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Abstract: Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiol-
ogy of neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms
driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early
onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using
Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans
presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we
provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and
subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial
calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor
in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system
SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by
increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this
imbalance by suppressing SKN-1/Nrf antioxidant activity.

Keywords: Alzheimer’s disease; oxidative stress; presenilin; mitochondria; calcium; neuronal
dysfunction; Nrf2

1. Introduction

Oxidative stress has emerged as a key driver of many neurodegenerative disor-
ders, including Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, and
Alzheimer’s disease (AD) [1]. The aging nervous system is particularly vulnerable to
damage induced by reactive oxygen species (ROS), such as superoxide and hydrogen
peroxide [2]. Under normal physiological conditions, the balance between ROS generation
and ROS scavenging is tightly regulated. Disturbances to antioxidant scavenging systems
or excessive ROS production disrupt many cellular processes and protein homeostasis,
contributing to the protein misfolding and aggregation characteristic of neurodegenerative
diseases. Mitochondria are major producers of ROS through the byproduct of cellular
respiration. Maintaining mitochondrial quality is thus critical for neuronal health and un-
surprisingly mitochondrial dysfunction is also implicated in neurodegenerative diseases [3].
Therefore, defining the factors connecting mitochondrial activity and ROS homeostasis is
essential to understand the relationship between these systems and neuronal health.

An estimated 55 million people worldwide suffer from dementia, with roughly 70% of
these cases resulting from AD (WHO.int). There are currently no effective therapies for AD.
Mitochondrial dysfunction and oxidative stress are two key features of AD neurons, but
what causes these complications remains unclear [4]. Familial AD (fAD) is an early onset
form of the disease resulting from mutations in the presenilin encoding genes, PSEN1 and
PSEN2. The presenilins are conserved transmembrane proteins located primarily on the
endoplasmic reticulum (ER) and function as the catalytic subunit of the gamma-secretase
complex, which cleaves single pass transmembrane proteins [5]. The presenilins have
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been demonstrated to play an important phylogenetically conserved role in modulating
intracellular calcium levels by influencing the rate of ER calcium efflux. Indeed, fAD
presenilin mutations or loss of presenilin have been shown to disrupt calcium homeostasis
by enhancing ER calcium release [6–12]. Calcium, as a second messenger, can impact
a diverse array of cellular functions and, thus, its role in AD has remained unresolved.
Nevertheless, it has been postulated that the resulting elevation in cytosolic calcium and
loss of calcium homeostasis due to disrupted presenilin function is a primary contributor
to neuronal dysfunction by destabilizing neuronal signaling pathways [13]. In the model
system C. elegans, it has been demonstrated that loss-of-function mutations in the gene
encoding the presenilin ortholog, sel-12, result in a rise in mitochondrial as well as cytosolic
calcium levels [10,14]. Moreover, the reduction of ER calcium efflux or mitochondrial
calcium uptake prevents the premature neurodegeneration phenotypes associated with
SEL-12/presenilin loss. Thus, these findings indicate a crucial role of calcium homeostasis
in neuronal dysfunction when presenilin function is disrupted. However, the impact that
disrupted cytosolic and mitochondrial calcium homeostasis has on ROS production and
ROS scavenging is not clear.

Here, to help resolve the relationship between dysregulated neuronal calcium signal-
ing and ROS production and to gain insight into the underlying molecular mechanisms reg-
ulating ROS homeostasis, we investigated the contribution of cytosolic and mitochondrial
calcium to ROS levels and neurodegeneration. We find evidence that neuronal dysfunction
and increased susceptibility to oxidative stress observed in sel-12 mutants are mediated
through the elevation of mitochondrial calcium and not elevated cytosolic calcium levels.
Furthermore, we identify an important role of the mTORC1 signaling pathway in exacerbat-
ing neurodegeneration and oxidative stress in sel-12 mutants by sustaining high neuronal
ROS levels, which, in part, is likely due to mTORC1 inhibition of SKN-1/Nrf (Nuclear
factor erythroid 2-related factor) antioxidant signaling. Overall, our study indicates that
SEL-12/presenilin loss disrupts the balance of neuronal ROS by elevating mitochondrial
generated ROS and increasing mTORC1 signaling, which in turn disrupts ROS scavenging
by inhibiting SKN-1/Nrf.

2. Materials and Methods
2.1. C. elegans Maintenance and Strains

All C. elegans strains were grown at 20 ◦C on NGM plates seeded with E. coli OP50. To
age synchronize the animals, gravid worms were bleached, then incubated in M9 for 24–48
h to allow progeny to hatch. These L1 larvae were grown to adulthood on NGM plates. All
experiments were performed on day 1 adults.

The following strains were used in the study: N2 was the wild type, sel-12(ar131)
X, sel-12(ty11) X, egl-19(n2368) IV, nprl-3(ku540) IV, raga-1(ok386) II, rsks-1(ok1255) III, sesn-
1(ok3157) I, skn-1(lax120) IV, skn-1(lax188) IV, unc-2(zf35gf ) X, bzIs166 [mec-4p::mCherry],
dvIs19 [(pAF15)gst-4p::GFP::NLS] III, goeIs22 [mec-4p::SL1::GCaMP3.35::SL2::mKate2::unc-
54 3’UTR + unc-119(+)], jsIs609 [mec-4p::MLS::GFP], uthIs248 [aak-2p::aak-2(genomic aa1-
321)::GFP::unc-54 3′UTR + myo-2p::tdTOMATO], zcIs4[hsp-4p::GFP], zcIs9[hsp-60p::GFP],
zcIs13[hsp-6p::GFP], zdIs5 [mec-4p::GFP + lin-15(+)] I, takEx641[mec-7p::mito-GCaMP6f::SL2::
mCherry], and zhsEx17 [mec-4p::MLS::ROGFP]. Genotypes were determined by PCR and
DNA sequencing. sel-12(ty11) mutants were used as the canonical sel-12 loss of function
mutant unless otherwise indicated.

