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Despite the discovery that the human immunodeficiency virus 1 (HIV-1) is the pathogen of
acquired immunodeficiency syndrome (AIDS) in 1983, there is still no effective anti-HIV-1
vaccine. The major obstacle to the development of HIV-1 vaccine is the extreme diversity
of viral genome sequences. Nonetheless, a number of broadly neutralizing antibodies
(bNAbs) against HIV-1 have been made and identified in this area. Novel strategies based
on using these bNAbs as an efficacious preventive and/or therapeutic intervention have
been applied in clinical. In this review, we summarize the recent development of bNAbs
and its application in HIV-1 acquisition prevention as well as discuss the innovative
approaches being used to try to convey protection within individuals at risk and being
treated for HIV-1 infection.
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INTRODUCTION

The causative agent of acquired immunodeficiency syndrome (AIDS) is human immunodeficiency
virus 1 (HIV-1), a lentivirus from the Retroviridae family (1). HIV-1 predominantly infects CD4+ T
cells which play a central role in the adaptive immune system by activating and modulating the
activity of other immune cells (2). Individuals with AIDS experience a steady depletion in CD4+ T
cells, rendering them severely immunocompromised (3) and susceptible to opportunistic infections
(4). Since the first published report of AIDS, in June 1981 (5), 35 million people have died from
AIDS-related illnesses. Despite educational and preventative measures, approximately 38 million
people are currently living with HIV-1 and 1.7 million new infections are reported in 2019 (http://
www.unaids.org/en). The disease has a disproportionate prevalence with a major dominance in
Africa, where it has dramatically decreased life expectancy and economic growth (3, 6, 7).
Nevertheless, with thorough scientific investigation, several breakthroughs have been made to
alleviate the lethality and devastating impact this disease has had on communities.The development
of combination anti-retroviral therapy (cART) was a crucial event in decreasing HIV-1-associated
morbidity and mortality (8–10). The efficacy of ART is characterized by its ability to inhibit various
aspects of the HIV-1 replication cycle and thereby sustain viral loads below the limits of detection.
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Consequently, effective viral suppression by ART will improve
the immune function, reduce AIDS-related complications, and
improve the overall quality of life (10–12). More importantly,
HIV-1 acquisition has transformed from a highly lethal infection
to a life-long, treatment-manageable affliction. Despite these
positive implications, ART can’t cure the disease due to the
existing of HIV-1 latent reservoir. Moreover, it may raise
significant concerns on the sustainability and affordability of
ART and create a potential for global economic issues to enforce
HIV-1 patients to a lifelong dependency on ART (13).
Neutralizing antibodies (NAbs) therapy or effective induction
of its production as one of the most promising alternative
method have received extensive attention. In this review, we
will discuss the targets of antibody responses on HIV-1 envelope
(Env), the generation of such antibodies, and the progress and
viability of current HIV-1 prophylactic and therapeutic
methodologies, with a major focus on leveraging bNAbs for
HIV-1 prophylactic and therapeutic applications.
HIV-1 ENVELOPE

HIV-1 Envelope, Diversity and the
Obstacles for Anti-HIV-1 Vaccine
Development
It is widely believed that the holy grail of HIV-1 prophylactic
vaccine development is an Env-based immunogen that elicits
broad immune response against a wide array of HIV-1 strains.
However, the HIV-1 Env glycoprotein has several special
characteristics that render the virus evading the attack from
host immune response. The HIV-1 genome consists of two
copies of single stranded RNA surrounded by a capsid and by
a viral membrane. Situated on the outer membrane are Env
glycoproteins that are incorporated into the virions as they bud
from the host cell. The Env glycoprotein of HIV-1 is synthesized
in the rough endoplasmic reticulum and processed into gp120
and gp41 via cleavage by host protease furin (14, 15). Surface
gp120 and the transmembrane gp41, associated noncovalently,
are determinants of viral tropism and are involved in the
promotion of viral and host cellular membrane fusion by
recognizing and interacting with particular receptors (16).
Specifically, Env gp120 serves as the receptor-binding
component and engages CD4 and a coreceptor (CCR5 or
CXCR4), while gp41 serves as a means for viral core entry into
the host cell. The successful binding and entry of HIV-1 involves
several conformational changes that expose conserved regions of
the virus and typically occurs in a two-step process outlined in
detail by Wilen et al. (17). Briefly, CD4 binding to the
constitutively accessible CD4 binding site (CD4bs) on gp120
induces a conformational change, which triggers both high
affinity CD4 binding and structural rearrangement of the Env
trimer to reveal the chemokine-binding site. The exposure of
chemokine-binding site promotes further engagement by gp120
and induces another conformational rearrangement of the Env
trimer, triggering gp41 activation. The consequent refolding of
gp41, as a result of its activation, induces viral and target cell
Frontiers in Immunology | www.frontiersin.org 2
membrane fusion and subsequent deposition of the viral core
within the target cell (17). Env proteins are amongst the most
immunogenic components of HIV-1 particles as they are
accessible targets being expressed on the viral membrane
(18, 19).

Although the ability of HIV-1 to rapidly mutate its genome
enhances antigenic variation of surface glycoproteins, the
domains that bind to CD4 and co-receptor are relatively
conserved. gp120 possesses five conserved regions (C1-C5) that
are interspersed between five regions of considerable sequence
variability, often called hypervariable loops (V1-V5) (20). The
variable regions occlude the constant regions, thus antibodies are
primarily raised against variable regions rather than constant
regions (20).

The extreme genetic diversity of the virus results from its
highly error-prone reverse transcriptase, a high tendency for
recombination driven by the constant evolutionary pressure of
avoiding detection and destruction by the immune system, and
an extremely rapid turnover in vivo (21, 22). Currently, there are
four distinct groups of HIV-1: M, N, O and P. Group M is further
subdivided into nine distinct subtypes (A-D, F-H, J, and K) and
numerous additional circulating recombinant forms (CRFs) (21,
23). Some of these CRFs have recombined with other subtypes or
other CRFs to form “second generation” recombinants (9).
Genetic inter-clade diversity ranges from 20-30%, diversity
within clades reaches as high as 12%, and circulating viruses
can differ within the highly variable Env protein by up to 38%
(22, 24). As a consequence, this vast diversity of the virus makes
it very difficult to design an immunogen that can account for all
existing variants of HIV-1.

Moreover, HIV-1 utilizes host-derived, non-immunogenic
glycans to mask its Env to evade immune recognition (25–27).
gp120 contains approximately 25 N-glycosylation sites that form
a glycan shield, which serves as another mechanism to overcome
immune defenses (20). Nearly 50% of Env’s molecular mass is
composed of host derived N-linked sugars, and such
carbohydrate moieties prevent immune recognition by
occluding highly immunogenic epitopes on gp120 (18, 28).
The role of Env glycans in attenuating recognition by immune
cells has been demonstrated in several studies where removal of
specific glycans in V loops, within C2-C4 region, and gp41
exposed relevant bNAb epitopes (29–31). In one such study,
rhesus monkeys infected with Simian Immunodeficiency Virus
(SIV) mutants lacking glycosylation in the V1 region of gp120
resulted in the production of higher neutralizing antibody titers
than those infected with wild type SIV (32). Specific to the
recessed pocket on gp120 containing the CD4bs, removing
glycans peripheral to it increases the sensitivity of the virus to
neutralization (33–35).

