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Abstract 

Background:  The pandemic of the coronavirus disease 2019 (COVID-19) has caused substantial disruptions to health 
services in the low and middle-income countries with a high burden of other diseases, such as malaria in sub-Saharan 
Africa. The aim of this study is to assess the impact of COVID-19 pandemic on malaria transmission potential in 
malaria-endemic countries in Africa.

Methods:  We present a data-driven method to quantify the extent to which the COVID-19 pandemic, as well as vari‑
ous non-pharmaceutical interventions (NPIs), could lead to the change of malaria transmission potential in 2020. First, 
we adopt a particle Markov Chain Monte Carlo method to estimate epidemiological parameters in each country by 
fitting the time series of the cumulative number of reported COVID-19 cases. Then, we simulate the epidemic dynam‑
ics of COVID-19 under two groups of NPIs: (1) contact restriction and social distancing, and (2) early identification and 
isolation of cases. Based on the simulated epidemic curves, we quantify the impact of COVID-19 epidemic and NPIs 
on the distribution of insecticide-treated nets (ITNs). Finally, by treating the total number of ITNs available in each 
country in 2020, we evaluate the negative effects of COVID-19 pandemic on malaria transmission potential based on 
the notion of vectorial capacity.

Results:  We conduct case studies in four malaria-endemic countries, Ethiopia, Nigeria, Tanzania, and Zambia, in 
Africa. The epidemiological parameters (i.e., the basic reproduction number R0 and the duration of infection DI ) of 
COVID-19 in each country are estimated as follows: Ethiopia ( R0 = 1.57 , DI = 5.32 ), Nigeria ( R0 = 2.18 , DI = 6.58 ), Tan‑
zania ( R0 = 2.47 , DI = 6.01 ), and Zambia ( R0 = 2.12 , DI = 6.96 ). Based on the estimated epidemiological parameters, 
the epidemic curves simulated under various NPIs indicated that the earlier the interventions are implemented, the 
better the epidemic is controlled. Moreover, the effect of combined NPIs is better than contact restriction and social 
distancing only. By treating the total number of ITNs available in each country in 2020 as a baseline, our results show 
that even with stringent NPIs, malaria transmission potential will remain higher than expected in the second half of 
2020.

Conclusions:  By quantifying the impact of various NPI response to the COVID-19 pandemic on malaria transmis‑
sion potential, this study provides a way to jointly address the syndemic between COVID-19 and malaria in malaria-
endemic countries in Africa. The results suggest that the early intervention of COVID-19 can effectively reduce the 
scale of the epidemic and mitigate its impact on malaria transmission potential.
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Background
In 2020, the coronavirus disease  2019 (COVID-19) 
caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) spread across the world and resulted in 
a pandemic  [1–3]. Even though great efforts have been 
made, the pandemic has continued and worsened in 
some countries. As of June 29, 2020, it has caused more 
than 10 million confirmed cases and 499  913 deaths in 
as many as 213 countries and territories  [4]. To contain 
the global spread of COVID-19, a set of non-pharma-
ceutical interventions (NPIs) have been suggested and 
implemented, such as isolation of ill persons, quaran-
tine of exposed persons, contact tracing, travel restric-
tions, school and workplace closures, and cancellation 
of mass gatherings  [5, 6]. It is estimated that more than 
138 countries have closed schools nationwide, and sev-
eral other countries have implemented regional or local 
closures  [7]. An integrative literature review has shown 
that the COVID-19 pandemic may have a great socio-
economic impact on global poverty [8]. The entire world 
is facing a human, economic and social crisis  [9–11]. 
According to the World Health Organization, there is 
an urgent need to aggressively tackle the COVID-19 
pandemic while ensuring that other diseases, such as 
malaria, are not neglected.