2.2. RNAi

The feeding method was used to deliver RNAi [15]. NGM plates were seeded with
HT115 bacteria that expressed skn-1 or sca-1 double stranded RNAi acquired from the
Ahringer library [16], or empty RNAi feeding vector. RNAi bacteria strains were veri-
fied by PCR and DNA sequencing. L1 animals were grown on RNAi expressing plates
until adulthood.
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2.3. Analysis of Neuronal Morphology

Animals expressing mec-7p::GFP(zdIs5) were used to examine the structure of the
touch receptor neurons (TRNs). Aberrant ALM neurons were scored as either normal or
aberrant. Aberrant neurons presented structural defects, such as wave-like bending in the
axon, lesions sprouting off the axon, or sprouts stemming from the soma. To image the
neurons, worms were immobilized in 100 mM levamisole on 2% agarose pads, and then
imaged using the 60x oil objective on a Nikon A1R confocal microscope. The images were
compiled using Fiji software. Neuronal morphology was score as healthy by the lack of
ectopic sprouts emanating from cell bodies or abnormal projections or gaps in axons. If
the observed neuron possessed any abnormal projections, either in the soma or the axon, it
was scored as aberrant.

2.4. Mitochondrial Organization Analysis

The organization of the mitochondria in the ALM TRN soma was observed in animals
expressing mec-4p::MLS::GFP(jsIs609). Animals were immobilized in 100 mM levamisole on
2% agarose pads, then imaged using 60x oil objective on a Nikon A1R confocal microscope.
The images were compiled using Fiji software. Mitochondrial organization was scored as
either continuous or discontinuous, where continuous mitochondria had a linear structure
without any breaks, while discontinuous mitochondria showed breaks and appeared
fragmented. If the observed mitochondria morphology was punctate, it was scored as
discontinuous. Alternatively, if the mitochondria morphology was connected, it was scored
as continuous.

2.5. Paraquat Treatment

Paraquat (Sigma-Aldrich (St. Louis, MO, USA), 856117) was freshly prepared in
water and added to NGM agars plates to the indicated final concentration. To induce hsp-
6p::GFP, and hsp-60p::GFP expression, L3 animals were moved to plates containing 2.5 mM
paraquat until adulthood and were imaged as day 1 adults. As a control for gst-4p::GFP
expression, L4 animals were grown on 2 mM paraquat plates overnight and were imaged
as day 1 adults. To test gst-4p::GFP (dvIs19) expression and roGFP1 (zhsEx17) sensitivity in
wild type and sel-12 mutants, L3 animals were moved to plates containing the indicated
concentration of paraquat (0.01 mM, 0.1 mM, and 1.0 mM) until they reached adulthood
(2 days) and were imaged as day 1 adults.

2.6. Paraquat Assay

Survival following paraquat exposure was determined by transferring day 1 adults
(50 per treatment group) to tubes containing either 0, 50, 100, or 150 mM paraquat for 24 h.
Animals were moved to fresh NGM plates and allowed to recover for one hour. Animals
were scored as dead if there was no response to repeated prodding with a platinum wire.
These experiments were repeated three times.

2.7. Mechanosensation Assay

Response to soft touch was performed by using an eyebrow hair attached to a Pasteur
pipette, as described [14]. Touches were alternated between the anterior half of the worm
(between the pharynx and the vulva) and to the posterior half (between the vulva and
tail), for a total of ten touches per worm. A positive response was scored when the animal
reversed its forward motion away from the hair and continued moving in the reverse
direction. The percentage of positive responses per worm was recorded and then averaged
for twenty worms per strain.

2.8. Mitochondrial Redox Measurement and GST-4/UPR Reporter Assay

Animals expressing redox sensor roGFP1 targeted to the TRNs (zhsEx17 [Pmec-4::mitoL
S::ROGFP]) were immobilized in 100 mM levamisole and mounted on 2% agarose pads on
glass slides, then imaged using a 63× oil objective on a Zeiss Axio Observer microscope
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equipped with an Andor Clara CCD camera. Metamorph software was used to compile
images. Samples were sequentially excited with a 405 nm light and 488 nm light with GFP
emission detection. Exposure times were kept consistent between samples. The ratio of
405 nm to 488 nm fluorescence intensity was quantified using Fiji software. gst-4p::GFP
(dvIs19) transgenic animals were used as a transcriptional reporter of the SKN-1 target GST-
4. hsp-6p::GFP (zcIs13) and hsp-60p::GFP (zcIs9) transgenic animals were used as reporters
for the UPRmt, and hsp-4p::GFP (zcIs4) animals were used as a reporter for UPRER. For all
animals, day 1 adults were imaged using a 10x objective lens on a Zeiss Axio Observer
microscope. Exposure times were kept consistent between samples.

2.9. Mitochondrial and Cytosolic Calcium Imaging

Mitochondrial calcium was measured in the TRNs in animals expressing mec-7p::mito-
GCaMP6f::SL2::wrmScarlet. Cytosolic calcium was measured in the TRNs in animals
expressing mec-4p::SL1::GCaMP3.35::SL2::mKate2. In both cases, animals were immobilized
on 100 mM levamisole on 2% agarose pads. Images were taken using a 63X objective lens
on a Zeiss Axio Observer microscope equipped with an Andor Clara CCD camera, and
images were compiled with Metamorph software (Molecular Devices, version 7.8, San Jose,
CA, USA). The fluorescence intensity of mito-GCaMP6 or GCaMP3.35 was normalized to
mCherry or mKate2 fluorescent intensity, respectively, as an expression control, and this
ratio was quantified using ImageJ (version 1.53s, Bethesda, MD, USA).

2.10. Western Analysis

Day 1 adult worms were washed twice in PBS. Half the worm pellet was resuspended
in RIPA buffers with protease inhibitors (Roche, Basel, Switzerland), lysed via sonication,
and then used to determine protein concentration with a BCA assay (Pierce, Waltham,
MA, USA). The other half of the sample was lysed via sonication in 2x Laemmli sample
buffer (BioRad, Hercules, CA, USA) containing 5% beta-mercaptoethanol. From this lysate,
20 ug of each sample was loaded and separated with a 10% tris-glycine gel (BioRad). The
separated proteins were transferred to a 0.2 µm nitrocellulose membrane (Invitrogen), then
incubated in primary antibodies (phospho-Drosophila p70 S6 Kinase (Thr398), 1:500, Cell
Signaling #9209, and beta-actin, 1:1000, MP Biomedicals #8691002) in TBS overnight. The
membrane was incubated for 1 h in secondary antibodies (IRDye 800CW Goat anti-rabbit
(LI-COR), 1:20,000 and IRDye 680RD Goat anti-mouse, 1:20,000 (LI-COR)). LiCor Odyssey
CLx infrared imaging system was used to image the blot and the Odyssey Image Studio
software (version 5.2, Lincoln, NE, USA) was used to quantify band intensity.