Types of Humoral Response Against Env
It has been reported that bNAbs neutralizing heterologous
viruses of diverse subtypes could be developed during chronic
infection in a small portion of HIV-1 infected individuals
(36, 37). The resultant antibodies can be classified into three
groups based on their ability to target and neutralize a range of
HIV-1 strains (Figure 1) (41). The first group of antibodies
July 2021 | Volume 12 | Article 697683
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involves a class of antibodies that are unable to neutralize viruses,
including those that have Env sequences identical to immunizing
antigen. However, it is still likely that such non-neutralizing Ab
(nNAb) can perform antiviral function through Fc-mediated
activities (41). Antibodies bound to the Env proteins can attach to
FcgR expressed on innate immune cells and trigger Ab-dependent
cellular cytotoxicity (ADCC) and Ab-mediated cellular
phagocytosis (ADCP). ADCC is mainly mediated by natural
killer (NK) effector cells, whereas monocytes, macrophages or
dendritic cells that can internalize Ab-bound virus or Ab-coated
cells are responsible for ADCP (42). These two Fc-mediated
processes are dependent on IgG subclass and Fc glycosylation,
with somemutations of the Fc region, such as the removal of the Fc
glycan fucose residues, increasing the effectivity of ADCC (41).

The second group of antibody response encompasses
antibodies that neutralize virus but in a highly strain-specific,
autologous manner. Often, these antibodies exert selective
pressures that drive viral resistance to the humoral response.
Frontiers in Immunology | www.frontiersin.org 3
Consequently, they promote survival of escape variants that have
been generated via insertion/deletion mutations in gp120
variable regions through amino acid substitutions and
changing surface glycosylation sites (18, 19, 43, 44).

The third group of antibodies is associated with a response
able to neutralize a wide array of HIV-1 strains and is therefore
termed bNAbs. In vitro, bNAbs have been confirmed to
neutralize the majority of HIV-1 strains with a half maximal
inhibitory concentration (IC50) of less than 1 mg/ml (41, 45). The
known spectrum of bNAb targets encompass the CD4bs (46, 47),
glycan dependent epitopes V1/V2 and base of V3/C3 (48–51),
linear epitopes in the membrane proximal external region
(MPER) of gp41 (52), gp120-41 interface (53, 54), gp120 silent
face (55, 56), and fusion peptide (57) (Figure 1). The ability of
bNAbs to target conserved regions derives from years of
continuous affinity maturation. This endows them with
mechanisms to cope with the variability that surrounds the
small regions of conserved Env trimer (41).
FIGURE 1 | Representation of some forms of Env targets present on infecting HIV-1 strain and available to elicit their respective class of antibody response. For an
anti-HIV-1 antibody to have neutralizing activity, it should interact with functional spikes on Env trimers that mediate HIV-1 entry into target cells (38, 39). Non-
neutralizing antibodies typically target Env epitopes absent from the functional spikes of the native Env trimer (39, 40). The targets for autologous nAbs are V loops
and other regions of gp120 with relatively high sequence variation on functional spikes between strains, and therefore, they can only bind Env trimers from the
infecting strain. Heterologous bNAbs on the other hand typically target the relatively conserved regions, based on sequence or amino acid homology, with some
targeting the variable loop. Collectively, the known spectrum of bNAb targets encompass the CD4bs, glycan dependent epitopes V1/V2 and near the base of V3/C3,
linear epitopes in the membrane proximal external region (MPER) of gp41, gp120-41 interface, gp120 silent face, and fusion peptide.
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ANTI-HIV-1 ANTIBODIES

First Generation bNAbs
During chronic HIV-1 infection, approximately up to 50% of
infected individuals produce high levels of neutralizing
antibodies (NAbs) against Env (36, 58, 59). Among them,
approximately 1% are “elite neutralizers” and produce bNAbs,
typically after 2-4 years (60). The first-generation anti-HIV-1
bNAbs were discovered when researchers found antibodies
capable of neutralizing different HIV-1 subtypes in the early
1990s. These bNAbs were isolated by using phage display or
human hybridoma electrofusion. The first generation bNAbs
include b12 (CD4bs), 2G12 (viral glycan), 2F5 and 4E10 (gp41
MPER) (Table 1) (71). 2G12 bNAb recognizes a1!2 mannose
residues proximal to V3 and V4 loops on gp120 (116). The
epitope recognized by 2G12 is conformationally sensitive,
strongly depending on asparagine glycosylation in the C2-,
C3-, C4-domains, and the V4 loop (20). 2F5 and 4E10 possess
a unique ability to bind strongly to the MPER region with one
Fab fragment, while having a low affinity for an alternative target
on Env with the other Fab fragment (72). This mode of
heterogenous binding seems to increase the neutralization
efficacy of primary HIV-1 isolates.

Studies carried out with HIV-1 pseudoviruses of different
subtypes have demonstrated that first-generation bNAbs exhibit
low to moderate breadth and neutralization potencies (20).
Therefore, achieving the desired efficacy as a therapeutic
requires high concentrations of these bNAbs, with an inherent
limitation to the range of HIV-1 isolates that can be neutralized.
Additional undesirable characteristics of first generations bNAbs
that impede their therapeutic applications have also been
Frontiers in Immunology | www.frontiersin.org 4
outlined. Firstly, 2G12 has a unique structure where each light
chain (LC) is bound to the constant region of one heavy chain
(HC) and variable region of the other heavy chain, resulting in
the cross-association of the HCs, and consequently the Fab-
fragments are also unusually closely aligned (20). Moreover, 2F5
and 4E10 are self-reactive and b12 is a phage-derived Fab-
fragment Ab generated by random pairing of heavy and light
chains that may have never existed in nature (71).

Second Generation bNAbs
The discovery of high throughput single-cell B-cell receptor
(BCR) amplification and novel soluble Env selection tools,
together with the ability to culture memory B cells, has
permitted identification and isolation of second generation
bNAbs that are more potent and have a broader coverage (38,
50). Within these, antibodies that bind to the CD4bs are among
the broadest, reaching coverage of up to 98% against cross clade
viruses (73). The classification of CDbs bNAbs is divided into
two major types, complementarity-determining region 3
(CDRH3) dominated and VH-gene restricted, based on their
ontogeny and mode of recognition. CDRH3 dominated bNAbs
make contact with their target site on the Env primarily through
their CDRH3 regions and can be subdivided into four classes:
CH103, HJ16, VRC13, and VRC16 classes; whereas VH-gene
restricted CD4bs bNAbs make contact primarily through their
CDRH2 regions and are subdivided into two classes: VRC01-
class antibodies and 8ANC131-class antibodies (74). VRC01,
VRC02, and VRC03 were isolated in 2010 from an HIV-1-
infected individual living with untreated infection for over 15
years (61). These three bNAbs are highly somatically mutated
somatic variants. While VRC01 and VRC02 are somatic variants
TABLE 1 | Categories, efficacies, and research development of broadly neutralizing HIV-1 antibodies.