Malaria is a mosquito-borne infectious disease, which 
has long been a nightmare for countries in sub-Saha-
ran Africa. Based on the WHO’s world malaria report 
2019, sub-Saharan Africa accounted for about 93% of 
all malaria cases and 94% of deaths in 2018, from an 
estimated 228 million cases and 405  000 deaths world-
wide [12]. As of March 12, 2020, several malaria-endemic 
regions in Africa have reported a few imported COVID-
19 cases, which has led to serious public health emer-
gencies. As the COVID-19 pandemic spreads in Africa, 
it becomes a challenging task to maintain core malaria 
control services while protecting health workers against 
COVID-19 transmission [13]. As a consequence, malaria 
control services have been disrupted in many malaria-
endemic regions in sub-Saharan Africa, among which 
insecticide-treated net (ITN) campaigns have been 
considered as the most important measure for malaria 
intervention and control across Africa in the last two 
decades  [14]. However, as of March 2020, there have 
been reports of the suspension of insecticide-treated net 
campaigns in several African countries due to concerns 

around exposure to COVID-19.1 It is estimated that 
under the worst situation, where all ITN campaigns were 
suspended, malaria deaths in sub-Saharan Africa in 2020 
would reach an estimated 769 000 [15].

In this study, we aim to assess the syndemic of COVID-
19 and malaria intervention in four malaria-endemic 
countries in Africa: Ethiopia, Nigeria, Tanzania, and 
Zambia. First, we adopt a particle Markov Chain Monte 
Carlo (PMCMC) method to estimate the epidemiological 
parameters in each country [16]. Based on the estimated 
epidemiological parameters, we can then simulate the 
epidemic curves of the COVID-19 in each country under 
various non-pharmaceutical interventions (NPIs) in 
terms of when and how different NPIs are implemented. 
Existing studies have shown that NPIs play essential roles 
in fighting the COVID-19 epidemic  [5]. For example, 
Lai et  al. have studied the effects of three major groups 
of NPIs on containing the spread of COVID-19 across 
China  [6], including (1) contact restrictions and social 
distancing, (2) early identification and isolation of poten-
tial cases, and (3) inter-city travel restriction. Because in 
this study we focus mainly on the spread of COVID-19 
in Africa at the country level, we only conduct scenario 
analysis on the first two groups of NPIs in the four coun-
tries. Moreover, to quantify the impact of COVID-19, we 
assume that the distribution of ITNs is affected by the 
severity of the COVID-19 epidemic. The severer the epi-
demic, the greater the impact on the distribution of ITNs.

There is no doubt that the cessation or disruption of 
ITN distribution will result in an increase in the human 
biting rate, and further the transmission potential of 
malaria. Specifically, in this study, we adopt the notion of 
vectorial capacity (VCAP) to characterize the transmis-
sion potential of a mosquito population in the absence of 
Plasmodium, which is defined as the number of poten-
tially infective contacts a person makes, through the mos-
quito population, per day  [17, 18]. Since 2012, Ceccato 
et al. have proposed a VCAP product to monitor malaria 
transmission potential in epidemic regions in Africa, 
where the value of VCAP is calculated by the dynami-
cally changing meteorological factors, i.e., temperature 
and rainfall [19]. Based on the historical VCAP data, we 
can analyze the seasonal patterns of malaria transmission 
potential in each country. By treating the number of ITNs 

Keywords:  COVID-19 pandemic, Non-pharmaceutical interventions, Particle Markov chain Monte Carlo, Insecticide-
treated nets, Vectorial capacity, Malaria transmission potential

1  A WHO Statement: https​://www.who.int/emerg​encie​s/disea​ses/novel​-coron​
aviru​s-2019/quest​ion-and-answe​rs-hub/q-a-detai​l/malar​ia-and-the-covid​-19-
pande​mic.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/malaria-and-the-covid-19-pandemic
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/malaria-and-the-covid-19-pandemic
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/malaria-and-the-covid-19-pandemic


Page 3 of 12Shi et al. Infect Dis Poverty            (2021) 10:5 	

distributed in 2019 as a benchmark, we can then access 
and predict the impact of cessation or disruption of ITN 
distribution on malaria transmission potential under 
different NPI scenarios in each country.  In this study, 
we aim to quantify the extent to which the COVID-19 
pandemic in Ethiopia, Nigeria, Tanzania, and Zambia in 
Africa with high malaria burden could lead to the change 
of malaria transmission potential in 2020.