2.11. Statisical Analyses

Statistical difference comparing three or more treatment groups was determine using
a one-way analysis of variance and a Kruskal–Wallis test used for multiple comparisons of
nonparametric data. Non-parametric tests were utilized because all analyses had at least one
sample that did not show a normal distribution. Analysis of paraquat data was conducted
using a two-way analysis of variance and a Bonferroni correction post hoc analysis. For
the mitochondrial and ALM neuronal morphology analyses, a chi-square test was used to
determine statistical difference between genotypes. A p value of less than 0.05 is considered
significant. Graph Pad Prism software (Version 9, CA, USA) was used for all analyses.

3. Results
3.1. Increase in Mitochondrial Calcium Results in Mitochondrial Redox Imbalance in
sel-12 Mutants

Mutations in presenilins have been shown to disrupt calcium signaling in a variety of
cell systems. Indeed, evidence in presenilin AD models examining fAD PSEN mutations
show enhanced ER calcium release and a rise in cytosolic calcium [7,9,12,17,18]. Consistent
with a phylogenetically conserved role of presenilin, mutations in the gene encoding
presenilin in C. elegans, sel-12, also increase cytosolic calcium signaling ([10]; Figure 1A).



Antioxidants 2022, 11, 1642 5 of 19

It has been postulated that the increased release of ER calcium and subsequent rise in
neuronal cytosolic calcium is responsible for the profound defects in neuronal function
that define fAD [19]. However, the mechanism underlying calcium dysregulation in
neurodegeneration is not clear. To investigate the impact cytosolic calcium has on neuronal
fitness, we utilized two C. elegans mutants that have gain-of-function mutations in the
genes encoding the EGL-19 and UNC-2 voltage-gated calcium channels (VGCC). Both the
egl-19(n2368gf ) and unc-2(zf35gf ) mutations have been shown to increase the activation
state of the EGL-19 VGCC and UNC-2 VGCC, respectively [20,21]. First, to investigate
whether these mutations cause elevated cytosolic calcium levels, we employed a cytosolic
calcium biosensor, GCaMP3.35::SL2::mKate that is expressed in the touch receptor neurons
(TRNs) [22]. The TRNs control the response to soft touch and display distinct age-associated
morphological and functional defects, thus providing an attractive system for modeling
neurodegeneration [23–25]. Consistent with the egl-19(n2368gf ) gain-of-function mutation
in egl-19 increasing the activity of the EGL-19 VGCC, we found a ~4-fold increase in
cytosolic calcium in egl-19(n2368gf ) mutants compared to wild type animals (Figure 1A).
However, we did not observe an increase in the cytosolic calcium levels in unc-2(zf35gf )
mutants (Figure 1A).

Considering that, in addition to an increase in cytosolic calcium levels, sel-12 mu-
tants have a significant increase in basal mitochondrial calcium levels that impacts mi-
tochondrial and neuronal function [14,26], we investigated mitochondrial calcium levels
in egl-19(n2368gf ) and unc-2(zf35gf ) mutants. Using a mitochondrial calcium biosensor
(mito-GCaMP6f::SL2::mCherry) expressed in the TRNs [14,26], we found that unlike the
elevated mitochondrial calcium levels observed in sel-12 mutants, both egl-19(n2368gf )
and unc-2(zf35gf ) mutants were indistinguishable from wild type animals (Figure 1B).
These data indicate that a rise in cytosolic calcium levels does not correlate with a rise in
mitochondrial calcium levels.

Next, since sel-12 mutations cause neuronal degeneration as well as mitochondrial
morphological abnormalities [10,14], we investigated whether elevated cytosolic calcium
results in neuronal or mitochondrial morphological defects. We analyzed the morphology
of the ALM TRN soma and axon in transgenic animals expressing soluble GFP within their
TRNs. Healthy ALM neurons display round soma and linear axonal processes, whereas
aged neurons present neurite sprouts stemming off their soma, and lesions and branching
along their axons [14,23–25]. Whereas there is a higher frequency of structurally aberrant
ALM neurons in sel-12 mutants, we did not observe structural defects in the age-matched
egl-19(n2368gf ) or unc-2(zf35gf ) mutants (Figure 1C,D). To investigate mitochondrial mor-
phology, we examined animals expressing GFP targeted to the mitochondria of TRNs [27].
The mitochondrial network in the soma of wild type animals is continuous and organized
in a circular pattern, whereas in sel-12 mutants it appears discontinuous disorganized
and disorganized (Figure 1E,F). Similar to their neuronal morphology, egl-19(n2368gf ) or
unc-2(zf35gf ) mutants did not show defects in mitochondrial morphology (Figure 1E,F).

