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Metabolic disorders are often associated with male hypogonadotropic hypogonadism, suggesting that hypothalamic defects
involving GnRH neurons may impair the reproductive function. Among metabolic factors hyperglycemia has been implicated
in the control of the reproductive axis at central level, both in humans and in animal models. To date, little is known about the
direct effects of pathological high glucose concentrations on human GnRH neurons. In this study, we investigated the high glucose
effects in the human GnRH-secreting FNC-B4 cells. Gene expression profiling by qRT-PCR, confirmed that FNC-B4 cells express
GnRH and several genes relevant for GnRH neuron function (KISS1R, KISS1, sex steroid and leptin receptors, FGFR1, neuropilin
2, and semaphorins), along with glucose transporters (GLUT1, GLUT3, and GLUT4). High glucose exposure (22mM; 40mM)
significantly reduced gene and protein expression of GnRH, KISS1R, KISS1, and leptin receptor, as compared to normal glucose
(5mM). Consistent with previous studies, leptin treatment significantly induced GnRH mRNA expression at 5mM glucose, but
not in the presence of high glucose concentrations. In conclusion, our findings demonstrate a deleterious direct contribution of
high glucose on human GnRH neurons, thus providing new insights into pathogenic mechanisms linking metabolic disorders to
reproductive dysfunctions.

1. Introduction

The hypothalamic-pituitary-gonadal (HPG) axis is finely
regulated at a central level by the activity of GnRH neurons, a
peculiar hypothalamic neuronal subpopulation, comprising
few cells (800–2000 cells in the adult brain) scattered within
the preoptic area (POA) of the hypothalamus [1, 2]. The
anatomical position of GnRH neurons makes them espe-
cially vulnerable to peripheral nutrient changes, due to the
close proximity to the blood brain barrier (BBB), within
the third ventricle [3]. Moreover, recent findings demon-
strated that a subpopulation of GnRH neurons projects
dendrites in regions outside the BBB, where theymay directly
sense molecules circulating in the bloodstream, therefore

extending the range of factors that are integrated by these
neurons for the control of the reproductive axis [4].

Over the past years, compelling experimental evidences
have deciphered several mechanisms through which periph-
eral signals and neuroendocrine pathways are integrated
and conveyed to finally regulate GnRH neuron function.
In particular, metabolic hormones, including leptin, insulin,
ghrelin, and polypeptide XX, may regulate GnRH neuron
activity and thereby the HPG axis [5]. In addition to
peripheral hormones, novel central mediators responsible
for relaying such metabolic messages to centers governing
reproduction have been identified. The most recent data
from experimental animals indicate a central role played
by the kisspeptin/KISS1R system in mediating a range of
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metabolic inputs known to regulate GnRH secretion ([6–8],
for reviews).

Derangements of the HPG axis are often associated with
metabolic disorders. In the male population, hypogonadism,
a frequent condition in middle-aged and elderly subjects
[9], affects patients with type two diabetes mellitus (T2DM)
more frequently than subjects without [10–12]. In T2DM
patients androgen deficiency is associated with inappro-
priately normal or even low plasma concentrations of the
pituitary gonadotropins—LH and FSH—[13–15] indicating
hypothalamic defects and/or impaired pituitary response
to GnRH. A normal LH and FSH response to GnRH has
been demonstrated in subjects with T2DM, suggesting a
hypothalamic rather than a pituitary defect [16]. However, the
pathogenic mechanism underlying a relationship between
hypogonadotropic hypogonadism (HH) andmetabolic disor-
ders remains to be fully elucidated. Several studies have doc-
umented that insulin resistance is the most important factor
responsible for the association between low testosterone and
T2DM ([15], for review), although conflicting results exist
about the level—central and/or peripheral—at which the
underlying pathogenic mechanisms may interfere with the
HPG axis activity. By assessing insulin sensitivity with hyper-
insulinemic euglycemic clamp, Pitteloud et al. [17] demon-
strated that increased insulin resistance was associated with
decreased Leydig cell testosterone secretion and not with LH
pulses, thus indicating the implication of a peripheral impair-
ment of the reproductive axis. A more recent study reported
that patients with T2DM showed lower hypothalamic pulse
frequencywithout changes in the pituitary response toGnRH
nor testicular response to hCG [18]. Interestingly, in the
same study it was reported that glucose levels were strongly
correlated with the number of LH pulses, thus suggesting a
specific negative effect of hyperglycemia in the hypothalamic
secretion ofGnRH [18]. In addition, hyperglycaemia has been
identified as one of themajor determinants for the association
between metabolic syndrome (MetS) and hypogonadism
[19]. A recent study in an animal model of high fat diet-
induced MetS [20], aimed at investigating the contribution
of the different metabolic derangements on the related HH
condition, identified a strong association of reduced LH
plasma levels with glucose intolerance severity, as well as
with peculiar hypothalamic alterations, including increased
expression of the glucose transporter GLUT4 [21]. These
alterations occurred in the preoptic area of the hypothalamus,
lining the third ventricle, where GnRH neurons reside and,
accordingly, the same hypothalamic area was characterized
by reduced immunopositivity for GnRH [20] and KISS1R
[21]. Overall, these findings lead to further investigating the
direct role specifically played by glucose in regulating GnRH
neuron function.