Methods
Country selection and data sources
Figure 1 illustrates the cumulative number of reported 
COVID-19 cases and the incidence of malaria infec-
tion in Africa. The four countries are located in east-
ern Africa, western Africa, and central and southern 
Africa, where the infection risk of both COVID-19 and 
malaria is relatively high. First, to estimate the epidemi-
ological parameters of COVID-19 in each country, we 
use the time series of cumulative COVID-19 cases in 
each country till June 2, 2020. The reported COVID-19 
cases in each country are collected from the website of 
the World Health Organization (Source: https​://covid​
19.who.int/). Then, we characterize the annual pattern 
of malaria transmission potential in each country based 
on the historical values of VCAP from January 1, 2004, 
to December 31, 2019. The values of VCAP are down-
loaded from the International Research Institute for 
Climate and Society (Source: http://iridl​.ldeo.colum​bia.
edu/mapro​om/Healt​h/Regio​nal/Afric​a/Malar​ia/VCAP/

index​.html). Finally, to quantify the impact of COVID-
19 pandemic on malaria transmission potential, we 
have also collected the population size, the ITN cov-
erage, and the total number of ITNs available for each 
country. Based on the Malaria Indicator Survey (MIS) 
in each country, the ITN coverage rate before 2020 is 
estimated by the percentage of de facto household 
population who slept under an ITN the night before 
the survey. While the total number of ITNs available 
in 2020 can be obtained from the Malaria Operational 

Fig. 1  An illustration of the cumulative number of reported COVID-19 cases and the incidence of malaria infection in Africa. The left shows the total 
number of reported COVID-19 cases till June 30, 2020. The right shows the incidence of malaria infection (per 1000 population at risk) in 2018. The 
figure was generated using the Free Software R with version 3.6.3

Table 1  The data used for assessing the impact of COVID-
19 pandemic in Ethiopia, Nigeria, Tanzania, and Zambia

a  Population size: https​://www.world​omete​rs.info/popul​ation​/count​ries-in-afric​
a-by-popul​ation​/
b  The reported COVID-19 cases on June 30, 2020: https​://covid​19.who.int/
c  Incidence of malaria (per 1000 population at risk): https​://data.world​bank.org/
indic​ator/SH.MLR.INCD.P3
d  Malaria Indicator Survey: https​://www.malar​iasur​veys.org
e  Malaria Operational Plan (FY 2019): https​://www.pmi.gov/resou​rce-libra​ry/
mops/fy-2019

Country Populationa COVID-
19b

Malariac ITN 
coveraged

ITNs 
available 
in 2020e

Ethiopia 109 224 414 5846 31.814 39.70% 4 723 087

Nigeria 195 874 683 25 133 291.194 54.70% 11 300 
000

Tanzania 56 313 438 509 124.265 52.20% 7 559 527

Zambia 17 351 708 1568 156.701 63.90% 1 988 000

https://covid19.who.int/
https://covid19.who.int/
http://iridl.ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/VCAP/index.html
http://iridl.ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/VCAP/index.html
http://iridl.ldeo.columbia.edu/maproom/Health/Regional/Africa/Malaria/VCAP/index.html
https://www.worldometers.info/population/countries-in-africa-by-population/
https://www.worldometers.info/population/countries-in-africa-by-population/
https://covid19.who.int/
https://data.worldbank.org/indicator/SH.MLR.INCD.P3
https://data.worldbank.org/indicator/SH.MLR.INCD.P3
https://www.malariasurveys.org
https://www.pmi.gov/resource-library/mops/fy-2019
https://www.pmi.gov/resource-library/mops/fy-2019
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Plan (FY 2019) of each country. All data and their 
sources are summarized in Table 1.