Since mutations in sel-12 are associated with elevated mitochondrial ROS genera-
tion [14], we next examined whether the increased cytosolic calcium observed in egl-
19(n2368gf ) mutants disrupts redox homeostasis. To accomplish this, we analyzed animals
expressing roGFP1, a redox sensitive GFP, targeted to the mitochondria in TRNs [28]. Oxi-
dation of roGFP1 shifts its peak excitation from 488 to 405 nm [29]. Thus, the 405/488 nm
ratio indicates the extent of roGFP1 oxidation. Unlike other ROS biosensors such as HyPer,
roGFP1 is independent of pH and thus is a reliable indicator of mitochondrial redox behav-
ior [30–33] and has been shown to detect oxidative stress in C. elegans [34,35]. Consistent
with previous observations [14], we found that sel-12 null mutants had a significant increase
in neuronal oxidation, which is rescued by the application of mitoTEMPO, a mitochondrial
targeted superoxide scavenger (Figure 1G). In contrast, egl-19(n2368gf ) mutants had neu-
ronal oxidation levels indistinguishable from wild type animals (Figure 1G). Together, these
data suggest that the elevated mitochondrial calcium levels observed in sel-12 mutants and
not in egl-19(n2368gf ) mutants is the cause of the elevated oxidative stress and neuronal
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degeneration observed in sel-12 mutants. To test this notion, we introduced a null mutation
in the mitochondrial calcium uniporter, encoded by mcu-1, which we and others have
shown reduces mitochondrial calcium uptake in wild type and sel-12 mutants ([14,36];
Figure 1B). Analysis of roGFP1 fluorescence in mcu-1; sel-12 double mutants demonstrates
that reducing mitochondrial calcium uptake prevents the increase in neuronal oxidation
observed in sel-12 mutants (Figure 1G). These data specifically implicate mitochondrial
calcium uptake in the increased mitochondrial oxidation levels caused by SEL-12 loss.
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Figure 1. Mitochondrial and neuronal abnormalities in sel-12 mutants are mediated through mito-
chondrial calcium. (A) Quantification of cytoplasmic calcium levels in animals expressing GCaMP,
a genetically encoded calcium biosensor, and mKate, an expression control, in the TRNs. (n ≥ 25).
(B) Quantification of mitochondria calcium levels in animals expressing mitochondrial-targeted
GCaMP6 and mCherry, an expression control, in the TRNs. (n ≥ 21). (C) Representative image of
healthy and aberrant ALM neurons (scale bar = 10 µm) and (D) quantification of the frequency of
aberrant or health neurons. (n ≥ 20). (E) Representative image of continuous and discontinuous mito-
chondrial organization in the ALM soma (scale bar = 10 µm) and (F) quantification of the frequency of
continuous and discontinuous mitochondria. (n ≥ 20). (G) Ratio of oxidized to non-oxidized roGFP1
in the mitochondria of ALM neurons as a quantitative measure of oxidation levels. (n ≥ 20). ns
p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 using one-way ANOVA with Kruskal-Wallis
multiple comparison test (A,B,G) or chi-square test (D,F). Comparisons are made to wild type unless
otherwise indicated. Error bars indicate mean +/− SEM.
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Lastly, considering a major function of SEL-12/presenilin is its role as the aspartyl pro-
tease subunit of the gamma-secretase complex, we investigated whether sel-12 mutants that
carry a CRISPR/Cas9 induced point mutation, which alters a conserved aspartate residue
(D226A) that is required for aspartyl protease activity [37], and have elevated neuronal mito-
chondrial oxidation. Unlike sel-12 null mutants, we did not observe an increase in neuronal
mitochondrial oxidation in the sel-12 mutants carrying the D226A mutation (Figure 1G).
Thus, the protease activity of SEL-12/presenilin does not impact redox homeostasis as is
observed in sel-12 null mutants. This result is consistent with previous observations that
the loss of SEL-12 protease activity does not phenocopy the elevated mitochondrial calcium
levels or neurodegeneration observed in sel-12 null mutants [14,26,37].

3.2. Loss of SEL-12/Presenilin Does Not Induce the Mitochondrial Unfolded Protein Response

Previously, it has been demonstrated that an increase in mitochondrial ROS triggers
the mitochondrial unfolded protein response (UPRmt) [38]. The UPRmt is a phylogeneti-
cally conserved adaptive response that functions to maintain mitochondrial proteostasis
during mitochondrial dysfunction. Since sel-12 mutants show disrupted mitochondrial
redox homeostasis, we investigated whether sel-12 mutants have activated UPRmt. To
accomplish this, we utilized two UPRmt reporters, hsp-6p::GFP and hsp-60p::GFP [39,40].
As previously shown, using the mitochondrial superoxide inducer, paraquat [41,42], both
UPRmt reporters demonstrated robust activity (Figure 2A–C). Surprisingly, despite the
increased mitochondrial oxidative status observed in sel-12 mutants, the hsp-6p::GFP and
hsp-60p::GFP reporter activity in sel-12 mutants was indistinguishable from wild type an-
imals (Figure 2A-C). These data indicate that the UPRmt is not active in sel-12 mutants
despite the elevated mitochondrial oxidative status.
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sentative images (scale bar = 0.1 mm) of GFP fluorescence intensity hsp-6p::GFP transgenic animals
as a reporter for UPRmt. (B,C) Quantification of GFP fluorescence intensity in hsp-6p::GFP (B) or in
hsp-60p::GFP (C) transgenic animals as reporters for the UPRmt. Paraquat (PQ) was used to induce
mitochondrial ROS as a positive control. (D) Quantification of GFP fluorescence intensity in hsp-
4p::GFP transgenic animals as a reporter for UPRER. sca-1(RNAi) was used as a positive control to
knock down expression of the sarco-endoplasmic reticulum calcium ATPase (SERCA) to induce an
ER stress response. (n ≥ 20). ns p > 0.05, **** p < 0.0001 using one-way (B,C) with Kruskal-Wallis
multiple comparison test. Comparisons are made to wild type unless otherwise indicated. Error bars
indicate mean +/− SEM.
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Since SEL-12, as well as presenilin in mammalian cells, has been shown to be localized to
the ER and mediate ER calcium signaling [10,18,43–45], we examined the ER unfolded protein
response (UPRER) in sel-12 mutants. Similar to UPRmt, UPRER is a phylogenetically conserved
adaptive pathway that maintains ER proteostasis during ER dysfunction. Using the UPRER

reporter, hsp-4p::GFP [46], we found no difference in the activity of the UPRER reporter in
sel-12 mutants compared to wild type animals (Figure 2D). This contrasts with animals treated
with sca-1(RNAi), which knocks down the expression of the sarco-endoplasmic reticulum
calcium ATPase and induces a robust UPRER response (Figure 2D). Together, these results
indicate that neither the UPRmt nor the UPRER are active in sel-12 mutants.

