
Beyond the average patient: how
neuroimaging models can address
heterogeneity in dementia
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Dementia is a highly heterogeneous condition, with pronounced individual differences in age of onset, clinical
presentation, progression rates and neuropathological hallmarks, even within a specific diagnostic group.
However, the most common statistical designs used in dementia research studies and clinical trials overlook this
heterogeneity, instead relying on comparisons of group average differences (e.g. patient versus control or treat-
ment versus placebo), implicitly assuming within-group homogeneity. This one-size-fits-all approach potentially
limits our understanding of dementia aetiology, hindering the identification of effective treatments. Neuroimaging
has enabled the characterization of the average neuroanatomical substrates of dementias; however, the increasing
availability of large open neuroimaging datasets provides the opportunity to examine patterns of neuroanatomical
variability in individual patients. In this update, we outline the causes and consequences of heterogeneity in de-
mentia and discuss recent research that aims to tackle heterogeneity directly, rather than assuming that dementia
affects everyone in the same way. We introduce spatial normative modelling as an emerging data-driven tech-
nique, which can be applied to dementia data to model neuroanatomical variation, capturing individualized neuro-
biological ‘fingerprints’. Such methods have the potential to detect clinically relevant subtypes, track an individu-
al’s disease progression or evaluate treatment responses, with the goal of moving towards precision medicine for
dementia.
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Introduction
Heterogeneity is an underlying characteristic of the presentation
and progression of dementia. Variability is observed in the under-
lying neuropathology, genetic risk factors, imaging and fluid

biomarkers and in clinical and behavioural manifestations, rein-
forcing the idea that each dementia patient is unique. However, it
is challenging to capture this heterogeneity when studying demen-
tia and it is often not attempted. The conventional analytical ap-
proach focuses on characterizing group averages, not individual
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differences, assuming homogeneity between dementia patients
(Fig. 1A). The failure to incorporate heterogeneity in statistical
models of dementia may have limited our understanding of the
pathophysiological mechanisms and slowed the development of
treatments.

Despite thousands of treatment trials, only one drug (aducanu-
mab) shows any promise for disease modification.1 This paucity of
treatments, in combination with the rapid ageing of the global
population, adds to the societal burden of dementia.2 This moti-
vates the re-evaluation of common experimental approaches in
dementia research and clinical trials with the goal of optimizing
statistical design. In this update, we review current and emerging
neuroimaging analysis methods that are able to account for the in-
trinsic heterogeneity, to help further our understanding of demen-
tia and improve the prospect of developing effective treatments.

Heterogeneity in dementia

Dementia is characterized by progressive cognitive decline, over
and above that seen in normal ageing, with subsequent impact
on activities of daily living. Dementia is the end point of multiple
diseases, including Alzheimer’s disease, vascular dementia,
Parkinson’s disease dementia, dementia with Lewy bodies, fronto-
temporal dementia and limbic-predominant age-related TDP-43
encephalopathy (LATE).3,4 Neuropathological factors vary between
these diseases, though commonly include amyloid, tau and Lewy
body accumulation5,6 and neurodegeneration.

The neuropathological hallmarks of the dementia syndromes
have been well characterized in some cases, while others continue
to be defined. Indeed, the Braak stages are an established method
for characterizing and defining Alzheimer’s disease and
Parkinson’s disease dementia pathology.7,8 However, neurobio-
logical evidence suggests that there are many individual excep-
tions to these general rules. This could be because of the complex
relationship between the clinical syndrome and underlying neuro-
pathology, as well as individual differences in brain structure and
function that predate the pathological onset. For instance, neocor-
tical neuritic amyloid plaques have been observed post-mortem in
over 50% of non-demented older adults, while almost 20% of de-
mentia patients had no such plaques at death.9 Beyond amyloid,
other dementia risk factors such as tau tangles, white matter

lesions and vascular pathologies have been recorded in dementia-
free older adults.9 This suggests that these pathological hallmarks
of dementia are not universal, with some individuals resilient to
insults that may be sufficient to cause dementia in others.

The mechanisms driving these pathological changes are yet to
be fully determined, although they likely vary between individuals,
both between and within diagnostic categories. Genetic and envir-
onmental risk factors also show considerable variability here.10,11

For example, APOE is the best-known genetic risk for sporadic
Alzheimer’s disease but is only semi-dominant and moderately
penetrant; at an age of 85 years, between 30% and 50% of APOE e4
homozygotes do not have dementia.12 Potentially, different genetic
and molecular mechanisms (or combinations of mechanisms) can
result in dementia.

