

distribution of the raw intensity of S. haematobium and hookworm

infections, as measured, respectively by the mean number of eggs

per 10 mL of urine or epg in each location in 4,527 (for S.

haematobium) and 4,538 (for hookworm) school children aged 5–19

at 77 locations in Ghana is presented in Figure 2. The map in

Figure 2A suggests that S. haematobium heavy-intensity infections

are distributed along the Lake Volta. Figure 2B suggests that the

most intense hookworm infections are not localized around the

Lake Volta but distributed across a wider area in central Ghana.

Predicted Prevalence of S. haematobium/Hookworm
Mono- and Co-Infections

Parameters in Table 3 represent the logarithm of the relative

risk ratio of mono- and co-infections; inspection of the 95% BCI

shows that males had a significantly higher prevalence of co-

infection and mono-infections than females. In addition, the

prevalence of S. haematobium-hookworm co-infections in children

aged 15–19 years was significantly higher than in those of age 5–9

years. Furthermore, children aged 10–14 had significantly higher

S. haematobium mono-infections than children aged 5–9 years.

Distance to PIWB was significantly and negatively associated with

S. haematobium-hookworm co-infections and hookworm mono-

infection. The variable for LST was positively and significantly

associated with hookworm mono-infections. Phi (Q) indicates the

rate of spatial decay of spatial autocorrelation and varied from

50.3, 19.8 and 59.8 for S. haematobium-hookworm co-infection, S.

haematobium mono-infection and hookworm mono-infections

(Table 3). This indicates that, after accounting for the effect of

covariates, the radii of the clusters were approximately 7 km,

18 km and 6 km for S. haematobium-hookworm co-infection, S.

haematobium mono-infection and hookworm mono-infections (note,

Q is measured in decimal degrees and 3/Q determines the cluster

size; one decimal degree is approximately 111 km at the Equator).

The tendency for spatial clustering was the weakest for hookworm

mono-infections (the higher value the spatial variance parameter

the higher the tendency for spatial clustering) (Table 3).

The geographical distribution of the risk of S. haematobium mono-

infection (Figure 3A) is widespread and heterogeneous across

Ghana, while the distribution of the risk of hookworm mono-

infection (Figure 3B) is also geographically heterogeneous but

much more focal. In Figure 3A, the risk of S. haematobium mono-

infections is highest (.30%) in areas adjacent to the Lake Volta as

Table 2. Schistosoma haematobium and hookworm mono- and co-infections in Ghana 2008, stratified by sex and age.

Infection status Total sex P value* age in years P value*

male female 5–9 10–14 14–19

Number of children 4,445 2,209 2,236 ,0.001 483 3,045 917 ,0.001

Without infection (%) 81.7 39.3 42.4 9.4 55.8 16.5

S. haematobium mono-infection (%) 14.4 7.8 6.6 1.1 10.3 3.1

Hookworm mono-infection (%) 3.2 2.1 1.1 0.4 2.0 0.8

S. haematobium – Hookworm co-infection (%) 0.7 0.5 0.2 0.02 0.4 0.2

*based on x2-test of significance.
doi:10.1371/journal.pntd.0001200.t002
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well as in areas not associated with the Lake Volta in the south of

the country. In contrast, the risk of hookworm mono-infection is

highest (.5%) in areas in the eastern bank of the Lake Volta and

areas located in a mid-latitudinal band across Ghana, not directly

associated with the Lake Volta. In Figure 3C, the risk of S.

haematobium and hookworm co-infections is quite focal and

associated with areas adjacent to the Lake Volta and is highest

(.5%) in the East Bank and in the South West of the lake. This

model was able to predict with an AUC of 0.78 (0.70, 0.85) and

0.75 (0.68, 0.81) using a cut off of 5% and 10% prevalence,

respectively.

Predicted Intensity of S. haematobium and Hookworm
Infections

Estimates presented in Figure 4 are the mean (marginal)

posterior predicted intensity values (A and B), the standard

deviation of the predicted mean egg counts (C and D), mean

probability of intensity being non-zero (E and F), and the predicted

mean non-zero counts (G and H), from Bayesian geostatistical

models. Males and children aged 10–14 years had the highest

intensity of S. haematobium infections, whereas children aged 15–19

years had the highest intensity of hookworm infections (Table 4).