3.3. Inhibition of mTORC1 Improves Mitochondrial Redox Homeostasis and Improves Oxidative
Stress Survival in sel-12 Mutants

We previously found that elevated mitochondrial calcium in sel-12 mutants contributes
to neurodegeneration by hyperactivating the mechanistic target of rapamycin 1 (mTORC1)
pathway [26]. mTORC1 is a conserved central regulator of cell growth and metabolism.
mTORC1 processes a variety of inputs such as growth factors, nutrient signals, and cellular
energy status, and in response activates anabolic pathways to promote the production of
proteins, lipids, and other biological material [47]. The dysregulation of this pathway has
been implicated across multiple diseases, including Alzheimer’s disease, underscoring
mTORC1’s importance in regulating cell behavior [48,49]. Inhibiting mTORC1 improves
a range of neurodegenerative phenotypes in sel-12 mutants, including impairments to
neuronal and mitochondrial morphology, protein homeostasis, neurodegeneration, and
behavior, yet did not reduce mitochondrial calcium levels [26]. Since a rise in mitochondrial
ROS production and oxidative stress following mitochondrial calcium uptake mediates
the neuronal defects observed in sel-12 mutants [14,37], we asked if increased mTORC1
activity disrupts mitochondrial redox homeostasis. To answer this, we genetically inhibited
mTORC1 in the sel-12 background by crossing in a null mutation in raga-1, which encodes
RagA, a GTPase whose activation is required for full mTORC1 activity. We also crossed
in a null mutation of rsks-1, which encodes ribosomal protein S6 kinase and as an effector
of the mTORC1 pathway promotes protein translation. When we compared the oxidation
state of roGFP1 in the TRNs between sel-12 and raga-1; sel-12 mutants, we found that raga-1;
sel-12 animals showed a significant reduction in oxidized roGFP1, indicating that mTORC1
inhibition reduces neuronal oxidative stress (Figure 3A). In contrast, rsks-1; sel-12 animals
did not show a reduction in oxidized roGFP1 (Figure 3A), suggesting that inhibition of
RSKS-1-dependent signaling pathways, such as protein translation through the rsks-1
deletion, is not sufficient to restore redox homeostasis in sel-12 mutants, and that mTORC1
signaling affects ROS levels through an alternate mechanism. Additionally, we examined
the resistance of these mutants to oxidative stress by exposing the animals to 50, 100, and
150 mM paraquat, which generates superoxide at mitochondria [41,42]. Consistent with the
high levels of ROS detected in sel-12 mutants, we found that sel-12 mutants have a sharply
reduced survival rate compared to wild type animals. In contrast, raga-1; sel-12 animals
have an increased survival rate compared to sel-12 mutants (Figure 3B). However, rsks-1; sel-
12 survival was indistinguishable from sel-12 mutants (Figure 3B). As an alternative strategy
to reduce mTORC1 activity, we introduced into the sel-12 background a constitutively active
mutation in the catalytic subunit of 5′ adenosine monophosphate-activated protein kinase
(AMPK/AAK-2), a sensor of cellular energy and a major negative regulator of mTORC1
signaling [50]. We also found that the aak-2(ca); sel-12 mutants had a significant increase in
survival rate compared to sel-12 mutants when exposed to paraquat (Figure 3B).

We next asked why mTORC1 signaling alters mitochondrial ROS levels in sel-12
mutants. mTORC1 plays an important role in protein homeostasis by controlling the
rate of protein production. Hyperactive mTORC1 may destabilize this homeostasis and
increase protein misfolding and aggregation, thereby promoting oxidative stress. However,
reducing mTORC1-mediated protein production via the SK6/rsks-1 mutation was unable
to relieve ROS levels in sel-12 mutants. Evidence in C. elegans suggests that mTORC1
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signaling additionally influences activation of SKN-1/Nrf in C. elegans [51]. SKN-1 is the
C. elegans orthologue of the Nrf class of transcription factors, which upregulate genes
encoding detoxification enzymes to counteract oxidative stress [52]. Importantly, SKN-1
activity is induced by mitochondrial ROS [53–55]. Like the Nrf proteins, SKN-1 preserves
neuronal health by reducing oxidative stress [56]. The aforementioned study in C. elegans by
Robida-Stubbs and colleagues showed that mTORC1 inhibition increases transcription of
SKN-1 target genes encoding antioxidant proteins [51], implicating mTORC1 as a potential
inhibitor of SKN-1/Nrf activity. Thus, we asked whether SKN-1 activity is necessary to
improve oxidative stress resistance in raga-1; sel-12 and aak-2(ca); sel-12 animals. To this end,
we inhibited SKN-1 activity using RNA interference (RNAi) and found that skn-1 RNAi
prevented the increased survival rate in raga-1; sel-12 and aak-2(ca); sel-12 animals following
paraquat exposure (Figure 3C). We also found that inactivating skn-1 does not make sel-12
mutants more susceptible to oxidative stress (Figure 3C), suggesting that skn-1 is already
inhibited in sel-12 mutants and that this inhibition is relieved by inhibiting mTORC1.
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Figure 3. Inhibition of mTORC1 reduces mitochondrial ROS and rescues the hypersensitivity of
sel-12 mutants to oxidative stress. (A) Relative mitochondrial oxidation levels in animals expressing
mitochondria targeted roGFP1 in the TRNs. (n = 30). (B) Survival rate of animals following 24-h
exposure to the oxidant paraquat (0, 50, 100, and 150 mM paraquat). (50 animals per strain, performed
3 times) (C) Paraquat survival curve in animals exposed to skn-1 or control RNAi. (D,E) Representative
images (D) and quantification (E) of GFP fluorescence intensity in gst-4p::GFP transgenic animals as
a reporter for transcription of SKN-1/Nrf2 target GST-4. ns p > 0.05, * p < 0.05, *** p < 0.001 using
one-way ANOVA with Kruskal-Wallis test (A,D,E) or two-way ANOVA with Bonferroni test (B,C).
Comparisons are made to wild type unless otherwise indicated. Error bars indicate mean +/− SEM.

Together, these data indicate that skn-1 activity is necessary for improvements to oxidative
stress resistance following mTORC1 inhibition, in addition to suggesting that sel-12 mutants
have repressed SKN-1 activity. Therefore, we also asked whether the level of SKN-1 activity
is altered in sel-12 mutants. We quantified SKN-1 activity by examining transgenic animals
carrying gst-4p::GFP, a widely used transcriptional reporter for the SKN-1 transcriptional
target and ROS detoxifying enzyme glutathione S-transferase 4 (GST-4) [57]. Surprisingly,
despite the higher oxidative stress status in sel-12 mutants (Figures 1G and 3A–C), gst-4p::GFP
expression was not induced in these animals (Figure 3D,E), indicating SKN-1 is not being
activated by the high mitochondrial ROS levels observed in sel-12 mutants (Figures 1G and 3A)
and implicates the involvement of mTORC1 hyperactivity in SKN-1 repression. Altogether,



Antioxidants 2022, 11, 1642 10 of 19

our results indicate that mTORC1 promotes ROS and oxidative stress sensitivity in sel-12
mutants, likely, in part, by reducing skn-1 activity. These data support a model whereby the
loss of sel-12 increases mTORC1 activity, which inhibits skn-1 function and prevents activation
of detoxifying pathways.