Traget site
(see Figure 1)

Antibody
designation

Potency* (Median
IC50,mg/mL)

Breadth (% of n pseudoviruses,
IC50<50mg/mL)

Similar monoclonal antibodies Year
generation

References

CD4bs VRC01 0.25 91 VRC02, VRC03, VRC232 2010 (61)
NIH45-46, 3BNC60, BNC62, 3BNC117,
12A12, 12A21, 12A30, VRC-PG04,VRC-
CH31

HJ16 1.16 36 ? 2010 (62)
b12 1.79 40 ? 1991 (63)

CH103 4.54 55 CH104 to 106 2013 (64)
N6 0.04 98 ? 2016 (65)

V1/V2 loop PG9 0.109 78 PG16, CH101 2009 (50)
PGT145 0.3 78 PGT141 to 144 2011 (66)
2G12 1.45 28-39 ? 1994 (67)

V3 loop PGT121 0.07 70 PGT122, PGT123 2011 (49)
10-1074 0.036 66 ? 2012 (49)

gp41 MPER 2F5 1.44 67 m66 1992 (68)
4E10 1.303 98 ? 1994 (69)
10E8 0.222 98 7H6 2012 (52)

gp120-41
interface

8ANC195 0.415 66 8ANC3040, 8ANC3484 2014 (53)
35022 0.033 62 ? 2014 (54)

gp120 silent
face

VRC-PG05 0.8 27 VRC-PG04 2018 (56)
SF12 0.2 62 SF5 2019 (55)

Fusion peptide ACS202 0.142 45 PGT151 2017 (70)
VRC34.01 0.3599 49 PGT151 2016 (57)
July 2021 | V
olume 12 | A
*For neutralization potency, the geometric mean value among neutralized viruses is shown. TZM-bl/pseudovirus neutralization assay was used to evaluate the neutralization potencies and
breadths of the antibodies.
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of the same IgG1 clone with identical CDRH3 regions, VRC03
likely originated from a different IgG1 clone although derived
from the same heavy chain alleles as VRC01 and VRC02 (61). It
has been demonstrated that VRC01 can neutralize 91% of
pseudovirions (of 190 Env-pseudotyped viral strains
representing all major clades and circulating recombinants) at
an IC50 of <50 mg/mL, and neutralize 72% of primary isolates at
an IC50 of <1 mg/mL (38, 61). VRC02 exhibited similar
properties as VRC01, however VRC03 was much less broad
than VRC01 and VRC02, neutralizing 57% of the pseudovirions
at an IC50 of <50 mg/mL.

Following the discovery of VRC01, numerous other CD4bs-
targeting antibodies were identified, including NIH45-46,
3BNC117, and 12A12. NIH45-46 is a more potent clonal variant
of VRC01 with high sequence and structural similarities to VRC01,
yet it has a distinct mode of binding to gp120 (47). An amino acid
substitution from glycine (G) to tryptophan (W) at position 54
yielded NIH45-46G54W (47). This mutation increased the
interactive surface between NIH45-46G54W and gp120, which
resulted in enhanced potency and breadth (47). For many years
since its discovery in 2011, 3BNC117 had the greatest potency and
breadth of all the CD4bs-targeting second generation bNAbs; the
majority of tested viruses were more sensitive to 3BNC117 than
VRC01 (74). 3BNC117 has been tested in phase IIa clinical trial to
verify its safety and potential in suppressing viral rebound during
ART treatment interruption (75). Recently discovered monoclonal
CD4bs antibody, N6, is the most potent bNAb described thus far,
and has one of the highest neutralization breadths. In a study
involving 181 pseudoviruses from various clades, N6 was able to
neutralize 96%of viruses at amedian IC50 of 0.038mg/ml. Focusing
on clade C pseudoviruses, N6 neutralized 98% of 171 at a median
IC50 of 0.066 mg/ml. N6 has a unique mode of Env recognition,
including its ability to avoid steric clashes with the highly
glycosylated V5 region as well as ability to tolerate loss of
antibody contacts with the CD4bs or V5 region (65, 73). These
properties enable N6 to overcomemajormechanisms of resistance,
thus it is able to neutralize many isolates that were resistant to
VRC01 and other CD4bs antibodies (73).

Somatic variants PG9 and PG16, discovered in 2009, were
among the first bNAbs identified to target the gp120 V1/V2
loops. Characteristic features of antibodies targeting the V1/V2
loops include exceptionally longCDRH3arms topenetrate through
the gp120 glycan shield to access the protein surface beneath (20).
PG9 andPG16 possess notable neutralization breadth and potency,
capable of neutralizing 78% and 73% of pseudoviruses, respectively
(50). CAP256 was isolated from an HIV-1 subtype C-infected
individual and has a tendency to neutralize subtype A and C
viruses (76). CAP256 has a long CDRH3 loop that binds to a
quaternary epitope within V1/V2 region, however it is highly
specific for residues 159-171 in the V2 loop that make up the FN/
LRD-K-K motif (76). PGDM1400, isolated in 2014, also interacts
with the gp120 V1/V2 quaternary epitope and exhibited high
breadth (neutralized 83% of viruses in a cross-clade 106-virus
panel) and remarkable potency (median IC50 of 0.003mg/mL) (77).

A number of broad and potent bNAbs that target the V3 loop
region have been described, including PGT121, PGT128,
Frontiers in Immunology | www.frontiersin.org 5
PGT135, 10-1074, and AIIMS-P01. The high-mannose glycans
on N332 are commonly targeted by these bNAbs, and they also
possess long CDRH3 loops to penetrate the gp120 glycan shield
(20). PGT121 utilizes a unique mode of action of neutralization
by inhibiting CD4 binding to gp120 through allosteric
mechanisms (78). It is postulated that allosteric interactions
between PGT121 and key structural elements within V3 locks
gp120 into a conformation that impedes CD4 binding. It is worth
noting that PGT121 and 10-1074, in contrast to the other V3
loop-targeting bNAbs, bind to complex-type rather than high-
mannose glycans on gp120 (49). AIIMS-P01 was recently
isolated from a clade C chronically infected pediatric elite
neutralizer. It is an HIV-1 N332 supersite-dependent bNAb
and can neutralize 67% of HIV-1 cross-clade viruses (79).