To date, little is known about the direct effects of
metabolic derangements on GnRH neurons in the human
brain. In this study we took advantage of an in vitro model,
the FNC-B4 cells, a long-term primary culture of human
foetal GnRH-secreting neurons, obtained from a male fetus
and previously characterized [22–24], which also express the
kisspeptin/KiSS1R system [25, 26]. In order to investigate
the direct effects of uncontrolled hyperglycemia on GnRH

neurons, we exposed FNCB4 cells to elevated concentrations
of glucose.

2. Materials and Methods

2.1. Cell Culture. The human GnRH-secreting FNC-B4 cells
were established, cloned, and propagated in vitro from the
olfactory system of a male fetus, cryogenically preserved, and
previously characterized [22]. Cells were grown using Coon’s
modified F-12 medium (Irvine Scientific, Santa Ana, CA,
USA) supplemented with 10% fetal bovine serum (Eurobio,
Les Ulis, France) and antibiotic/antimycotic solution (peni-
cillin, 100 IU/mL; streptomycin, 100mg/mL). Before each
experiment, cells at passages 5 to 10 were incubated with
serum-free medium for 24 hours and then experiments were
performed using glucose-free medium supplemented with
either normal glucose (5mM), high glucose (22mM), very
high glucose (40mM), or mannitol (22mM) for 24 hours. A
subset of experiments was performed treating cells with 1 nM
leptin for 24 hour in the presence of either 5mM, 22mM,
or 40mM glucose. Cells were washed in phosphate-buffered
saline (PBS) andprocessed for quantitativemRNAexpression
or for immunocytochemistry procedures.

2.2. RNA Extraction and Quantitative RT-PCR. Isolation
of RNA was performed using TRIZOL reagents according
to manufacturer’s instructions (Life Technologies Europe,
Monza, Italy). cDNA synthesis was carried out using
the iScriptTM cDNA Synthesis Kit purchased from Bio-
Rad Laboratories (Hercules, CA). Quantitative RT-PCR
(qRT-PCR) was performed with the fluorescent TaqMan
methodology, as previously published [25], using specific
primers and probe mixtures for GnRH1 (Hs00171272 m1),
KISS1R (Hs00261399 m1), KISS1 (Hs00158486 m1),
fibroblast growth factor receptor 1 (FGFR1; Hs00241111 m1),
neuropilin 2 (NRP2; Hs00187290 m1), semaphorin 3A
(SEMA3A; Hs00173810 m1), semaphorin 3F (SEMA3F;
Hs00188273 m1), tachykinin 3 (TAC3; Hs00203109 m1),
TAC3 receptor (TAC3R; Hs00357277 m1), androgen
receptor (AR; Hs00171172 m1), estrogen receptor-𝛼 (ER𝛼;
Hs01046818 m1), ER𝛽 (Hs01100358 m1), G protein-coupled
ER (GPER/GPR30; Hs00173506 m1), leptin receptor
(LEPR; Hs00174497 m1), glucose transporter 1 (GLUT1;
Hs00197884 m1), GLUT3 (Hs00359840 m1), and GLUT4
(Hs00168966 m1)mRNA, purchased fromLife Technologies.
The expression of the 18S ribosomal RNA subunit, chosen as
the housekeeping gene, was quantified with a predeveloped
assay (Hs99999901 s1; Life Technologies). Data analysis was
based on the comparative threshold cycle (Ct) method, as
previously described [27]. Amplification and detection were
performed with the MyiQTM2 Two-Color Real-Time PCR
Detection System (Bio-Rad Laboratories).