3.4. sel-12 Mutants Display Reduced SKN-1 Activity in Response to Mitochondrial
Oxidative Stress

Since SKN-1 activity is activated by mitochondrial oxidative stress [52] and to further
explore SKN-1 activity in sel-12 animals, we asked if sel-12 mutants can activate SKN-1
in response to mitochondrial oxidative stress. To induce mitochondrial oxidative stress,
we treated sel-12 mutants with paraquat to induce mitochondrial superoxide production
and examined gst-4p::GFP expression as a readout for SKN-1 activity. While treatment
of wild type animals with 0.01 mM paraquat was able to activate the gst-4p::GFP SKN-1
reporter, this concentration only showed baseline gst-4p::GFP reporter activity in sel-12
mutants (Figure 4A). Similarly, treating wild type animals with 0.1 mM paraquat induced a
robust increase in gst-4p::GFP expression but only a less significant increase of expression
was observed in sel-12 mutants (Figure 4A). In contrast, exposure to 1.0 mM paraquat
significantly increased gst-4p::GFP activity in sel-12 mutants. However, this increase was
significantly muted compared to wild type animals (Figure 4A). These data suggest that
SKN-1 activity is hampered in sel-12 mutants. Moreover, utilizing the previously described
roGFP1 redox biosensor, we found that exposure to 0.1 mM and 1.0 mM paraquat pheno-
copies the oxidative state observed in sel-12 mutants (Figure 4B). Taken together, in addition
to disrupted mitochondrial redox homeostasis, these data indicate that sel-12 mutants have
a restrained response to oxidative stress, which is consistent with the elevated sensitivity of
sel-12 mutants to oxidative stress (Figure 3B,C).
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Figure 4. sel-12 mutants have decreased SKN-1 activity in response to oxidative stress. (A) Quantification
of gst-4p::GFP expression in animals treated with paraquat. (n≥ 28). (B) Ratio of oxidized to non-oxidized
roGFP1 in the mitochondria of ALM neurons of animals treated with paraquat. (n ≥ 22). Ns p > 0.05,
* p < 0.05, **p < 0.01, *** p < 0.001 using one-way ANOVA with Kruskal-Wallis test. Comparisons are
made to wild type unless otherwise indicated. Error bars indicate mean +/− SEM.

3.5. Activation of SKN-1 Improves Soft Touch Response and Resistance to Oxidative Stress in
sel-12 Mutants

We have demonstrated that inhibiting mTORC1 activity is sufficient to reduce the
hypersensitivity of sel-12 mutants to oxidative stress (Figure 3B). Moreover, we showed that
this reduction is dependent on SKN-1 function (Figure 3C). Since we have found evidence
that SKN-1 activity is restrained in sel-12 mutants (Figure 4A) and a previous study found
that mTORC1 activity inhibits SKN-1 function [51], we next asked whether promoting SKN-
1 activation in sel-12 mutants is sufficient to suppress the neurodegenerative phenotypes
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or hypersensitivity to oxidative stress observed in sel-12 mutants. To do this, we crossed
in activating mutations in skn-1 (lax120 or lax188) into the sel-12 mutant background [58].
We then analyzed defects in the function of the TRNs by measuring the animals’ response
to soft touch, a behavior that is controlled by these neurons. Animals with healthy TRNs
will reverse their motion and crawl backward when touched on the anterior portion of
the body with an eyebrow hair. The reverse will occur when the animal is touched on
the posterior half of the body, and the animal will move forward. Aged animals show a
reduced frequency in their response rate to soft touch, which correlates with an increased
presence of structural abnormalities in the TRNs [24]. Similar to displaying precocious
structural ALM neuron abnormalities ([14]; Figure 1C,D), sel-12 null mutants show defects
in soft touch response at day 1 of adulthood ([14]; Figure 5A). In day 1 age-matched adults,
we found skn-1(lax120); sel-12, or skn-1(lax188); sel-12 animals showed a significant increase
in soft touch response compared to sel-12 mutants alone, indicating that increasing skn-
1 activity improves the health of the TRNs in sel-12 mutants (Figure 5A). Additionally,
skn-1(lax120); sel-12 and skn-1(lax188); sel-12 animals showed an increased survival rate
following paraquat exposure (Figure 5B) similar to mTORC1 inhibition (Figure 3B). These
data indicate that promoting the skn-1 pathway is sufficient to improve neurodegenerative
behavior and enhance oxidative resistance following SEL-12 loss.
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Figure 5. Activation of SKN-1 improves soft touch response and resistance to oxidative stress in
sel-12 mutants. (A) Response to anterior and posterior soft touch in sel-12 mutants and sel-12 mutants
carrying activating mutations in skn-1. (n = 20) (B) Paraquat survival assay in wild type, sel-12
mutants, and animals carrying activating mutations in skn-1 after 24-h exposure to either 50, 100, or
150 mM paraquat (50 animals per strain, performed 3 times). ns p > 0.05, * p < 0.05, *** p < 0.001 using
one-way ANOVA with Kruskal-Wallis test (A) or two-way ANOVA with Bonferroni test (B). Error
bars indicate mean +/− SEM.