The fourth major site of vulnerability that bNAbs can target is
gp41 MPER. 10E8 is an MPER-specific antibody that
demonstrated ability to neutralize 98% of tested pseudovirions
at an IC50 of <50 mg/mL (52). 10E8 possesses a 22-amino-acid
long CDRH3 loop that makes contacts with highly conserved
hydrophobic gp41 residues, along with a narrow band of residues
from CDRH1 and CDRH2 (52). Unlike other MPER-targeting
antibodies, 10E8 is neither polyreactive nor lipid-binding (52). In
recent years, three other bNAbs targeting sites, including gp120-
41 interface, gp120 silent face and fusion peptide, were
discovered. The bNAbs, relevant targeting sites, neutralization
potencies and breadths were showed in Figure 1.
Role of Non-Neutralizing Antibodies
(nNAbs)
Neutralizing Abs generally bind to epitopes on functional
trimeric Env and prevent subsequent virus-cell engagement,
ultimately preventing infection. On the other hand, nNAbs
commonly bind non-functional conformations and epitopes
absent from functional Env spikes. Such conformations include
open Env trimers, gp140 monomers, and cell receptor
engagement-induced gp41 stumps (Figure 1). In several
studies utilizing humanized mice, it has been demonstrated
that nNAbs can provide protection through its Fc region
(involved in the mediation of ADCC and ADCP), while also
placing selective pressure and evolutionary constraints on the
viruses (80, 81). In one such in vivo study, Horwitz et al.
demonstrated that although nNAbs are less efficacious than
bNAbs, they can provide modest protection against and
change the progress of HIV-1 infection. To show this, a
replication competent HIV-1 indicator strain (HIVivoHA) was
generated with the ability to express HA-tag on the surface of
virions and was used to infect cells. In vitro, the anti-HA
antibodies were able to bind but not neutralize HIVivoHA.
However, when challenged with HIVivoHA in vivo, the anti-
HA antibodies protected against HIV-1 infection, reduced viral
load in established infection, and cleared virus-infected cells.
Similar results were obtained with passive transfusion of 246D,
an anti-gp41 nNAb, when challenged with tier 2 HIV-1 viruses
(HIV-YU2 or HIV-YU2-infected cells) (80). Contrary to these
findings, some macaque studies suggest that nNAbs may reduce
July 2021 | Volume 12 | Article 697683
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the number of founder variants, however, they do not protect
against infection (82, 83). The conflicting results point to the lack
of clarity of the sufficiency of Fc associated protection by nNAb
against HIV-1 infection. Besides, nNAbs segment Fc also
mediates antibody-dependent cell-mediated virus inhibition
(ADCVI) and antibody-dependent complement–dependent
cytotoxicity (ADCDC) via binding to the corresponding Fc
receptors (Fcgs) on the surface of effector monocytes,
macrophages, dendritic cells, or natural killer cells.

In a recent study, Anand et al. showed that two ADCC-
mediating antibodies, anti-coreceptor binding site (CoRBS) and
anti-cluster A antibodies, preferentially bind to the open
conformation of Env glycoprotein (84). The binding of anti-
CoRBS Abs resulted in the further open conformation of Env,
facilitating anti-cluster A antibodies interact with the protein.
They found that it is required that both antibodies bind to the
same gp120 for the subsequent interaction with soluble dimeric
FcgRIIIa. Furthermore, Fc regions of the two Abs are required to
mediate robust ADCC, indicating that they act in a sequential
and synergistic fashion.
GENERATION OF BNABS

Possible Mechanisms for Generation
of bNAbs
B cell maturation is one of the proposed mechanisms for the
humoral system developing bNAbs. The B cell repertoire consists
of follicular (FO), marginal zone (MZ), plasmablast and plasma
cells, as well as memory B cells. FO B cells, which are mature but
inactive, are the most common type of B cells (85). They have a
distinct phenotype from other B cell populations, recirculate in
the blood, and can become either antibody-producing plasma or
memory B cells with help from cognate T cells. They are
responsible for generating the majority of high-affinity
antibodies during an infection. MZ B cells are found mainly in
the marginal zone of the spleen and lymph nodes and serve as the
first line of defense against blood-borne pathogens (86). They
preferentially undergo T cell independent activation, but can go
through T cell dependent activation as well (85). Memory B cells
are dormant B cells that arise from B cell differentiation following
prior antigen recognition and T cell help (87). During chronic
presence of HIV-1 specific antigens, these memory B cells go
through multiple rounds of affinity maturation which allows for
the gradual recognition of viral variants that emerge over time,
and leads to the potential production of bNAbs (43, 88–90).

Germinal centers (GC) are the conveyors of affinity
maturation. GCs consist of antigen-specific B cells that
undergo proliferation and multiple rounds of somatic
hypermutation (SHM) of the BCR in the dark zone, and
subsequent selection in the light zone. Here, a fraction of the
selected B cells returns to the dark zone for additional
proliferation and rounds of mutations (91). Mutations in the
BCR can alter its affinity towards its specific antigen. B cells
possessing a high affinity BCR will capture more antigens and
consequently express more antigen derived peptide on its MHC-
Frontiers in Immunology | www.frontiersin.org 6
II, and thus receive more help from follicular helper T cells (Tfh
cells) (39, 40). Tfh cell help involves many molecules including
CD40L, IL-21, IL-4, CXCL13, and SLAM. In one mouse study,
one of two populations of GC B cells with the same BCR was
given additional Tfh help. The population of GC B cells that
received extra Tfh help showed increased clonal expansion.
Collectively, help provided by Tfh cells contribute to the
survival, proliferation, somatic hypermutation, and isotype
class switching of GC B cells, all of which combine to select for
high affinity B cells clones by Tfh cells (39). GC Tfh cells are not
only necessary but also limiting in the production of HIV-1
bNAbs. In a human cohort, using a combination of Tfh cell
surface markers to track Tfh cells, the authors demonstrated a
correlation between frequency of memory Tfh cells and anti-
HIV-1 bNAb generation (92). Similarly, at the primate level, SIV
and Simian-Human Immunodeficiency Virus (SHIV) challenge
studies in rhesus macaques have also shown an association
between Tfh cells and generation of NAb breadth.
Additionally, rhesus monkeys with the highest frequency of
GC Tfh cells developed the highest SIV Env-specific antibody
titers (93). Another study postulates that increasing the
magnitude of HIV-1-specific Tfh response, or the breadth of
the Tfh repertoire, can facilitate the evolution of anti-HIV-1
bNAbs (94).

The key players and complex interplay of genetic factors
predisposing to bNAb development are still being investigated,
however, predisposition to natural control of HIV-1, evident in
elite neutralizers, involves HLA-I alleles that allow for a robust
CD8+ T cell response (95). Inherently, characteristics of the
immune system actually restrict the development of bNAbs. The
relatively long CDRH3 typical of bNAbs, are generated at
the stage of V(D)J recombination, and therefore restricting the
human immunoglobulin repertoire in the variety of specific V
(D)J rearrangements encoding germline precursors of HIV-1
bNAbs. This in turn explains the rarity of their presence.
Conversely, the accumulation of a large number of mutations,
generated by somatic hypermutation during multiple cycles of
affinity maturations are also difficult to sustain (90).