Estimating epidemiological parameters of COVID‑19 
pandemic
To accurately predict the trend of COVID-19 pandemic, 
we first estimate the epidemiological parameters of 
COVID-19 by fitting the time series of reported COVID-
19 cases in each country. Here, the time series is about 
the reported date of the COVID-19 infections as of June 
2, 2020. Evidence has shown that asymptomatic infec-
tions play essential roles in the spread of COVID-19. 
However, due to limited public health resources in the 
four countries in Africa, it is difficult to identify asymp-
tomatic infections in the early stages of the epidemic. In 
this case, following existing studies [26, 27], we resort to 
the classical susceptible–exposed–infectious–removed 
(SEIR) model to simulate the transmission dynamics of 
COVID-19 in a population of size N:

where S(t), E(t), I(t), and R(t) represent the number of 
susceptible, exposed, infectious, and removed individu-
als at time t. In this study, we assume that the reported 
COVID-19 cases are removed or quarantined from the 
population and can no longer infect others. Along this 
line, the time series of reported cases we observed is 
actually the states of R(t) over time.

There are three epidemiological parameters in the SEIR 
model: R0 is the basic reproduction number; DE is the 
average latent period; and DI is the average contagious 
period (i.e., the average duration that an infectious indi-
vidual is confirmed to be infected). Following the study 
in  [26], we assume that the latent period is the same as 
the incubation period. Further, based on the estimation 
in [1], the mean incubation period of COVID-19 was 5.2 
days. In this case, we set DE = 5.2 . The infectious rate, 
β = R0/DI , controls the rate of spread that represents the 
probability of transmitting disease between a susceptible 
and an infectious individual. In this study, we adopt the 
particle Markov Chain Monte Carlo method to estimate 
epidemiological parameters R0 and DI in each country 
by fitting the time series of the cumulative number of 
reported COVID-19 cases [16, 20].

We implement the PMCMC method and simulate the 
COVID-19 epidemic using python programming lan-
guage version 3.8.5 (source: https​://www.pytho​n.org/). 
We assume that the first exposed case [i.e., E(0)] appears 
d days before the date of the first reported case in each 

(1)



















dS(t)
dt

= −
R0
DI

·
S(t)I(t)

N
dE(t)
dt

=
R0
DI

·
S(t)I(t)

N −
E(t)
DE

dI(t)
dt

=
E(t)
DE

−
I(t)
DI

dR(t)
dt

=
I(t)
DI

country. According to the Bayesian inference method, 
uninformative uniform priors are assigned to model 
parameters to reduce their influence on the posteriors, 
that is, R0 ∼ U(0, 8) , DI ∼ U(1, 20) , and d ∼ U(0, 30) . 
Since the interval of each prior covers almost all possi-
ble values of the corresponding parameter, such settings 
have little effect on the inference results as long as the 
number of iterations is enough. With careful pre-test-
ing, we set the proposal distribution of each parameter 
to be normal distribution: q(R∗

0|R0) = norm(R∗
0|R0, 0.5) , 

q(D∗
I |DI ) = norm(D∗

I |DI , 0.5) , and 
q(d∗|d) = norm(d∗|d, 0.5) . After initializing the values 
of model parameters as R0 = 2.5 , DI = 5 , and d = 14 , 
we run the PMCMC algorithm with 200 particles for 
100,000 iterations. Finally, the posterior of each param-
eter is built upon the last 80% iterations with a dis-
carded burn-in of 20,000 iterations.

Simulating epidemic dynamics of COVID under different 
NPIs
Based on the estimated model parameters, we simulate 
the dynamics of COVID-19 under two groups of NPIs: 
(1) contact restriction and social distancing (e.g., con-
tact restrictions and personal preventive actions), and 
(2) early identification and isolation of cases. Generally 
speaking, contact restrictions can reduce the infectious 
rate β of COVID-19; while early identification and iso-
lation of potential cases can reduce the average dura-
tion of infection DI . On the one hand, we assess the 
effects of social distancing interventions by reducing 
the estimated infectious rate β to 25% and 10%, while 
keeping the duration of infection unchanged. This is 
equivalent to reducing R0 to 25% and 10% of its origi-
nal value. On the other hand, we also evaluate the 
impact of combined intervention strategies, where both 
social distancing and early identification and isolation 
are implemented. Specifically, the epidemic dynamics 
of COVID-19 are simulated when reducing R0 to 25% 
and DI to 2 (or 4) at the same time. In addition to what 
types of NPIs are implemented, it is also important 
when to implement the interventions. Accordingly, we 
further simulate the epidemic dynamics of COVID-19 
under various settings of NPIs that are implemented on 
May 18 and June 17, 2020, respectively.