In addition, separate pathologies have broad phenotypic corres-
pondence, and clinicopathological relationships can be varied (e.g.
aphasia or behavioural disturbances in frontotemporal lobar de-
generation).13 A specific dementia phenotype may be the result of
different pathological processes, and conversely a single molecular
pathology may result in multiple different dementia phenotypes.14

A specific diagnosis (e.g. Alzheimer’s disease) can also include
pathological features characteristic of another dementia disease
(e.g. TDP-43 proteinopathy).15 Symptoms often do not conform to
diagnostic boundaries.16,17 For instance, diverse symptoms are
observed in frontotemporal lobar degeneration syndromes, but
these do not easily fall within existing clinical categories or a
single disease entity.18 Furthermore, heterogeneity can be seen in
the severity of symptoms,19 rates of change20 and influence on
activities of daily life.21

To add further complexity, many dementia patients have non-de-
mentia comorbidities, for example, neuropsychiatric and gastrointes-
tinal diagnoses,22 all of which may impact clinical presentation and
disease progression. Age is also a key risk factor for pathophysio-
logical changes; disentangling disease-related variation from the
ageing process is challenging, for example when differentiating be-
tween normal cognitive decline or mild cognitive impairment as a
prodromal phase of Alzheimer’s disease.23

Neuroimaging can offer in vivo neurobiological insights into the
inter-individual variability in dementia.24–26 Structural MRI has
uncovered anatomical differences in dementia patients, reflected
in patterns of atrophy,27 and anatomical symmetry.28 Differences

Figure 1 Differences between case-control and data-driven subtype approaches. (A) The conventional case-control approach. Despite underlying
neurobiological heterogeneity, as illustrated by the red, green and blue (RGB) profiles, all patients are analysed together to calculate the group average.
This is used to compare with healthy controls to highlight differences between the two groups. Here, the average patient (an average of RGB profiles,
circled) assumes neurobiological homogeneity, potentially masking underlying subtypes or individual differences. (B) Data-driven neuroimaging ap-
proach. The cases present neurobiological heterogeneity and are subtyped according to their different neurobiological patterns. This informs the div-
ision of the case population into its respective subtypes (distinguished RGB profiles). These subtypes can then inform stratification for further
investigation, such as clinical interventions, longitudinal monitoring or genome-wide association studies.
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in pathological hallmarks can be seen using PET ligands; for in-
stance, tau (e.g. 18F-AV1451) and amyloid (e.g. 11C-PiB) ligand bind-
ing has been shown to vary between patients with Alzheimer’s
disease.29 Functional MRI has also been used to capture differences
in connectivity.30

Neuroimaging is now commonly implemented in clinical trials
to provide secondary outcome measures of treatment effective-
ness.31–33 Here, the relationship between variance and statistical
power is considered; variance can increase noise in the typical
case-control designs and subsequently reduce statistical power to
detect change. For example, in early trials of solanezumab, both
amyloid-negative and amyloid-positive Alzheimer’s disease
patients (defined using PET) were recruited, reducing the ability to
detect the effects with high levels of sensitivity, as some patients
were likely following different pathological trajectories.34,35

Subsequently, it has been argued that a stringent approach of
selecting optimal participants and biomarkers of interest for clinic-
al trials will increase the likelihood of success when evaluating
average differences between patients.36 However, there are limita-
tions to this approach. For example, hippocampal involvement in
Parkinson’s disease dementia is widely disputed,37 and in
Alzheimer’s disease both higher,38 or lower,39 caudate nucleus vol-
umes have been reported compared with healthy controls. Such
inconsistencies could be due to differences within patient groups
in either the disease subtype or disease stage. Until both disease
heterogeneity and disease dynamics are better understood, using
biomarkers for stratified trial enrolment will likely remain
contentious.