2.3. Immunocytochemistry. FNC-B4 cells were cultured on
slides in the appropriate medium, then were fixed with
3.7% paraformaldehyde (pH 7.4) for 10 minutes and per-
meabilized with PBS containing 0.1% Triton X-100 (Sigma-
Aldrich, St. Louis, MO) for 10 minutes. After rinsing in
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Figure 1: Gene expression profiling in FNC-B4 cells. Relative
mRNA expression of genes relevant for GnRH neuron function was
evaluated using quantitative RT-PCR. Data were calculated accord-
ing to the comparative Ct method, using 18S rRNA subunit as the
reference gene for normalization. Measurements were performed in
four different cell preparations at different passages (from 5 to 10).
No statistical differences were detected among passages, then results
were pooled and reported as the mean ± SEM.

PBS, the slides were incubated with 1% bovine serum
albumin for 15 minutes. Immunostaining was performed as
previously described [25] using monoclonal anti-GnRH I
antibody (1 : 200 dilution; Santa Cruz Biotechnology Inc.),
rabbit polyclonal anti-kisspeptin (1 : 2000 dilution, Phoenix
Pharmaceuticals, Inc., Belmont, CA), or rabbit polyclonal
anti-KISS1R (1 : 100 dilution; Phoenix Pharmaceuticals, Inc.)
followed by the conjugated antibodies: R6393 rhodamine
red goat anti-mouse IgG (H + L) (1 : 200, Molecular Probes,
Eugene, OR) for anti-GnRH I and A-11001 Alexa Fluor 488
goat anti-rabbit IgG (H + L) (1 : 200, Molecular Probes), for
anti-kisspeptin or anti-KISS1R.The slides were evaluated and
photographed using a Nikon Microphot-FXA microscope
(Nikon). Immunopositivity quantification was performed
using Photoshop 5.5 software (Adobe Systems Inc.).

2.4. Statistical Analysis. Data are expressed as the mean ±
standard error of the mean (SEM) for n samples. Differences
between more than two groups were assessed with one-
way analysis of variance followed by Tukey-Kramer post hoc
analysis. 𝑃 < 0.05 was considered significant.

3. Results

In order to provide a better characterization of the FNC-
B4 cell phenotype, gene expression profiling was performed
by quantitative RT-PCR in untreated cells. No differences
were observed between the different passages (from 5 to 10),
therefore, results were pooled and reported in Figure 1. FNC-
B4 cells abundantly expressed GnRH and, at a lower extent,
KISS1 and KISS1R mRNA. The most abundant expression
was detected for genes known to be implicated in GnRH
neuron migration, such as FGFR1, semaphorins (SEMA3A

and SEMA3F), and their cognate receptor neuropilin 2
(NRP2). In contrast, TAC3 (otherwise known as neurokinin
B) was almost undetectable and its cognate receptor (TAC3R)
was not expressed by FNC-B4 cells. Interestingly, among the
sex steroid receptors, AR and the G protein-coupled estrogen
receptor GPER1/GPR30 were the most abundant, when
compared to the classical ERs (ER𝛼 and ER𝛽). Moreover,
FNC-B4 cells expressed high levels of leptin receptor (LEPR),
along with the glucose transporter isoforms GLUT1 and
GLUT3. Although at a lower extent, FNC-B4 also expressed
the insulin-dependent isoform GLUT4.

To study whether the prolonged exposure to increasing
glucose concentrations could interfere with the expression of
genes related to GnRH neuron function, FNC-B4 cells were
cultured for 24 hours in the presence of three different glucose
concentrations (5mM, 22mM, and 40mM). As shown in
Figure 2, both high (22mM) and very high (40mM) glucose
concentrations significantly reduced the mRNA expression
of GnRH (Figure 2(a)) and KISS1R (Figure 2(b)), while
KISS1 mRNA was inhibited only at the highest glucose
concentration. Osmolarity-induced alterations were ruled
out since no effects were observed by exposing cells to 22mM
mannitol (Figures 2(a)–2(c)). High glucose dependent down-
regulation of GnRH, KISS1R, and KISS1 expression was also
confirmed by immunocytochemistry analysis, as shown in
Figure 2 by representative microphotographs (panels d-e,
g-h, and j-k, resp.) and by the related computer-assisted
quantification of immunopositivity intensity (panels f, i, and
l, resp.).

The effects of high glucose exposure on GnRH expression
were also studied in the presence of leptin, which is able to
induce it in FNC-B4 cells, as previously demonstrated [26].
Accordingly, leptin treatment (1 nM, 24 hours) significantly
increased GnRH mRNA expression in FNC-B4 cells at
normal glucose (5mM) (Figure 3(a)).However, this effectwas
lacking in the presence of high glucose concentrations (22
and 40mM) (Figure 3(b)).