Analyzing malaria transmission potential from vectorial 
capacity
We adopt the notion of vectorial capacity to evaluate 
malaria transmission potential in malaria-endemic coun-
tries in Africa. Based on the Macdonald model [21], the 
VCAP can be formulated as:

https://www.python.org/
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where m is the average mosquito density per person; a is 
the expected number of bites on humans per mosquito, 
per day (i.e., human feeding rate); g is the per-capita daily 
death rate of a mosquito (i.e., the force of mortality); n is 
the sporogonic cycle length of the Plasmodium; p = e−g 
represents the probability of a mosquito survives through 
one whole day. Conceptually, the VCAP incorporates all 
information about mosquito population (e.g., human bit-
ing rate, life expectancy), which is defined as the number 
of potentially infective contacts a person makes, through 
the mosquito population, per day. Many studies have 
shown that the value of VCAP can be calculated based 
on meteorological factors, such as temperature and pre-
cipitation  [22, 23]. For example, Ceccato et al. have cal-
culated the average vectorial capacity per 8 days for 
areas where malaria is considered to be an epidemic in 
Africa  [19]. If there is no abnormal climate change, the 
annual pattern of malaria transmission potential in each 
country should be relatively stable across different years. 
On this basis, we download and extract the 8-day aver-
age vectorial capacity for each county from January 1, 
2004, to December 31, 2019. We then use the means of 
the 16-year VCAP as a baseline of the annual pattern of 
malaria transmission potential.

Accessing the impact of COVID‑19 response on malaria 
transmission potential
In this study, we focus mainly on assessing the impact 
of COVID-19 response on the disruption of ITN dis-
tribution, and further on the transmission potential 
of malaria. Launched in 2005, the President’s Malaria 
Initiative (PMI) strives to reduce the burden of malaria 
across 15 high-burden countries in sub-Saharan Africa 
through a rapid scale-up of four proven and highly 
effective malaria prevention and treatment measures, 
including insecticide-treated mosquito nets. In most 
countries, the PMI has supported ITN distribution 
through universal mass campaigns and continuous dis-
tribution channels. Based on the Malaria Operational 
Plan (FY 2019) in each country, we can obtain the total 
ITNs available from different partner contributions in 
2020 (see Table  1). In this study, we assume that the 
available ITNs are distributed throughout the year in 
a way that the number of distributed ITNs is propor-
tional to the annual pattern of malaria transmission 
potential in each time interval (eight days in this study). 
In doing so, the newly increased number of ITNs in a 
specific time interval t in 2020 can be estimated as:

(2)V =
ma2e−gn

g
=

−ma2pn

ln p
,

where �i represents the total number of available ITNs in 
country i throughout 2020, and Vi(t) represents the mean 
value of 16-year VCAP in time interval t of each year.

As the number of newly reported COVID-19 cases 
�Ri(t) = Ri(t)− Ri(t − 1) increases, it is assumed that 
the distribution of ITNs will be disrupted accordingly. 
Moreover, when the COVID-19 becomes serious (e.g., 
the number reaches a threshold value τ ), the distribution 
of ITNs will be suspended. Mathematically, we assume 
that the number of distributed ITNs in time interval t, 
Di(t) , is inversely proportional to the number of reported 
COVID-19 cases. Thus, we have:

Let Di(1 : t) =
∑

t Di(t) represent the cumulative num-
ber of distributed ITNs from the first time interval to the 
tth interval in 2020. Then, the newly increased ITN cov-
erage rate till time interval t becomes Di(1 : t)/Ni , where 
Ni is the population size of country i. For case studies in 
each of the four African countries, the threshold value τ 
is set to be the number of reported cases when various 
NPIs are implemented.