A key limitation of current statistical approaches is the as-
sumption in traditional case-control studies that experimental
groups are homogeneous, discrete entities (Fig. 1A). Here, tests of
statistical significance are based on group means, generally
regarding individual differences as error or noise. In other words,
this approach is fundamentally oriented to comparing the
‘average patient’. Even in sophisticated multivariate analyses (e.g.
machine learning), the focus tends to be on the discovery of ca-
nonical patterns across sets of variables that differentiate one
group from another. This assumption of within-group homogen-
eity is neither reflected in real-world clinical populations nor in
the heterogeneous pathological nature of neurodegenerative dis-
eases. Inconsistencies are commonly seen in treatment
effects2,40,41; however, this could be related to unmeasured indi-
vidual differences rather than poor efficacy. The assumption that
there are uniform effects of dementia or of treatment on the brain
may be hindering the discovery of disease-modifying treatments,
especially when translating to heterogeneous clinical settings.
This motivates the incorporation of heterogeneity into trial
designs.42 Given the importance of the brain in dementia, we out-
line ways to model heterogeneity using neuroimaging and illus-
trate the impact this could have on fundamental research and
clinical trials.

Data-driven statistical methods

Measuring and statistically modelling neurobiological heterogeneity
in a clinical population requires large datasets. Fortunately, large
neuroimaging datasets are increasingly available for dementia; these
include the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
Open Access Series Of Imaging Studies (OASIS) and the National
Alzheimer’s Coordinating Center (NACC). These datasets allow for
more flexible and powerful statistical testing.43–45 These data have
supported the development and application of novel data-driven
methods designs in dementia research (Box 1).Recently, data-driven
methods have enabled the estimation of disease subtypes from neu-
roimaging data, a promising way to disentangle heterogeneity by

grouping patients by distinctive neurobiological and cognitive charac-
teristics46 and disease progression.47,48 For instance, hierarchical clus-
tering algorithms have been utilized to understand variation in
cortical thickness,49,50 grey matter51 and progressive neurodegenera-
tion.52 Clustering techniques employed on large Alzheimer’s disease
neuroimaging datasets have suggested that there are disease sub-
types with distinct patterns of cortical thinning. Atrophy-based
groupings have been defined as either medial-temporal, parietal or
widespread (‘diffuse’).49,53 Interestingly, these subtypes have also
been associated with patterns of both amyloid50 and tau deposition54

and with cognitive phenotypes.55,56 In frontotemporal dementia, dis-
tinct atrophy subtypes have been reported, corresponding with the
temporal-dominant, temporofrontoparietal, frontal-dominant and
frontotemporal areas.51,57 In dementia with Lewy bodies, distinct at-
rophy subtypes have also been reported: non-atrophic, parietotempo-
ral atrophy and occipitofrontal atrophy, with corresponding
distinctions in cognitive performance.58,59 Despite some consistency
between different reports, other studies have generated a different
number of subtypes, while still others have reported subtypes with
anatomical overlap, such as occipital areas overlapping with parietal
and mild atrophic patterns.60

Most studies using clustering methods have analysed cross-sec-
tional single time-point data; however, given the heterogeneity in
disease progression, mapping longitudinal trajectories is an import-
ant focus for dementia research. Young and colleagues recently
combined disease progression modelling and clustering techniques
to enable inference of subtype and disease stage.52 Here, three dis-
tinct spatiotemporal atrophy patterns were observed in Alzheimer’s
disease, with atrophy starting in either the medial temporal lobe,
frontotemporal areas or basal ganglia. In addition, four distinct spa-
tiotemporal atrophy patterns were observed in frontotemporal de-
mentia, corresponding with different genetic subtypes.52 Future
efforts could continue to explore heterogeneity in disease progres-
sion, including the examination of presymptomatic and prodromal
disease phases. Parsing this longitudinal heterogeneity should en-
able stratification of dementia patients into groups with differing
disease progression rates, with treatments and interventions tail-
ored to these groups accordingly.

Defining biologically meaningful subtypes may have implica-
tions for fundamental research. Case-control genome-wide associ-
ation studies are hindered by heterogeneity in patients and
controls alike,61 and dementia is likely to be no exception.
Restricting genome-wide association studies to more homoge-
neous subtypes should increase the sensitivity and reliability of
such research to detect genetic risk factors for dementia.