Distance to PIWB was negatively associated and LST was

positively associated with S. haematobium infection intensity. None

of the environmental variables were significantly associated with

hookworm infection intensity. After accounting for the effect of

covariates, intensity of infection was clustered with a radius of

approximately 17 km and 6 km for S. haematobium and hookworm

respectively. The tendency for spatial clustering was the strongest

for hookworm infection intensity (Table 4). The models of S.

haematobium and hookworm infection intensity were able to predict

the geographical distribution of infection intensity with an AUC

0.82 (95% CI: 0.75, 0.88) and 0.78 (95% CI: 0.73, 0.85) using a

cut-off of 50 eggs per 10 mL of urine and 1 epg, respectively.

Mapping of S. haematobium and Hookworm Co-Intensity
A map showing the geographical distribution of the mean co-

intensity profile for boys aged 15–19 years in Ghana is shown in

Figure 5. This map indicates that the areas where high intensity S.

haematobium infection co-exists with areas where intensity of

hookworm infection was predicted to be $1 eggs per gram are

localised to small areas adjacent to the Lake Volta. These areas are

surrounded by areas where light to moderate S. haematobium

infections co-exist with hookworm infections of $1 epg. Visual

inspection of Figure 3C and Figure 5 suggests that the risk of S.

haematobium and hookworm co-infections is highest (.10–20%) in

areas where S. haematobium infections co-exist with hookworm

infections of $1 epg. In addition, the area in the eastern bank of

the Lake Volta where the highest prevalence of co-infection was

predicted (Figure 3C) coincides with an area where S. haematobium

and hookworm co-intensity is predicted to be .25–50 eggs/

10 mL and $1 epg. However, the area where co-infection is

.15% is located in a different area where co-intensity is predicted

to be highest (50 eggs/10 mL and $1 epg).

Figure 1. Observed Schistosoma haematobium and hookworm mono- and co-infections in children aged 5–19 years in Ghana, 2008.
Data were collected prior to the inception of the Ghana Health Service control program for neglected tropical diseases.
doi:10.1371/journal.pntd.0001200.g001
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Discussion

We have investigated the geographical risk of S. haematobium and

hookworm co-infection, predicted the intensity of S. haematobium

and hookworm infections (as measured by individual egg counts)

and presented a novel application of Bayesian geostatistical

modeling to predict the geographical location of areas where the

highest intensity of infection of S. haematobium and hookworm co-

Figure 2. Spatial heterogeneity of observed Schistosoma haematobium and hookworm egg counts in children aged 5–19 years in
Ghana, 2008.
doi:10.1371/journal.pntd.0001200.g002

Table 3. Spatial effects for prevalence of Schistosoma haematobium and hookworm mono- and co-infections in Ghana, 2008.

Variable
S. haematobium-hookworm co-infection
Posterior mean (95% BCI)

S. haematobium mono-infection
Posterior mean (95% BCI)

Hookworm mono-infection
Posterior mean (95% BCI)

Male (versus female) 1.26 (0.41, 2.23) 0.36 (0.16, 0.54) 0.74 (0.37, 1.13)

Age 10–14 y (versus 5–9 y) 2.74 (20.08, 7.86) 0.54 (0.12, 1.04) 0.28 (20.36, 0.97)

Age 15–19 y (versus 5–9 y) 3.39 (0.46, 8.56) 0.43 (20.04, 0.99) 0.43 (20.27, 1.21)

Distance to PIWB* 26.22 (210.88, 22.83) 20.11 (20.62, 0.51) 20.94 (21.42, 20.53)

Land surface temperature* 22.33 (24.86, 0.09) 20.33 (20.91, 0.43) 0.62 (0.19, 1.12)

Intercept 216.98 (222.51, 210.27) 23.38 (23.99, 22.84) 24.85 (25.68, 24.05)

Q (rate of decay of spatial correlation) 50.29 (10.11, 96.78) 19.78 (1.94, 85.17) 59.80 (11.51, 98.19)

s2 (variance of spatial random effect) 17.45 (4.85, 47.52) 4.23 (2.67, 6.75) 1.77 (0.86, 3.26)