The involvement of B-cell dysfunction is also a potential topic
of study in the development of bNAbs. As a collateral from virus
replication and mass-immune activation in HIV-1 infection, the
B cell compartment undergoes profound dysregulation.
Indicators of B cell dysregulation involve the delayed antibody
response in acute infection, an increased activated memory B cell
and exhaus ted B ce l l subpopu la t ions , po lyc lona l
immunoglobulin production through non-specific activation of
plasmablasts, and reduced population of long-lived plasma cells
(96–101). B cell dysregulation may be attributed to the transport
of Nef to B cells via infected macrophages. Introduction of Nef to
B cell may alter class-switching and germinal center responses
(102). An alternate but equally likely cause of B cell dysregulation
may be the early cytokine storm associated with HIV-1 infection
and constitutive dysregulation caused by infection and depletion
of T cells (103). Despite the effects of B cell dysfunction, it does
not prevent the generation of bNAbs which requires further
investigation. No correlation has been observed between the
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extent of dysfunction of circulating B cells during chronic
infection and breadth of neutralization (37, 104).

It has been shown that the development of anti-HIV-1 bNAbs
is associated with high genetic diversity of HIV-1 Env
glycoprotein and its evolution. Mabvakure et al. compared the
evolution of Env in eight HIV-1 patients developing bNAbs with
six donors with similar viral loads but without bNAb developed
over three years of infection (105). They found that overall
evolutionary rates ranged from 9.92 x 10(-3) to 4.1 x 10(-2)

substitutions/site/year and viral diversity from 1.1% to 6.5%
across Env, and there was no significant difference between
bNAb donors and non-bNAb donors. Interestingly, in the
targeted epitopes, patients with bNAb had more positively
selected residues than those without bNAbs, and the selection
pressure increased at these residues along with the onset of
breadth. These data indicate that the induction of HIV-1 bNAbs
is most likely resulting from the highly directed evolution
for virus.

Simonich et al. described the bNAb evolution in an infant for
the first time. In the BF520.1 V3-glycan directed lineage of this
infant, there was evolution of heterologous cross-clade
neutralizing activity within 6 months of infection. Interestingly,
to achieve the full breadth of the mature antibody, they found
that only 2% SHM was needed, and that the features of pathway
for this infant antibody development were distinct from adult
antibodies, which may be amenable to better vaccine
responses (106).

Eliciting a bNAb Response
Using Immunogens
In an attempt to effectively elicit a broad humoral immune
response, various vaccine strategies have been explored,
including designing of consensus or ancestral proteins (107–
110), modifying Env variable regions or glycosylation sites (107,
110), and replicating Env-CD4 fusion transient intermediates
(110, 111). To overcome HIV-1 diversity in particular, a
frequently used method is the sequential immunization
strategy. This strategy revolves around the idea that by
sequentially exposing the host to a collection of Env variants
representing the viral quasispecies members isolated from an
individual that developed bNAbs, the host is able to undergo a
virtually slightly different humoral response. Diversification of
the Env gene would drive antibody maturation by presenting
new epitopes in diversified variants and focus the humoral
response on more conserved epitopes (110) (Figure 2).

Alternatively, a novel vaccine priming strategy that
emphasizes germline as the target and initiates the affinity and
maturation of specific germline precursor B cells has been of
great interest. This strategy allows for immunofocusing by
preferentially activating bNAb-precursor B cells, subsequently
allowing for productive bNAb-like somatic mutations, and
ultimately resulting in the production of memory B cells that
can be boosted with Env immunogens to select for additional
productive mutations (8, 112, 113). In some cases, inferred
germline (iGL) precursors of bNAb, particularly ones involving
the V1/V2 loops at the apex of the trimer, have high affinity for
Frontiers in Immunology | www.frontiersin.org 7
native Env from particular HIV-1 isolates (114, 115), simplifying
the design of priming immunogens to be derived from Env of
these isolates (77, 116). For other iGL bNAb precursors, no such
wild-type Env has been found to bind with high affinity (113,
117), thus requiring the design of modified Env as the priming
immunogen. An example of such an immunogen is the eOD-
GT8 molecule which has been designed and selected to bind with
varying affinity to various iGL versions of VRC01-like bNAbs
(118). The efficacy of designed priming immunogens has been
evaluated in immunization experiments in mouse models that
have been engineered to have the precursor form of VRC01 IgH
or IgL genes integrated into the corresponding mouse Ig loci.
Using these “knock-in” mice, a single eOD-GT8 immunization
was demonstrated to stimulate the production of a VRC01-class
memory response in at least 29% of the immunized mice despite
the presence of a low frequency of VRC01-class precursor per
mouse (118). It is expected that after the priming of germline
precursor, a potent induction of bNAbs will require sequential
boosts, driving a succession of germinal-center reactions to select
sufficient mutations.

In a recent study, by using neutralization data from four large
virus panels, Bricault et al. mapped viral signatures
comprehensively with bNAb sensitivity, including amino acids,
hypervariable region characteristics, and clade effects across four
different classes of bNAbs (119). They then employed the bNAb
signatures (defined for the V2 epitope region of HIV-1 Env) to
design a signature-based epitope targeted (SET) vaccine. A
trivalent vaccine (V2-SET) was created by introducing V2
bNAb signature-guided mutations into Env 459C, and was
used to immunize guinea pigs. The results showed that V2-
SET vaccines elicited broader NAb responses when compared
with Env 459C alone, indicating that bNAb signatures could be
utilized to inform HIV-1 Env immunogens design to elicit
antibody responses with greater neutralization breadth.
APPLICATION OF BNABS: AN ARSENAL
OF PROTECTIVE POTENTIAL