3.6. Hyperactivation of mTORC1 Is Not Sufficient to Cause Neurodegeneration

We have previously demonstrated that mTORC1 signaling is hyperactivated in sel-12
mutants and is a driver of neurodegeneration in sel-12 mutants [26]. Thus, since it was
previously shown that increased ROS is a critical contributor to the neurodegeneration
observed in sel-12 animals [14], and we have found that mTORC1 hyperactivity also con-
tributes to the elevated ROS and neurodegeneration in sel-12 mutants ([26]; Figure 3A), we
asked whether the ultimate cause of neurodegeneration in sel-12 mutants is the hyperac-
tivation of the mTORC1 signaling pathway in sel-12 mutants. To test this, we examined
two mutants that have loss-of-function mutations in two negative regulators of mTORC1
signaling activity. These include the gene encoding the Sestrin ortholog, sesn-1, and the
gene encoding a protein in the GATOR1 complex, nprl-3 [59]. While loss of nprl-3 function
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has been shown to activate mTORC1 signaling activity in C. elegans [60], the impact of
sesn-1 inactivation on mTORC1 activity has not been investigated in C. elegans. Thus, to
determine whether loss of sesn-1 results in the activation of mTORC1 signaling activity,
we examined the levels of phosphorylated RSKS-1/s6 kinase, a downstream target of
mTORC1 signaling, in these mutants [26,61]. Consistent with NPRL-3 and SESN-1 acting
as negative regulators of mTORC1 signaling, we found that nprl-3 and sesn-1 mutants had
significantly elevated phosphorylated RSKS-1 compared to wild type animals, indicating
higher mTORC1 activity in these animals compared to wild type animals (Figure 6A,B).
However, unlike sel-12 mutants, when we examined soft touch response in these animals,
they were phenotypically wild type, without defects in their response rate (Figure 6C).
Additionally, there were no changes to mitochondrial ROS levels in the ALM TRNs of
sesn-1 and nprl-3 mutants (Figure 6D), nor were there structural defects present within these
neurons (Figure 6E). Together, these data indicate that, although mTORC1 plays a crucial
role in mediating several defects associated with loss of SEL-12, hyperactive mTORC1 is
not on its own sufficient to cause neurodegeneration. Rather, elevated mTORC1 activity
in sel-12 mutants exacerbates the neurodegeneration through its influence on ROS and
detoxification pathways via SKN-1.
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Figure 6. Hyperactivation of mTORC1 is not sufficient to cause neurodegeneration. (A) Western blot
of p-RSKS-1/S6k in wild type, nprl-3 and sesn-1 mutants indicating increased mTORC1 activity and
(B) quantification of p-RSKS-1/actin in (A). (C) Quantification of response to anterior and posterior
soft touch in wild type, sesn-1, nprl-3, and sel-12 mutants. (n = 20). (D) Relative mitochondrial
oxidation levels in animals expressing mitochondria targeted roGFP1 in the TRNs. (n≥ 15). (E) Quan-
tification of frequency of healthy and aberrant ALM neurons present in wild type, sesn-1, nprl-3, and
sel-12 mutants. (n ≥ 20). ns p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001 using one-way ANOVA
with Kruskal-Wallis multiple comparison test. Comparisons are made to wild type unless otherwise
indicated. Error bars indicate mean +/− SEM.

4. Discussion

Oxidative stress increases with age and is a prominent risk factor for many neurode-
generative diseases including AD. Under normal physiological conditions, ROS can act
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as important signaling molecules, but the aging process and other pathological insults
gradually cause a breakdown in ROS scavenging systems and the dysregulation of mi-
tochondrial activity, which further promotes the accumulation of ROS, cellular damage,
and impairment of processes governing ROS homeostasis [4]. Calcium signaling plays
an important role in ROS generation, and calcium signaling dysregulation is a significant
contributor to brain pathology. Specifically, elevated intracellular calcium concentration
has been associated with increased oxidative stress in AD models [26,62,63]. Neurons are
selectively vulnerable to oxidative stress, and their crosstalk with supporting glial cells
is disrupted by redox imbalances [64]. It has been shown that calcium-mediated ROS
generation in astrocytes impairs their antioxidant function, which in turn damages neigh-
boring neurons [65]. fAD, which is caused predominantly by mutations in the presenilin
encoding genes, is also associated with altered calcium signaling [7,8,11,12]. Presenilin is
a transmembrane protein found on most endomembranes and localizes primarily to the
ER. Presenilin is known to play an important role in calcium homeostasis. However, the
mechanism underlying calcium dysregulation and its relationship to neurodegeneration
and oxidative stress is unclear.

Here, our study identified a specific role for mitochondrial calcium in the neurode-
generation induced by presenilin/SEL-12 loss. We found that an elevation of cytosolic
calcium, although a consequence of SEL-12 dysfunction [10] as it is with presenilin fAD
mutations, is not sufficient to cause neurodegeneration or increase ROS production in
C. elegans neurons. Rather, an increase in mitochondrial calcium is the critical mediator of
ROS generation and neurodegeneration observed in sel-12 mutants. Increased ROS has
severe consequences on brain cell function, damaging their mitochondria and, in more
complex organisms, increasing inflammation to further drive ROS production [66]. We
also found evidence that the mTORC1 signaling pathway is involved with the increase
in ROS levels and oxidative stress hypersensitivity observed in sel-12 mutants. mTORC1
is a key regulator of cell metabolism, as it senses an array of signals related to nutrients,
cellular energy status, and growth signals, and in turn promotes cell growth and biosyn-
thesis pathways. The dysregulation of the mTORC1 pathway has drastic effects on cell
behavior and consequently has been shown to be involved in a variety of pathologies [49].
There is evidence that mTORC1 signaling is hyperactivated in AD, including in AD patient
brains [67] and in fAD mouse models [68,69]. We have previously found that loss of SEL-12
leads to increased mTORC1 activity associated with mitochondrial calcium signaling and
elevated mitochondrial activity [26]. Along with this, we found hyperactive mTORC1
contributes to neuronal defects through its well-described regulation of autophagy. Here
we discovered a crucial and less well-studied role for mTORC1 in exacerbating oxidative
stress. Although mTORC1’s role in cell metabolism and growth is well known, its rela-
tionship to oxidative stress and ROS homeostasis is complicated and far less understood.
Studies have shown that hyperactive mTORC1 signaling can promote oxidative stress,
leading to cellular damage and disease [70–72], including in aging cells [73]. Conversely,
rapamycin can confer neuroprotection by reducing oxidative stress [74,75]. We have further
implicated a role for mTORC1 in the elevation of mitochondrial ROS levels caused by loss
of SEL-12 function.