The disruption or cessation of distribution of ITNs may 
reduce the expected ITN coverage in a country, which 
may lead to the increase in human feeding rate a, as well 
as the transmission potential of malaria. Denote Ci as the 
ITN coverage rate in country i before 2020. In this study, 
we treat Ci as a reference value, which corresponds to 
human feeding rate of the baseline value of VCAP. Then, 
if all available ITNs are distributed as expected, the rela-
tive change of human feeding rate can be estimated as 
follows:

where α indicates the efficiency of ITNs against mosquito 
bites. According to the definition of vectorial capacity, 
the expected transmission potential of malaria at time 
interval t can be calculated as:

Similarly, if the distribution of ITNs is disrupted, the rela-
tive change of human feeding rate is:

and the transmission potential becomes:

(3)�i(t) =
Vi(t)

∑

t Vi(t)
�i,

(4)Di(t) =

{

(1−�Ri(t)/τ )�i(t), if�Ri(t) < τ ,

0, otherwise.

(5)r
exp
i (t) =

1− α(Ci +�i(1 : t)/Ni)

1− αCi
,

(6)V
exp
i (t) = (r

exp
i (t))2 · Vi(t).

(7)rdisi (t) =
1− α(Ci + Di(1 : t)/Ni)

1− αCi
,
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In this study, we set α = 1 . Note that if the ITN distribu-
tion is disrupted, we have V exp

i (t) < Vdis
i (t) < Vi(t) . In 

doing so, we can quantify the relative change of malaria 
transmission potential due to the negative effects of pan-
demic COVID-19 on the ITN campaigns in each country.

(8)Vdis
i (t) = (rdisi (t))2 · Vi(t). Results

Reconstruction of COVID‑19 dynamics in each country
In this study, we adopt the PMCMC method to estimate 
the epidemiological parameters, i.e., the basic reproduc-
tion number R0 and the average duration of infection DI , 
by fitting the cumulative number of reported COVID-
19 cases in each country till June 2, 2020. Figure  2 
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Fig. 2  The inferred epidemiological parameters and the fitting results in Ethiopia, Nigeria, Tanzania, and Zambia. The parameters R0 and DI are 
estimated using the particle Markov Chain Monte Carlo method by fitting the time series of cumulative number of reported COVID-19 cases in each 
country till June 2, 2020. The first two columns shows the density and mean values of R0 and DI in each country. The third column shows the fitting 
curves (red lines) and the cumulative cases (blue lines) of COVID-19 in each country
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demonstrates the inferred model parameters and the 
fitting results in Ethiopia, Nigeria, Tanzania, and Zam-
bia, respectively. The sampled posterior distributions 
of R0 and DI are shown in the first two columns. It can 
be observed that in different countries, epidemiological 
characteristics varies greatly. In Ethiopia, the estimated 
basic reproduction number R0 is 1.57 [95% confidence 
interval (CI) 1.35–1.8] and the average duration of infec-
tion DI is 5.32 days (95% CI 2.68–7.96); In Nigeria, the 
estimated R0 is 2.18 (95% CI 1.75–2.61) and the esti-
mated DI is 6.58 days (95% CI 3.69–9.47); In Tanzania, 
the estimated R0 is 2.47 (95% CI 1.78–3.16) and DI is 
6.01 days (95% CI 2.93–9.09); In Zambia, the estimated 
R0 is 2.12 (95% CI 1.63–2.61) and DI is 6.96 days (95% 
CI 3.51–10.40). The bell-shaped posterior distribution 
of parameter samples indicates a good estimation of 
model parameters in the four countries. In reality, at the 
beginning of the epidemic, the COVID-19 cases are not 
reported on a daily basis. Therefore, there are many zeros 
in the time series of newly reported cases. It is notewor-
thy that zero cases in a day do not mean that there are 
no new infections. More likely, new infections in that day 
will be reported a few days later. In this case, it becomes 
difficult to accurately fit the true number of reported 
cases. The third column in Fig. 2 shows the fitting curves 
with 95% confidence interval of the cumulative number of 
COVID-19 cases in each country. We measure the good-
ness of fit using the root mean squared error (RMSE), the 
value of which is 111.22 for Ethiopia, 1263.36 for Nige-
ria, 66.69 for Tanzania, and 124.37 for Zambia. Because 
the COVID-19 infections in these countries are not 
reported in time, the values of RMSE are relatively high. 
However, it can be observed that the fitting belts gener-
ated by the PMCMC algorithm can well cover the time 
series of cumulative cases in most situations. Moreover, 
it must be pointed out that no new COVID-19 cases have 
been reported in Tanzania since May 8, 2020. Although 
the fitting curve can well cover the cumulative number 
of reported cases, the basic reproduction number R0 of 
Tanzania is likely underestimated. While in Ethiopia, the 
number of reported cases dramatically increases after 
May 29, 2020. As shown in Fig.    2, the fitting curve is 
slightly lower than the cumulative number of reported 
COVID-19 cases. As a consequence, R0 of Ethiopia may 
also be underestimated.