Passive Immunization
As an alternative to vaccine development, passive immunization
is being explored as a potential therapeutic for treatment and
prevention of HIV-1 infection. In early preclinical animal studies
involving passive transfusion of HIV-1 neutralizing sera and first
generation bNAbs, relatively effective protection was conferred
against certain HIV-1 strains (120). However, due to the poor
breadth and potency offirst generation bNAbs, and primarily the
cost of manufacture and feasibility, passive immunization was
not pursued further (121). Nevertheless, with the discovery of
more potent and broad second generation bNAbs, such as
VRC01 and its clonal variants, research into passive
immunization has resurfaced and has demonstrated prevention
and treatment potential against lentiviral infection in macaques,
humanized mice, and humans (122–132). In one such study,
intravenous transfusion of PGT121 mediated sterilizing
immunity against SHIV in monkeys at lower concentrations
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than those observed in previous studies (132). Similarly,
administered in monkeys, VRC01 was providing complete
protection against high-dose SHIV vaginal and rectal challenge
(133). In contrast to a high-dose challenge model, humans are
typically exposed to small but multiple doses of HIV-1 via a
mucosal route. In a repeated low-dose SHIV intrarectal challenge
model, a single administration of bNAb (VRC01, 3BNC117, 10-
1074, or VRC01-LS) to macaques was protective against
infection for several months. The duration of protection was
correlated with the antibody potency and half-life (125). Two
V2-specific antibodies, PGDM1400 and CAP256-VRC26.25,
have demonstrated high potency and neutralization breadth
against HIV-1. Not much exploration has been pursued into
V2-specific bNAbs, however PGDM1400 has been shown to be
fully protective at 0.4mg/kg dose against SHIV challenge in a
Frontiers in Immunology | www.frontiersin.org 8
macaque model. Similarly, CAP256-VRC26.25 conferred
complete immunity at a smaller dosage of 0.08 mg/kg, and
thus showing the potential for V2-specific bNAbs as potential
passive immunization therapeutic agents (134).

Apart from monkeys, two human clinical trials have also
determined that VRC01 passive transfusion is a safe and effective
endeavor (135, 136). Passive immunization using VRC01 is now
being tested on a larger scale by HIV Vaccine Trials Network
(HVTN) and HIV Prevention Trials Network (Antibody
Mediated Prevention) and involves 2700 high-risk homosexual
men in the Americas (NCT02716675) and 1,900 heterosexual
women in Africa (NCT02568215). Participants are intravenously
administered with either 10 mg/kg or 30 mg/kg of VRC01 once
every week for 8 weeks. A protective titers for passive
immunization will be determined by comparing number of
FIGURE 2 | Germinal center reactions that can lead to the production of anti-HIV-1 bNAbs. HIV-1 specific B cells undergo proliferation and somatic hypermutation
of the BCR in the dark zone, followed by affinity selection in the light zone. The resulting cells compete for the limited Tfh cell help, and cells with a high affinity BCR
get more help than those with a low affinity BCR, which consequently undergo apoptosis. The surviving cells can either differentiate into plasma cells, re-enter the
GC for additional rounds of somatic hypermutation and proliferation, or differentiate into memory cells. Re-entry of these memory cells with stimulation from other Env
variants will allow for further affinity maturation. The combination of these events forms a cycle needed to generate anti-HIV-1 bNAbs.
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infections in the dose groups and a protective efficacy will be
determined by comparing number of infections in VRC01
groups to placebo (137). Another CD4-binding bNAb,
3BNC117, was tested in a dose escalation phase 1 clinical trial
(NCT02018510) involving uninfected and HIV-1-infected
individuals. A single 30mg/kg administration of 3BNC117 was
shown to reduce viremia by 0.8-2.5 log10 and demonstrated
favorable pharmacokinetics. However, emergence of resistant
viral strains was evident in some cases (124). In another small-
scale clinical trial (NCT02511990), 33 subjects received a single
intravenous infusion of 10-1074 bNAb, which was well tolerated
with a half-life of 25 days in uninfected and 12.8 days in HIV-1-
infected individuals. Of the 13 HIV-1-infected patients enrolled
in the study, 11 participants showed a rapid decline and
subsequent control of viremia (138, 139). Currently, the
pharmacokinetics and anti-viral activity of PGDM1400 and
PGT121 is under investigation in HIV-1-infected and HIV-1-
uninfected adults in a Phase I clinical trial (NCT03205917).
Ongoing clinical trials using various anti-HIV-1 bNAbs are
shown in Table 2.

Further studies are required to determine optimal treatment
regimens for passive immunization. These investigations can
differ based on pharmacodynamics and pharmacokinetics in
serum, as well as the bNAb HIV-1-specific pharmacodynamic
properties, such as neutralization efficacy, susceptibility to viral
resistance, and its capacity to mediate viral and antigen
trafficking, processing, and presentation. Regimens can also
depend on the patient’s viral load, variants present at the time
of therapeutic administration, as well as their sensitivity to
specific bNAbs (139). Collectively, these factors will provide a
more personalized regimen that will ensure viral load
suppression, with reduced susceptibility for viral evasion, as
long as adherence is maintained.

Although passive immunization shows promise, many factors
contribute to raise feasibility concerns for its application as a
large-scale human prophylactic and therapeutic. First, passive
immunization involves high doses of antibodies over a long
period of time. Consequently, it requires relatively large amounts
Frontiers in Immunology | www.frontiersin.org 9
of expensive reagents, inflating the cost to treat one patient.
Additionally, monoclonal antibodies are difficult to produce in
large amounts. Therefore, passive immunization is currently
limited by the absence of a cost-effective and high yield
monoclonal antibody producing process (140). Lastly,
immunity conferred by passive immunization is not long-lived
and would require frequent and regular re-administration
depending on the relatively short half-life of antibodies (141).
This can lead to a potential adherence problem as seen with
currently employed ART treatment. Taking a “therapeutic
holiday” can theoretically allow escape variants to develop,
making subsequent treatment with the same antibody difficult.

Gene Transfer Therapy
To overcome barriers associated with passive immunization, using
gene transfer technology toprovide hostswithananti-HIV-1bNAb
gene is now becoming a very attractive strategy. Previously
successful gene replacement therapies have all used viral vectors
for gene delivery, since viruses are highly adapted for gene delivery
to their host cells. These have either involved direct viral vector
injection to target tissues, ormodification of cells in culture by viral
vectors, followedbycell expansionand injection.After injection, the
antibody gene in the transduced target cell can direct endogenous
expression of the antibody molecule, and serve as a depot to
synthesize bNAbs that are distributed to the circulatory system.
The host is now armed with a potent bNAb against HIV-1 that
bypasses the adaptive immune system (140).

A promising novel gene replacement methodology, vectored
immunoprophylaxis (VIP), is capable of in vivo bNAb gene
delivery by a single injection of adeno-associated virus (AAV)
vector. To evaluate and validate its plausibility, several animal
model studies have been conducted. Interestingly, an injection of
immunodeficient mice with AAV8 vector, encoding a full length
bNAb gene for either b12, 2G12, 4E10, 2F5, or VRC01, was
demonstrated to achieve peak antibody production in serum by 6
weeks, followed by a decrease that was maintained at a consistent
level for the remainder of the study. The immunodeficient mice
were then injected with human-derived PBMC for 2 weeks and
TABLE 2 | Ongoing clinical trials by using various anti-HIV-1 antibodies.