*Variables were standardized to have mean = 0 and standard deviation = 1; BCI = Bayesian credible interval; PIWB = perennial inland water body.
doi:10.1371/journal.pntd.0001200.t003
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Figure 3. Predicted prevalence of Schistosoma haematobium and hookworm mono-and co-infections in boys aged 15–19 years in
Ghana, 2008.
doi:10.1371/journal.pntd.0001200.g003
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exist. For that, we have used contemporaneous and robust

statistical modeling methods on recent, extensive and representa-

tive infection data from Ghana. Results identify the importance of

environmental risk factors in explaining national geographical

variation of the prevalence of mono- and co-infection and intensity

of infection with these parasites. This study also shows the

potential value of combining co-infection and co-intensity maps

when the focus of parasitic disease control planning is geograph-

Figure 4. Mapped outputs for Schistosoma haematobium and hookworm egg count models, boys aged 15–19 years in Ghana, 2008.
Egg counts for S. haematobium are as per 10 mL urine; egg counts for hookworm are as per gram of faeces.
doi:10.1371/journal.pntd.0001200.g004

Table 4. Spatial effects for intensity of S. haematobium and hookworm infections in Ghana, 2008.

Variable

Schistosoma haematobium
Posterior mean
(95% BCI)

Hookworm
Posterior mean
(95% BCI)

Male (versus female) 0.08 (0.06, 0.09) 0.46 (0.33, 0.60)

Age 10–14 y (versus 5–9 y) 0.41 (0.39, 0.44) 0.76 (0.54,1.00)

Age 15–19 y (versus 5–9 y) 0.13 (0.10, 0.16) 1.10 (0.84, 1.37)

Distance to PIWB* 20.48 (20.68, 20.28) 20.45 (20.88, 0.08)

Land surface temperature* 0.26 (0.12, 0.47) 20.11 (20.57, 0.33)

Mean zero dispersion 0.83 (0.82, 0.84) 0.96 (0.96, 0.97)

Intercept 2.68 (2.48, 2.94) 20.09 (20.55, 0.30)

Q (rate of decay of spatial correlation) 21.23 (5.36,61.80) 56.56 (13.19, 140.90)

s2 (variance of spatial random effect) 3.47 (2.60, 4.63) 1.52 (0.98, 2.26)

*Variables were standardized to have mean = 0 and standard deviation = 1; BCI = Bayesian credible interval; PIWB = perennial inland water body.
doi:10.1371/journal.pntd.0001200.t004
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Figure 5. Predicted areas of co-intensity for Schistosoma haematobium and hookworm, boys aged 15–19 years in Ghana, 2008. Egg
counts for S. haematobium are as per 10 mL urine; egg counts for hookworm are as per gram of faeces.
doi:10.1371/journal.pntd.0001200.g005
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ically heterogeneous and when a sensitive benchmark for control

evaluation is required.

The Burden of Helminth Co-Infections and the
Distribution of Co-Intensity in Ghana

All existing studies of the spatial epidemiology of mono- and

co-infection focus on S. mansoni and hookworm and highlight the

marked spatial heterogeneity in patterns of infection [3,19,49].

Our modeling shows that it is also possible to predict spatial

patterns of S. haematobium–hookworm co-infection at the national

scale in Ghana. The observed risk factors (i.e. distance to water

bodies and land surface temperature) are already well established

and are consistent with the known epidemiology of S. haematobium

and hookworm infection [3].We demonstrated that the distribu-

tion of hookworm mono- and co-infection in Ghana is highly

focal, exhibiting a highly skewed frequency distribution and a

marked spatial dependency. In contrast, the distribution of S.

haematobium is geographically heterogeneous and is more wide-

spread. The generally similar patterns of hookworm mono- and

co-infection suggest that the localized spatial distribution of co-

infection in Ghana is influenced by the distribution of hookworm,

rather than the distribution of S. haematobium. This finding is not

consistent with those from East African countries where the

geographical distribution of co-infection was found to be

generally influenced by the distribution of S. mansoni rather than

hookworm [3]. This reflects the fact that, in East Africa,

schistosomiasis is focal and hookworm is ubiquitous, whereas in

West Africa, schistosomiasis is more widely distributed and

hookworm is relatively rare. The relative focality and low level of

hookworm infection in Ghana may be driven by the MDA of

anthelmintics for the control of other parasitic infections. The

Global Program to Eliminate Lymphatic Filariasis (GPELF)