Despite promising initial results from subtyping studies, there
are key issues to consider prior to translating such models into
clinical settings. The number of subtypes generated, subtype dis-
tinguishability and the stability of subtypes over the disease
course should be considered.46 It is possible that subtypes may be
confounded by statistical decisions (e.g. hyperparameter
choices), technical factors (e.g. scanner), biomedical factors (e.g.
age, sex or comorbid disease) or sampling bias. The validation of
clustering-derived subtypes is challenging in the absence of
ground truth.62 Therefore, to ensure that subtypes are biological-
ly meaningful, external validation steps using independent data-
sets and long-term clinical outcome data (i.e. mortality rates and
post-mortem data63) are essential. Recently, promising results
have emerged using post-mortem histopathological data, which
have yielded transdiagnostic disease clusters.64 However, the
availability of datasets that enable such validation are limited,
causing a bottleneck in the progress of dementia subtyping re-
search. Hopefully, efforts to access existing hospital and commu-
nity data will be successful in providing the data necessary for
clinical validation.

2948 | BRAIN 2021: 144; 2946–2953 S. Verdi et al.



It is also important to consider if discrete subtypes can ex-
plain the range of variability observed. By design, clustering
assumes homogeneity within each cluster, which itself may
not be valid.65 This motivates research, such as Zhang and col-
leagues’ Bayesian latent factor analysis, into less discrete or
overlapping subtypes, with multiple subtype factors contribu-
ting to the explanation for the patterns of brain structure in any
particular individual.66

Spatial normative modelling

Going further, it is possible to assess the neurobiology of dementia
at the level of the individual patient and provide still greater preci-
sion than subtyping. To that end, normative modelling techniques
have been developed to parse spatial heterogeneity (i.e. individual
level regional variation) in neuroimaging data. Principally, norma-
tive modelling involves calculating the normal distribution of a
population, then assessing how much an individual deviates from
that respective distribution. Spatial normative modelling is a tech-
nique that specifically uses neuroimaging data (e.g. cortical thick-
ness) to estimate variation for a given brain region.67,68 This is
detailed in Box 2 and illustrated in Fig. 2. The extent to which an
individual deviates from the norm can be spatially mapped at
regions across the brain, providing an idiosyncratic map of individ-
ual variability. These ‘z-score’ maps can further be summarized to
provide a patient-level index of deviation potentially reflecting
their general brain health.

Multiple algorithms have been proposed for spatial normative
modelling. A common approach employs Gaussian process regres-
sion to estimate normative models in the brain.67 More recent
developments have included a neural processes model, which

does not rely on fixed parametric kernels and can improve the
scaling of the model to large datasets. This method learns optimal
feature representations and covariance structures for random-ef-
fect and noise (via global latent variables),69 and a hierarchical
Bayesian regression approach to normative modelling has been
shown to efficiently accommodate inter-site variation and provide
computational scaling, which is useful when using large studies or
combining smaller studies that are acquired across multiple
sites.70

Preliminary studies have used normative modelling in the con-
text of brain ageing and dementia. Distinct patterns of deviation
from normal ranges were observed in people with mild cognitive
impairment and patients with Alzheimer’s disease.71

Additionally, quantile regression techniques have been used to
map deviations of cognitively normal individuals and brain
morphology in patients with Alzheimer’s disease. Here, differen-
ces between these patients and healthy controls were partly
attributed to accelerated ageing.72 Recently, a spatial pattern of at-
rophy index, reflecting normative variability, was used to demon-
strate greater age-related atrophy in patients with Alzheimer’s
disease compared with normative trends of age-related changes
in brain structure.73

Spatial normative modelling has also been applied to neuroi-
maging data in the contexts of attention-deficit hyperactivity dis-
order,74 autism,75,76 bipolar disorder and schizophrenia.77 Results
show that it is uncommon for patients to have uniform patterns of
structural alterations across the brain. Individualized maps of
regional differences derived from normative models generate
distinct findings compared with case-control approaches, for ex-
ample using voxel-based morphometry,75,76 which rely on model-
ling average differences between groups at each voxel. The

Box 1 Data-driven statistical methods

Data-driven techniques seek to investigate the relationships between the data variables without imposing a priori knowledge of
these relationships. Some machine learning techniques can be considered to offer a data-driven approach, whereby a computer
automatically learns (e.g. update model parameters) to optimize performance from experience (i.e. examples of labelled data). This
process involves discovering and exploiting regularities in ‘training data’. There are many different problems that can be
approached by employing machine learning methods, including anomaly detection, clustering, classification and regression.
Broadly speaking, techniques can be summarized into three main groups: supervised, semi-supervised or unsupervised learning.
For supervised-learning algorithms, a set of input variables are associated with labels prior to estimating the model. For example,
regression analyses (e.g. predicting continuous symptom scores) and classification tasks (e.g. discriminating patients from healthy
controls) are examples of supervised learning. Unsupervised learning models the underlying latent structure or distribution in the
data to uncover meaningful patterns without supplying a label for each data-point.
Clustering is considered unsupervised learning, because the input variable is unlabelled. Clustering aims to identify subtypes, which
can be conceptualized as a way to parse a single heterogeneous dataset into a number of more homogeneous subsets (Fig. 1B).
Models can be derived based on distance, density, connectivity and distribution of the data to be clustered, though such metrics
tend to be correlated. Clustering has been the predominant data-driven approach used to explore heterogeneity in dementia.46