4. Discussion

Perturbation of glucose metabolism has been implicated as
one of the pathogenic factors responsible for the association
between HH and metabolic disorders [19]. In experimental
MetS, hyperglycemia and related hypothalamic inflammatory
processes have been associated with the impairment of
GnRH/gonadotropin release [20]. Using a well-characterized
cellularmodel, we here demonstrate a direct inhibitory action
of increasing glucose concentrations on human foetal GnRH-
secreting neurons, the FNC-B4 cells, thus unraveling that
under pathological conditions, high levels of glucose may
directly inhibit the expression of genes relevant for GnRH
neuron function.

It is well known that glucose is a key metabolic regulator
of the reproductive axis, able to fine-tune pulsatile GnRH
release ([28], for review).The study by Herde et al. [4], show-
ing that subpopulations of GnRH neurons may direct sense
from the periphery, greatly improved our understanding of
how abrupt changes in the plasma level of molecules can
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Figure 2: High glucose effects in FNCB4 cells. (a–c) Quantitative RT-PCR analysis of mRNA expression for GnRH (a), KISS1R (b) and
KISS1, (c) genes in FNC-B4 cells exposed to normal (NG, 5mM), high (HG, 22mM), and very high (VHG, 40mM) glucose concentration or
mannitol (M, 22mM) for 24 hours. Results were calculated according to the comparative Ct method, using 18S rRNA subunit as the reference
gene for normalization and were obtained from three separate experiments, each performed in triplicate (𝑛 = 9). Data are reported as mean
± SEM and are expressed in percentage (%) of NG. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01 versus NG. (d–l) Immunofluorescent localization of GnRH (d,
and e), KISS1R (g and h), and kisspeptin (j and k) proteins in FNC-B4 cells exposed to NG (d, g, and j) or VHG (e, h, and k). Dual labeling
with the nuclear staining DAPI (blue color) and anti-KISS1R (green color; g and h) or anti-kisspeptin (green color; j and k) antibodies is also
shown. Original magnification ×20; scale bar = 50 𝜇m. Computer-assisted image analysis for quantification of GnRH, KISS1R, and kisspeptin
immunopositivity is shown in panels (f), (i), and (l), respectively. 𝑛 = number of analyzed cells.
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Figure 3: Effect of high glucose on leptin signaling in FNCB4 cells. (a) Quantitative RT-PCR analysis of LEPRmRNA expression in FNC-B4
cells exposed to normal (NG, 5mM), high (HG, 22mM), and very high (VHG, 40mM) glucose concentration or mannitol (M, 22mM) for
24 hours. (b) Effect of leptin (1 nM, 24 hours) on GnRH mRNA expression in FNC-B4 cells exposed to the different glucose concentrations
(NG, HG, and VHG) or mannitol (M, 22mM). Results were calculated according to the comparative Ct method, using 18S rRNA subunit
as the reference gene for normalization and were obtained from at least three separate experiments, each performed in triplicate. Data are
reported as mean ± SEM and are expressed in % of NG. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01 versus NG.

modulate pulsatile GnRH/LH secretion. Recent evidences
in the mouse GT1-7 clonal GnRH cell line have implicated
this GnRH neuronal cell line as direct sensor of glucose,
further suggesting that GnRH neurons may sense changes in
extracellular glucose directly [29, 30] and that this glucosens-
ing is modulated by gonadal steroids [29, 31]. However, the
majority of existing evidence for glucose regulation of GnRH
neuron activity is derived from studies of experimental
glucoprivation, showing that GnRH neurons are sensitive to
changes in glucose concentrations within the physiological
range (up to 5mM), with low doses (<0.5mM) being able
to downregulate GnRH release [29, 31, 32]. In this study, we
have tested the effects of exposing FNC-B4 cells to extremely
high glucose concentrations (22 and 40mM), in order to
mimic pathological conditions, such as uncontrolled diabetic
hyperglycemia, when brain glucose levels more likely exceed
5mM.