distributes ivermectin and albendazole for LF across the region

[24–28] and it is possible that the administration of albendazole

for LF control in parts of Ghana may have had an important

impact on STH prevalence and associated geographical distri-

bution. The transmission dynamics of hookworm depends on

microclimatic suitability for infective larvae survival (primarily

temperature and humidity) and exposure opportunities to

environments contaminated with human excreta. However, in

our analyses we did not find statistical support for the inclusion of

remotely sensed rainfall data (as measured by NDVI) as an

environmental covariate in any of our models. It is possible that

the effect of these programs have confounded substantially the

relationship between environmental determinants known to

influence the geographical distribution of hookworm.

We have also predicted for Ghana the spatial distribution of

S. haematobium and hookworm infection intensity. While the

predictive infection intensity for hookworm was low across most

of the country, our approach generated local estimates of

infection intensity for both parasites that highlighted the role of

geographical heterogeneity in intensity of infection on parasite

co-infection profiles. When combining the predictive intensity of

infection maps for S. haematobium and hookworm, we found

similarities between the distribution of co-infections (Figure 3C)

and co-intensity (Figure 5), which is consistent with recent

evidence suggesting that multiple helminth infections tend to

cluster more with increasing levels of intensity of transmission

[5,6]. However, there were subtle differences that suggest it

might be worth using both co-infection and co-intensity

mapping approaches when planning integrated control pro-

grams over those that use crude prevalence or intensity maps

alone.

Using Helminth Co-Infection and Co-Intensity Maps to
Monitor and Evaluate Control Efforts

Considering that intensity of infection is both an important

epidemiological driver of morbidity and very sensitive to

intervention efforts, the maximal effect of integrated morbidity

control and evaluation could be achieved by geographically

targeting areas where S. haematobium intensity co-exist with areas of

hookworm intensity. In addition, targeting these areas would

provide adequate transmission control by contributing to the

reduction of the level of environmental contamination. While an

empirical map of co-infection would allow the enumeration of

population that are in need of treatment for multiple infections, its

combined use with a co-intensity map constitutes an important

cartographic resource by allowing the evaluation of the impact of

control programs with the aim of reducing population-level

morbidity [17]. This could be objectively achieved by conducting

follow up surveys targeted to areas predicted to have the highest

combined co-infection/co-intensity and assessing the degree of

spatial contraction (or expansion) in the co-intensity surface

following MDA.

Important uncertainties should be noted from the Ghanaian

dataset and the predictions surfaces for parasite infection used in

our models, which are likely to be propagated throughout the

modeling framework. First, we used threshold egg counts to

classify light, moderate and heavy intensity infections for each

species [39]. In the case of hookworm it has been shown that the

relationship between worm burden and egg output is non-linear,

i.e. density-dependent, and differing between communities [50].

These non-linear phenomena influence the validity of infection

intensity as measured by egg concentration in urine or in faeces

and detection of parasite eggs simply indicates the presence of at

least one sexually mature and mated female worm. However, egg

counts for hookworm infections were consistently low and for that

reason these may actually reflect low adult parasite burdens

although heavy infections of asexual female or male worms may

also be possible. Furthermore, the egg counts were based on a

single sample which limits the Kato-Katz test performance for

detecting low infection intensities such as the ones identified in our

surveys [51]. Stool processing times greater than 30 minutes are

also likely to result in low hookworm intensities being detected due

to egg lysis. While the effect of the latter was minimized by prompt

field processing of samples, the former is likely to be a limitation of

the study as it may lead to greater variability of the estimates of

infection intensity and therefore less precision in the mean

prediction estimates shown in our maps.