It is speculated that mTORC1’s promotion of protein production and inhibition of
autophagy may promote ROS production by destabilizing protein homeostasis, resulting in
increased oxidative stress due to a buildup of protein biomass and misfolded proteins [76].
Interestingly, unlike inhibiting mTORC1 activation (e.g., raga-1 mutation), we found that
inhibition of protein translation via a SK6/rsks-1 loss-of-function mutation was not suffi-
cient to reduce ROS levels in sel-12 mutants (Figure 3A). In C. elegans, mTORC1 signaling
has also been shown to inhibit SKN-1/Nrf activity [51]. SKN-1 is the C. elegans orthologue
of the Nrf class of proteins, whose best-studied member, Nrf2, is a master regulator of the
antioxidant response through its transcriptional upregulation of genes involved in cellular
detoxification [52]. Like the Nrf proteins, SKN-1 is important for lifespan extension, and its
role in oxidative stress resistance is functionally conserved [77]. SKN-1 activation has been
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shown to be neuroprotective by reducing oxidative stress [56]. In the aforementioned study
linking mTORC1 signaling to reduced SKN-1 activity, it was shown that rapamycin, a spe-
cific inhibitor of mTORC1, promotes SKN-1-dependent resistance to oxidative stress [51].
Rapamycin has also been shown to increase Nrf2 activation in cultured human fibroblasts,
thereby increasing resistance to oxidative stress and cell lifespan through the delay of
replicative senescence [78]. In the present study, we found that the resistance of sel-12 mu-
tants to oxidative stress through mTORC1 inhibition was a SKN-1 dependent phenomenon.
These data suggest that mTOR inhibitors such as rapamycin may aid AD patients by in-
hibiting neuronal ROS and activating antioxidant systems. The mechanistic connection
between mTORC1 signaling and SKN-1/Nrf activation remains an important avenue for
further study.

The presenilins’ relationship to fAD has been best studied in their role as the catalytic
subunit of the gamma secretase complex, which is involved in the generation of amyloid
beta peptides through processing of the amyloid precursor protein (APP). Initial presenilin
data provided support for the amyloid cascade hypothesis, which postulates that AD
is caused by the pathological build-up of amyloid beta peptides forming plaques in the
brain. However, efforts to treat AD by reducing amyloid plaque load have been clinical
failures, with immunotherapies targeting amyloid beta showing no effect on disease pro-
gression [79,80]. Recent data have indicated AD etiology is more complex and is influenced
by additional factors, including dysregulated neuronal calcium signaling [81]. It is interest-
ing to note that presenilin’s function in calcium signaling regulation is gamma-secretase
independent [82]. This points to other important neuroprotective roles for presenilin. In
this study, we determined that an elevation of mitochondrial calcium specifically is critical
for the disruption of redox homeostasis, and previous studies demonstrated that this redox
imbalance promotes the loss of proteostasis and neurodegeneration in sel-12 mutants [14,37].
It is unlikely that amyloid beta peptides are produced in C. elegans [83,84], further indicating
crucial roles for presenilin independent of amyloid beta peptide generation, especially
regarding calcium signaling and ROS homeostasis.

We determined that elevated cytosolic calcium is not sufficient to promote ROS levels
and neurodegeneration. We manipulated cytosolic calcium levels through gain-of-function
mutations in two voltage-gated calcium channels: egl-19 and unc-2. However, unlike
egl-19(gf ) mutants, we did not observe elevated cytosolic calcium in unc-2(gf) mutants,
despite a previous report showing that this mutation increases calcium currents and causes
hyperactive animal behavior [20]. Additionally, we found no structural indications of
either neurodegeneration or mitochondrial dysfunction in these mutants (Figure 1C–F).
unc-2 encodes a subunit of the CaV2.1 VGCC, which acts at the presynaptic terminals to
promote synaptic transmission [85]. It might be possible that the UNC-2 VGCC does not
increase overall cytosolic calcium in the neuron but controls the function of the synapse
through localized calcium influx at the presynaptic terminal. Together, these data suggest
that subcellularly localized calcium signaling may cause the mitochondrial and neuronal
phenotypes observed in sel-12 mutants. In agreement with this notion, it was previously
shown that reducing ER calcium release in sel-12 mutants was able to restore normal
mitochondrial and neuronal function in sel-12 mutants [10,14].

In congruence, using multiple model systems, the loss of presenilin function has been
found to increase ER calcium release into the cytoplasm [7,8,10–12]. Moreover, we have
found that the increase in mitochondrial calcium observed in sel-12 mutants is dependent
on ER calcium release [14]. However, it is unknown mechanistically how loss of presenilin
leads to increased mitochondrial calcium. Interestingly, presenilins are concentrated on
the ER that is closely associated with the mitochondria [43]. fAD mutations have also
been shown to increase ER-mitochondrial contact sites as well as increase the signaling
between the ER and mitochondria and the exchange of metabolites and ions, including
calcium [86,87]. However, it is unclear how presenilin alters communication between the
ER and the mitochondria, and this is a future direction worth pursuing.
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There is an interesting and complex relationship between ROS and longevity. Evidence
in C. elegans indicates that small increases in superoxide generation may promote longevity
by activating the mitochondrial stress response, which upregulates the SKN-1-mediated
stress response [88–90]. However, sel-12 mutants have reduced, not increased longevity [10].
Notably, we do not find that the increased ROS we observe in sel-12 mutants triggers
any mitochondrial stress response (Figure 2A–C), nor does it increase SKN-1 activity
(Figure 3D,E). This suggests that the pathological nature of SEL-12 dysfunction precludes a
protective response to mitochondrial ROS generation.

5. Conclusions

Altogether, our study highlights the critical role of mitochondrial calcium in disrupting
redox homeostasis and promoting neurodegeneration in animals lacking SEL-12/presenilin
function. Additionally, we identified mTORC1 signaling as a mediator of increased mi-
tochondrial ROS, and discovered that its effects on ROS levels are, in part, due to the
inhibition of SKN-1/Nrf function. However, the elevation of mTORC1 signaling alone is
not sufficient to cause neurodegeneration (Figure 6). It is interesting to note that the inhibi-
tion of mTORC1 activity does not alter mitochondrial calcium levels in sel-12 mutants [26],
suggesting both that elevated mTORC1 signaling lies downstream of mitochondrial calcium
uptake and that mitochondrial calcium causes additional cellular defects beyond elevating
mTORC1 signaling. Overall, our study underscores the specific role of mitochondrial
calcium in the neurodegeneration induced by impairment to presenilin/SEL-12 function.
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