Numerous methods have been implemented, differing in the input features used, the clustering algorithms and the validation ap-
proach. Common clustering algorithms include agglomerative, graph-based and forest-tree based. For example, in agglomerative
clustering; the proximity of individual data-points (e.g. based on tissue volumes or cortical thickness) are calculated, then similar
clusters are merged together to form larger clusters, after which the proximity of new clusters is calculated; these steps are then
iterated until all the clusters are merged together to form a single cluster.78 When implementing these methods, it is important to
consider the type of data used (e.g. dimensionality of the data), the choice of algorithm and distance function, the order of the
model, the clustering subspace and whether clusters are mutually exclusive (hard clustering) or probabilistic (soft clustering). After
implementation, it is also important to assess the number and validity of the clusters generated.65

Semi-supervised learning can also be a powerful approach, using clustering techniques alongside supervised classification or regres-
sion models to bolster sensitivity in cases of limited training data (e.g. rare diseases). This is where training data-points can either
be labelled or unlabelled, with unlabelled data-points aiding the learning of a better classifier (or vice versa). This can sometimes
address common confounding effects (e.g. age and sex), which result in clustering the disease effect as transformation from the
normal control distribution to the patient distribution, as opposed to just the largest factor of data variability.25
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predominant focus of neuroimaging research on group-level differ-
ences has potentially masked heterogeneity among patients with-
in diagnostic groups.74,77 Therefore, spatial normative modelling
provides a new approach to examining the neurobiological corre-
lates of neurodevelopmental and psychiatric disorders and could
well be applied in dementia.

As spatial normative modelling can utilize any continuous or
categorical phenotype, a range of dementia-related neuroimaging
features (i.e. local volumes, cortical thickness, diffusion micro-
structural indices or PET tracer binding) could be used in the model
to ascertain the heterogeneity across multiple aspects of neuro-
biology. In addition, a multimodal approach can be adopted (e.g.
combining variables of neuroanatomical volumetric measures and
PET amyloid-b binding) to parse heterogeneity at both a molecular
and structural level.

Going beyond neuroimaging, other data such as fluid biomarkers,
physiological measures, cognitive assessments and genetic markers
can be used to disentangle the heterogeneity in dementia. Such in-
formation could be incorporated explicitly in spatial normative mod-
els as predictors (alongside age and sex) of brain structure. For
instance, tau CSF levels are currently pivotal in diagnosis and treat-
ment planning; therefore, tau CSF could define a normative model of
neuroanatomical measures to test whether elevated tau is associ-
ated with uniform or heterogeneous impacts on the brain.
Alternatively, spatial normative models could be stratified, for ex-
ample defining separate models for APOE4 carriers or people who

are amyloid positive. While promising, these approaches require suf-
ficiently large samples of normative data with that biomarker, which
is potentially challenging when data collection involves invasive
measures like CSF sampling. Importantly, non-imaging markers pro-
vide a means of validating subtypes from neuroimaging normative
models, with the assumption that neuroanatomically homogeneous
subtypes would be more homogeneous in terms of genetic and en-
vironmental risks and fluid biomarker readouts.

Furthermore, spatial normative modelling could be particularly
informative with longitudinal data. Temporal heterogeneity could
be modelled using two or more time points to understand within-
subject changes. In this instance, greater changes in abnormality
patterns could reflect faster disease progression (Fig. 2D). Similarly,
evidence of reduced or reversed changes in abnormality patterns
could be indicative of treatment efficacy, using an outcome meas-
ure tailored to each individual’s brain (Fig. 2E).