Second, all hookworm infections were of low intensity and for

that reason we chose to categorize our intensity map for

hookworm into ,1 epg and $1 epg for the generation of the

co-intensity map outputs. Whilst the data used are a pre-

intervention dataset, the degree to which the observed level of

hookworm infection would be obscured by ongoing, small scale

and spatially variable interventions efforts as mentioned above is

difficult to quantify (there was some LF control with anthelmintics

prior to 2008). However, based on the stratified design of the

sampling protocol, we think that the data collected should be a

good representation of both schistosomiasis and STHs before the

GHS NTD control program was implemented, although some

bias may be present in districts not adjacent to Lake Volta as some

high hookworm transmission areas may have been missed. While

the stratified approach to sampling adopted in our survey is

adequate to estimate prevalence of schistosome infections and co-

infections, future work should consider balanced spatial sampling

schemes which account for geographical differences in other

helminth species distributions. The surveys targeted children 5–19
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years but the age-intensity profile for both helminth infections are

different, with maximum intensity occurring at 10–14 years for

schistosomiasis and 20–25 years for hookworm [52,53]. In our

modeling approach we found statistical support to generate co-

infection and co-intensity maps for the 15–19 age group. While

this may have been adequate for S. haematobium infection, it may

not have been the case for hookworm, and predictive surfaces for

this parasite are likely to represent under estimates. However data

for the older age groups (i.e. 20–25 year of age) were not available.

Nevertheless, given that low-intensity infections are not trivial and

have been shown to cause significant morbidity, particularly when

occurring as co-infections with other parasites [54,55], the

resulting predictive co-intensity map when combined with the

co-infection map represents a rich source of information for

decision makers with the aim of integrated morbidity control in

Ghana.

Potential Geostatistical Improvements
A number of potential improvements to the geostatistical

approach to modeling co-infection and co-intensity could be

adopted in the following ways. First, it has been shown that the

diagnostic sensitivity of a single Kato-Katz thick smear or urine

slide examination is low due to significant day-to-day and intra-

specimen variation [42] and low infection intensities are likely to

be missed unless multiple samples over consecutive days are

collected [56,57]. The predictive ability of our co-infection and

intensity models could be improved in future iterations of these

maps by modeling diagnostic uncertainty within the MBG

framework [58].

Second, the fact that parasite infections and co-infections occur

at particular locations in Ghana may partly be due to unmeasured

covariates, such as poverty indicators (e.g. socio-economic status,

access to clean water and sanitation). While a quarter of the

variability in multiple-parasite associations can be explained by

factors associated with the domestic environment, environmental

factors have been shown to have an important role in driving these

associations [59]. However, for remotely-sensed environmental

factors included in our models the mean value was used as a proxy

for the true environmental exposure distribution of pre-school

children included in the analysis. This approach provides a

somewhat imprecise measurement of exposure and therefore may

result in regression dilution bias arising from imprecise exposure

measurement which is most likely to lead to underestimation of the

observed environmental effects [60]. Our ecological modeling

approach could also be improved by including socio-economic

status (a well known risk factor for infection at small spatial scales

[19]) as a contextual covariate but a high-resolution poverty map

for the study area was not available. Alternatively, a better

understanding of sub-national variation in co-infection and co-

intensity could be achieved in future iterations of our maps by

adopting an individual level modeling approach and extending our

models to include factors associated with the domestic environ-

ment of each child.

Finally, although the combined use of the resulting co-infection

and co-intensity maps allows delineating areas where highest

morbidity could be present, it does not allow estimating the

number coinfected with high infection intensity profiles [17]. This

feature would be important for resource planning and allocation.

This could be achieved by categorizing species infection profiles

(e.g. S. haematobium; hookworm) by intensity of infection (high,

moderate, low; or by its percentiles) and combining for each

individual the parasite-intensity for one parasite with parasite-

intensity with the other parasite. In doing so, the present model

could be extended to its multivariate analogue taking into account

a multivariate spatial process [61]. The resulting maps would then

allow evaluation of the geographical variation of multiple

infections of differing intensities, including the estimation of the

number of individuals co-infected with different intensities.

Conclusions
The combination of co-infection and co-intensity maps allows

the identification of sub-groups of the population which play an

important role in environmental contamination (due to high egg

ouput) and are at increased risk of severe morbidity (due to

multiple species, heavy intensity parasite infections [54,62]). The

maps produced by our approach could be used by national

program managers as decision-support tools for targeting the

geographical delivery of integrated MDA to areas where intense

transmission may be occurring and evaluate the progress of the

national program. In the future, these maps could be updated in

subsequent methodological iterations to incorporate further

modeling refinements.
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