Trial registry
identifier

Antibody Sponsor Phase Estimated end date Number of participants

NCT04801758 VRC01 HIV Vaccine Trials Network N/A Jun 2022 30
NCT04319367 10-1074-LS + 3BNC117-LS Imperial College London Phase II Mar 2025 72
NCT04404049 UB-421 UBP Greater China (Shanghai) Co., Ltd Phase II Jun 2024 39
NCT03743376 UB-421 United BioPharma Phase II Dec2021 31
NCT03147859 vedolizumab Ottawa Hospital Research Institute Phase II Dec2021 24
NCT03721510 PGT121 + VRC07-523LS +/- PGDM1400 International AIDS Vaccine Initiative Phase I/IIa Oct 2022 18
NCT03208231 VRC01 NIAID Phase I/II Feb 2021 68
NCT03707977 VRC01LS + 10-1074 NIAID Phase I/II Oct 2021 40
NCT03554408 10-1074-LS + 3BNC117-LS Rockefeller University Phase I Jun 2021 75
NCT03571204 3BNC117 + 10-1074 NIAID Phase I Jun 2021 27
NCT03526848 3BNC117 + 10-1074 Rockefeller University Phase I Apr 2022 26
NCT04250636 3BNC117-LS + 10-1074-LS Rockefeller University Phase I Feb 2022 10
NCT03374202 AAV8-VRC07 NIAID Phase I Mar 2027 25
NCT03705169 SAR441236 NIAID Phase I Feb 2022 84
NCT02591420 VRC01 NIAID Phase I Mar 2021 24
July 2021 | Vo
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were subsequently challenged with 10ng of NL4-3 HIV-1 strain
intravenously. A VRC01 titer of 8.3mg/ml was able to be achieved
and provided complete protection against the HIV-1 challenge,
thus demonstrating a proof of concept of VIP (142).

However, the intravenous HIV-1 injectionmodel is not entirely
representative to human infection, which establishes through the
mucosal route. Therefore, tomodelHIV-1 human infection, a bone
marrow-liver-thymic (BLT) chimeric mouse model was
intravaginally challenged with a low dose of HIV-1 JR-CSF strain.
BLT mice that were given VIP to express VRC01 were highly
resistant to this challenge, elucidating the successful VIP-mediated
delivery of bNAb and its efficacy of protection against HIV-1 (143).
Efficacy evaluation in thenonhumanprimate (NHP)modelhas also
been carried out by SIV challenge of macaque monkeys, in which
VIP-mediated bNAb expression was detected for over 6 years,
providingprotectionagainst infection (144).A recent studywith the
NHP model demonstrated that, after receiving the AAV-encoded
multiple bNAbs (3BNC117, 10-1074, and 10E8), two antibodies
(3BNC117 and 10-1074) maintained high level (50-150 mug/mL)
in one out offour SHIV-AD8 infectedmonkeys over two years, and
resulted in undetectable plasma viremia over three years (145).

Encouraging results in animal models has rallied substantial
interest to pushVIP gene transfer therapy to clinical trials. Priddy et
al. reported the first-in-human phase 1 trial (NCT01937455) with
rAAV1-PG9DP (encoding PG9) in 21 volunteers performed in the
UK (146). There were only mild or moderate reactions without
intervention in the participants. PG9 was detected by RT-PCR in
muscle biopsy samples in four volunteers and showed HIV-1
neutralization activity in the serum samples. However, ELISA
detected no PG9 in serum. On the other hand, ten volunteers in
the higher dose groups were detected PG9 anti-drug antibody
(ADA), anti-AAV1 antibodies and AAV1-specific T-cell
responses. As previously mentioned, anti-HIV-1 bNAbs undergo
high levels of somatic hypermutation. Such highlymutated regions
serve as potential targets for anti-idiotypic responses, which in turn
woulddiminish their protective activity and lead to the eventual loss
of transgene expression (144). Additionally, some bNAbs have a
polyreactive characteristic, which allows them to bind to human
antigens with high affinity as well (147, 148). For example, VRC01,
VRC02, CH106, and CH103 can bind to human ubiquitin ligase
E3A with high affinity, with avidity correlating to neutralization
breadth of the antibody (149). The combination of auto-reactive
bNAbs with the long-term antibody expression achieved by gene
therapy creates a potential for autoimmunity. Therefore, before
applicationofVIP gene transfer therapy into clinical use, challenges
associated with gene transfer therapymust be addressed, i.e. how to
achieve a protective bNAb level in transmission sites while
minimizing the side effects caused by long-term bNAb expression.
CHALLENGES OF BNAB APPLICATION
AND POSSIBLE SOLUTIONS

Half-Life of bNAbs
Improving thehalf-life ofbNAbsmay improve the ability toprevent
infection by neutralization due to its longer lasting presence.
Frontiers in Immunology | www.frontiersin.org 10
Additionally, viral rebound occurs rapidly upon bNAbs’ decay
(139), which presents opportunities for viral evolution. For
passive immunization applications, improving the half-life may
reduce adherence complications, in turn reducing the possibility for
viral evolution, and preventing both viremia and viral resistance.
Previously, bNAb levels have been shown to decay more rapidly in
HIV-1-infected individuals compared to the uninfected,whichmay
be attributed to the formation of antibody-virus complexes that are
readily recognized and cleared (139). Taking this into account,
serum half-life needs to be improved to maintain concentrations
required for protective potential and constrain viral evolution in
those who are already HIV-1-infected. One such methodology,
involving Fc engineering, introduces two mutations encoding
amino acid substitutions (M428L and N434S, collectively known
as LS) into genes encoding Fc domains of VRC01. Compared to its
wild-type counterpart, VRC01-LS (now being explored in Phase I
clinical trials: NCT02840474, NCT02256631; has been completed
in Phase I clinical trials: NCT02797171, NCT02599896)
demonstrated a 3-fold increase in its half-life, accompanied by an
increase in its ability to translocate tomucosal tissues andprotection
against high-dose rectal challenge in non-human primates (150–
152). Similarly, 3BNC117-LC and 10-1074-LC have also
demonstrated to have a 2.0 and 3.8-fold increase in half life,
respectively (125).

HIV-1 Resistance to bNAbs
HIV-1 resistance to bNAb neutralization has been ever increasing
over the course of the epidemic. In a previous study,HIV-1 variants
isolated from recently infected individuals and from those infected
early in the epidemic were tested for their sensitivity to first and
second generationbNAbs. Itwas demonstrated thatHIV-1 variants
from recently infected individuals showed a decrease in sensitivity
to neutralization to b12, but not to 2G12, 2F5, or 4E10. Of the 21, at
least one variant from recently infected patients also showed
decreased neutralization sensitivity to PG16, PG9, and VRC01,
one of the most potent bNAbs thus far described (153). It has been
previously established that neutralization escape from single
antibody administration can occur rapidly (132). Nonetheless, a
cocktail of 3-4 bNAbs can be used to reduce chances of resistance
development while being capable of neutralizing 100% of viruses.
Although bNAbs can prevent and control anHIV-1 infection, their
breadth is invariably too limited foruse asmonotherapy.Toaddress
this problem, bispecific and trispecific antibodies have been
developed. A recent study reported that a new class of bispecific
antibodies targeting the V2-glycan (apex) andV3-glycan regions of
the HIV-1 Env showed more potent neutralization than their
parental bNAbs (154). Despite its positive implications, the use of
more than one bNAb in therapeutic and phrophylactic strategies
increases the cost of the product, raising feasibility concerns.