The investigation of GnRH neuron biology is strongly
hampered by the peculiar anatomical distribution of these
few hundreds of cells scattered within the hypothalamic
POA. The availability of FNC-B4 cells have facilitated the
study of mechanisms regulating GnRH neurons of human
origin [22–26, 33–36]. These cells express and release GnRH
in response to different stimuli, including sex steroids
[23], kisspeptin [25], and leptin [26]. Moreover, previous
studies have identified that FNC-B4 cells express the insulin
growth factor (IGF) system which was downregulated by
high glucose (20mM) exposure [37]. We here show that
FNC-B4 cells express glucose transporters (GLUT1, GLUT3,
and GLUT4) and further demonstrate that these cells may
respond to changes in glucose concentrations, thus opening
new mechanistic insights into the direct metabolic control
of GnRH release. Exposing FNC-B4 cells to high glucose
significantly reduced gene and protein expression not only of
GnRHbut also KISS1R, which, upon activation by kisspeptin,
is regarded as the master regulator of GnRH production. As
previously demonstrated [25], we here confirm that FNC-B4
cells express KISS1, whose expression is also impaired by
high glucose exposure. This finding is apparently in contrast

with the current understanding of KISS1/KISS1R system
in the forebrain of the mouse and rat, which indicates that
kisspeptin-secreting neurons are a hypothalamic neuronal
subpopulation distinct from that of GnRH-secreting neurons
([8], for review). However, in good agreement with our
results, the mouse GT1-7 cell line, which are immortalized
hypothalamic GnRH neurons [38], express KISS1 [39]. Gene
expression profiling better clarified the FNC-B4 phenotype,
which abundantly express genes, such as FGFR1, NRP2,
SEMA3A, and SEMA3F, known to be involved in the normal
migratory processes, through which GnRH neurons reach
the final hypothalamic destination during embryogenesis.
It is well known that FGFR1 mutations cause the Kallmann
syndrome, a heterogeneous genetic disorder that associates
HH due to GnRH deficiency with anosmia [40]. Similarly,
neuropilins (NRP1 andNRP2) and their ligands semaphorins
(SEMA3A and SEMA3F) have been implicated in the
development of the GnRH system [41]. Interestingly,
FNC-B4 cells not only express the classical androgen and
estrogen receptors (AR, ER𝛼, and ER𝛽), as previously
reported [23, 26], but also the membrane estrogen receptor
GPER1/GPR30, which has been recently implicated in rapid
action of estrogen both in primates [42] andmice [43] GnRH
neurons. Moreover, the identity of FNC-B4 cells as GnRH
neurons is corroborated by the observation that these cells
do not express TAC3, the gene encoding the neurokinin B
(NKB), nor do they express TAC3R, which encodes for NKB
receptor. This finding is in agreement with studies reporting
the lack of TAC3R in GnRH neurons of sheep [44, 45] and
mice [46]. Indeed, it has been assumed that that NKB is
released byKISS1 neurons and not byGnRHneurons and acts
to enhance kisspeptin secretion by an autocrine or paracrine
mechanism through TAC3R [47]. Accordingly, kisspeptin
infusion restores gonadotropin pulsatility in patients with
TAC3 or TAC3R loss-of-function mutations [47].

In this study, we originally demonstrated the regulation
of leptin signalling in FNC-B4 cells by glucose exposure. The
role of leptin as permissivemetabolic signal for reproduction,
acting through a stimulatory effect of the hormone on GnRH



6 International Journal of Endocrinology

secretion is well known [48]. As previously demonstrated
[26], we here confirm that at 5mM glucose concentration
leptin retained the ability of inducing GnRH expression
in FNC-B4 cells. In contrast, leptin failed to stimulate
GnRH expression in the presence of high glucose doses,
thus suggesting an impaired leptin signalling, most likely
due to the inhibitory effect of both 22 and 40mM glucose
concentrations on LEPR expression. Although it is generally
accepted that GnRH neurons do not physiologically express
LEPR, suggesting the involvement of intermediate neuronal
circuits and signals [49], our results are in agreement with
previous reports showing that the stimulatory effect of leptin
on GnRH secretionmay be direct on cells, which, similarly to
FNC-B4, express LEPR [50].

Since FNC-B4 cells have a male karyotype, any extrapo-
lation of our results to explain the control of GnRH neurons
by glucose is limited to male patients. Indeed, the effects of
MetS on the reproductive female system (increased secretion
of LH, hyperandrogenism) are quite different from those
occurring in males. Sexual dimorphism of hypothalamic
nuclei, which in females are involved in mediating the
positive feedback of ovarian steroids, essential for the pre-
ovulatory luteinizing hormone surge, could be implicated in
the different response of the female reproductive system to
metabolic disorders. Further studies could clarify whether
neurons, similar to FNC-B4, with a female karyotype would
have a different control of the same genes and proteins.

In conclusion, even if obtained in vitro, our findings sup-
port the idea of a deleterious direct contribution of hyper-
glycemia on human GnRH neurons, thus providing new
insights into the pathogenic mechanisms linking HH to
metabolic disorders.
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