Summary

In conclusion, while dementia is associated with marked clinical,
aetiological and neuropathological variability, research studies and
clinical trials often overlook this inherent heterogeneity. While
neuroimaging has provided many insights into the neuroanatomy
of dementia and has helped to assess treatment efficacy, the reli-
ance on group-average statistical methods may have hindered
efforts to understand the aetiology and prognosis, which have led to

Box 2 Spatial normative modelling

Normative models provide statistical inferences at the level of the individual with respect to an expected ‘normative’ distribution or
trajectory over time. This framework is commonly used in growth charts to map developmental changes in body weight and height
as a function of age. Deviations from a normal growth curve manifest as outliers from the normative range at each age point.79

Specifically, spatial normative modelling adopts this concept by modelling the relationship between neurobiological variables (e.g.
neuroimaging features which are represented in ‘space’) and covariates (e.g. demographic variables such as age and sex) to map
centiles of variation across a cohort (Fig. 2A). An individual can then be located within the normative distribution to establish to
what extent they are an outlier in a given measure. By applying this approach to derive spatial normative models at local brain
regions, a map can be generated of where and to what extent an individual’s brain differs from the norm (Fig. 2B). Furthermore, by
modelling the covariance across the normative cohort at each brain region, confidence intervals can be derived for each point pre-
diction, giving a measure of uncertainty that can be useful for clinical interpretation and subsequent decision-making (Fig. 2D and
E).
In the context of dementia, the process used to generate these individualized spatial normative brain maps could be as follows:
Using a separate large reference dataset of healthy participants, spatial normative models of cortical thickness for separate brain
regions can be statistically modelled based on age and sex. Next, the parameters of these models would be calibrated using cortical
thickness measures derived from a subsample patient cohort under investigation (e.g. dementia patients and scanner-matched con-
trols). From this, z-scores relative to the normative range would be generated for each brain region resulting in a brain ‘z-score
map’ of cortical thickness for each participant in the remaining experimental sample (Fig. 2B and C).
These z-score maps could then be utilized in a variety of research or clinical settings. For example, patients could be ‘clustered’
based on these neuroanatomical patterns to provide biologically relevant subtypes that may have distinct clinical or biomarker sig-
natures (Fig. 1B). This could provide a new mechanistic understanding of dementia as well as facilitate the discovery of genetic
influences on dementia-related brain atrophy. Rather than assuming that dementia patients will show common patterns of brain
changes, genome-wide association studies could attempt to identify genetic variants that distinguish these biologically more homo-
geneous subtypes from healthy controls. Such subtyping could also be used to stratify enrolment in clinical trials, including only
specific subtypes to reduce heterogeneity and increase the power to detect average effects. This could substantially increase sensi-
tivity to treatment effects, reducing the duration and costs of clinical trials.
Going beyond subtyping, the individual patient z-score maps could be used as surrogate outcome measures of treatment efficacy.
Rather than simply assessing whether a treatment reduces hippocampal or whole-brain atrophy on average, the magnitude of lon-
gitudinal change in z-score maps could be compared between treatment and placebo groups. Importantly, this overcomes the as-
sumption of homogeneity, i.e. that a treatment must affect all patients’ brains in the same way, slowing atrophy in the same
regions. By capturing neuroanatomical heterogeneity at an individual level, spatial normative modelling could indicate whether a
treatment slows brain atrophy in different regions in different people, whilst still generating standard effect sizes and confidence
intervals for rigorous statistical evaluation.
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failures in clinical drug development. We have outlined how data-
driven neuroimaging statistical techniques enable explicit model-
ling of heterogeneity in the brain. We propose that the application
of spatial normative modelling methods to dementia neuroimaging
studies is a promising avenue to mapping regional variations at the
individual level; efforts should include an investigation of various
neuroanatomical markers derived from neuroimaging, which are
then validated using independent datasets. Here, our clinicopatho-
logical understanding of anatomical variation could be enhanced by
multimodal neuroimaging techniques and combining other bio-
logical data as predictors in normative models. Importantly, these
spatial normative modelling techniques are not designed to re-
place or even improve on diagnoses based on clinical evidence
and well-established biomarkers. The goal here is to better cap-
ture the variability within diagnostic groups based on individual
patterns of brain structure or potentially define neuroanatomical
subtypes rather than span diagnostic boundaries. Employing
these methods could be highly advantageous in mapping neuro-
biological abnormalities. In particular, the use of serial neuroi-
maging to define patient level longitudinal trajectories of
neuroanatomical variability has the potential to improve predic-
tions of disease progression or treatment response at the level of
the individual patient, thereby paving the way towards more ef-
fective, precise medicine for dementia.
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