Anti-Drug Antibodies
Due to its longerhalf-life and its ability to efficientlymediate antibody
effector functions, the IgG1 subtype is usually selected for AAV
delivery of bNAbs. However, it has been discovered that IgG1-Fc is
responsible for the generation of anti-drug antibodies (ADAs) which
results in loss of antibody expression. To circumvent this issue,
Gardner et al. (155) utilized a rhesus IgG2-Fc domain to generate
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an antibody-like molecule eCD4-Ig to express four anti-HIV-1
bNAbs: NIH45-46, 3BNC117, PGT121 and 10-1074. To investigate
theADAandefficacyof theseantibodieswitheither IgG1-Fcor IgG2-
Fc domain, they compared AAV1 expression of these antibodies in
macaques, and found that the macaques expressing IgG2-isotyped
bNAbs were protected from two SHIV-AD8 challenges, but not the
macaques expressing IgG1, and observed significantly lower ADA in
the former macaques. These data suggest that, when using AAV1 as
an expression vector, IgG2-isotyped bNAbs are less immunogenic
than their IgG1 counterparts,

Autoimmune Diseases
As previously mentioned, many bNAbs possess autoreactive
potential, which has been demonstrated using autoimmune
diagnosing assays and testing on arrays of human proteins. In
studies involving the tracking of maturation from initial B cell
arrangement to breadth development, a correlation was observed
between autoreactivity and neutralization breadth. In addition,
CH98, a CD4bs targeting bNAb, was isolated from a person
living with an HIV-1 infection and systemic lupus erythematosus
(SLE). When testing the autoreactivity of CH98, it was found to
be capable of binding dsDNA, suggesting that some
bNAbs derive from an autoreactive pool of B cells (156).
Autoreactivity may pose a problem in gene transfer therapy,
where an individual is endowed the ability to endogenously and
constitutively produce these bNAbs. A strategy for controlling
the endogenous bNAb expression may alleviate some degree of
autoimmunity concerns.

Cost-Effectiveness of bNAbs
for Protection
The combination of the short half-life (thus requiring repeated
administrations of bNAbs in passive immunization) and cost of
the clinical-grade reagents required to manufacture bNAbs
raisefeasibility concerns and impede its applications on a
population-wide scale. Targeting bNAbs to anatomical sites of
exposure may reduce the number and volume of doses required
to provide protection against HIV-1 infection, consequently
reducing the cost. Up to now, it remains uncertain whether
either infection or vaccination with HIV-1 Env can generate
protective mucosal or systemic IgA responses. However, it is
crucial to induce long-lived effective mucosal antibody responses
for providing protection in mucosal layer. In recent years,
important progress has been made in unveiling events that
occur during the exposure of HIV-1 to the mucosal surface,
one of the predominant infection routes. It is unclear how the
initial infection is established in the mucosal layer or mucosally.
However, it has been demonstrated that HIV-1 can infect the
vaginal, ectocervical, endocervical, and endometrial mucosa. The
vagina and ectocervix are covered by an intact multilayered
squamous epithelium, providing an intrinsic mechanical
protection, while the endometrium and endocervix are covered
by a single layer of columnar epithelium. Regardless, HIV-1 can
penetrate corresponding cells and cause infection in all four
regions mentioned above. Therefore, in addition to potentially
reducing the cost of bNAb-involved treatment, targeting bNAbs
Frontiers in Immunology | www.frontiersin.org 11
to the mucosa will increase protection by serving as an
alternative line of defense to mechanical barriers (157, 158).

Antibody engineering strategies have been explored to improve
and establish bNAbuse formucosal immunity.One strategy involves
engineering the Fc region such that it enhances binding to FcRn
(neonatal FcR that is involved in IgG transepithelial transport) and
pIgR (polymeric immunoglobulin receptor that is involved in IgA
transepithelial transport). Anti-HIV-1 bNAb variants modified to
improve binding ability have beendemonstrated to have an extended
half-life, enhanced localization and persistence at mucosal surfaces,
and superiorprotection fromintrarectal SHIVchallenge inmacaques
(151). Designing IgA and chimeric IgGA variant bNAbs may also
increase localization and protection in mucosa. Engineering gene
transfer therapy to produce a localized response in mucosal tissue
may also be beneficial. Additionally, combination therapy of cART
and bNAbs may be a superior substitution to maintain viral
suppression in HIV-1-infected humans.

Potential Suboptimal Efficacy in Virus
Cell-to-Cell Transmission
Studies have reported that HIV-1 infects target cells via two
mechanisms: cell-free virus spread or cell-to-cell transmission
(159, 160). More importantly, HIV-1 cell-to-cell transmission
showed higher transmission efficiency than cell-free virus spread
(161). A number of studies have confirmed that bNAbs could
efficiently inhibit intravenous and mucosal infection caused by
cell-free HIV-1 or SHIV challenge (125, 162, 163). However,
previous studies have demonstrated that cell-mediated HIV-1
transmission is less sensitive to antiretroviral drugs and bNAbs
than cell-free viral infection (164, 165). The activities of bNAb-
mediated inhibition of cell-to-cell transmission are likely
associated with the steric-hinerance effect caused by virological
synapse (166). Thus, antibodies with smaller size may showmore
potent neutralization activity in HIV-1 cell-to-cell dissemination.
Duncan et al. found that 10E8 Fab fragment presented more
efficient neutralization activity than the original 10E8 in HIV-1
cell-to-cell transmission (167). Additionally, some studies
indicated that the activity of bNAbs-mediated inhibition in
cell-to-cell transmission mainly depended on mode of action
and virus strains (168, 169). Overall, further understanding of
the mechanisms of HIV-1 cell-to-cell transmission may promote
the future application of bNAbs for inhibiting HIV-1 spread.
CONCLUSION

Theprogress into characterizing the role andapplicability of bNAbs
in HIV-1 treatment over the years has rapidly accumulated. More
focus and investigation into understanding the mechanism of
bNAb generation, however, may be beneficial on several fronts,
including the development of an effective vaccine that can elicit a
potent bNAb response. Passive immunization over the years has
also been improved, and its transition into a population-wide
therapeutic can potentially be eased with reduced production
cost. Additionally, research in cancer immunology has led to the
establishment of gene transfer therapy, which has become a
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promising approach for HIV-1 treatment. Efficacy of both passive
immunization and gene transfer therapy may significantly benefit
from the discovery of more potent bNAbs. Moreover, bNAb-
induced protection may be less effective in cell-cell transmission,
and therefore, increasing our knowledge on mucosal transmission
events andHIV-1 spread through infectedcellswill provide a strong
foundation for improvement.
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