Simulation of COVID‑19 epidemic under different 
non‑pharmaceutical interventions
We simulate the epidemic curves of COVID-19 in Ethio-
pia, Nigeria, Tanzania, and Zambia under various types 
of NPIs implemented on May 18 and June 17, 2020. First, 
the NPI of contact restriction and social distancing is 
evaluated by reducing the basic reproduction number 

R0 to 25% and 10% of its estimated value, while keep-
ing the duration of infection DI unchanged. In doing so, 
the infectious rate β is reduced to 25% and 10%, respec-
tively. It is noteworthy that both NPIs are very stringent. 
For example, even if R0 is reduced to 25%, it becomes 
R0 = 0.6175 in Tanzania and R0 = 0.3925 in Ethiopia. 
Intuitively, the more stringent the intervention meas-
ures, the easier it is to control the epidemic, and its influ-
ence on malaria intervention measures will gradually 
be weakened. As shown in the left column of Fig. 3, the 
solid lines always reach zero cases earlier than the dashed 
lines. Moreover, the earlier the intervention is imple-
mented, the smaller the peak number of infections, and 
the sooner the peak comes. Figure 3 indicates that if the 
NPIs are implemented one month late, the number of 
infections will increase exponentially.

The second column of Fig.  3 shows the cumulative 
number of reported COVID-19 cases under combined 
NPIs, where R0 is reduced to 25%, and DI is reduced 
to two or four days. Comparing with the NPI of reduc-
ing R0 to 25% only, the combined NPIs cannot decrease 
the total number of infections. Nevertheless, when the 
duration of infection DI is smaller (e.g., DI = 2 days), 
the epidemic will be controlled faster than the NPI 
with a larger DI . Meanwhile, the peak of infection (i.e., 
the inflection point) will also come earlier. It can be 
observed from Fig. 3 that the combined NPI with DI = 2 
(i.e., the solid lines) can control the epidemic faster than 
that with DI = 4 (i.e., the dashed lines) when they were 
implemented on the same day. In this case, if the ITNs 
are distributed throughout the year, the time duration it 
will be affected by the epidemic will be shorter. Hence, 
the combined NPIs may reduce the impact of COVID-
19 epidemic on the distribution of ITNs, and further the 
transmission potential of malaria.

Impact of COVID‑19 pandemic on malaria transmission 
potential
In this study, we adopt the notion of vectorial capacity to 
evaluate the transmission potential of malaria. To quan-
tify the impact of COVID-19, we first analyze the annual 
pattern of the transmission potential of malaria. The 
first column in Fig.  4 shows the mean values of VCAP 
and corresponding confidence intervals in each country. 
It can be observed that the annual patterns of VCAP in 
different countries vary greatly due to different meteoro-
logical conditions throughout a year. Intuitively, if the 
COVID-19 epidemic occurs during the malaria trans-
mission season, it will seriously disrupt health services 
for routine malaria intervention and control. Therefore, 
we further quantify the expected reduction of malaria 
transmission potential without COVID-19 pandemic 
[i.e., Vi(t)− V

exp
i (t) ] based on ITNs available in each 



Page 8 of 12Shi et al. Infect Dis Poverty            (2021) 10:5 

May 18

Jun 17

0

20

40

60

2020-04-01 2020-07-01 2020-10-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

R0 reduce to 10%
R0 reduce to 25%

Ethiopia: contact restriction and social distancing

May 18

Jun 17

0

500

1000

1500

2000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

 R0 reduce to 25%
DI =2 days
DI =4 days

Ethiopia: early identification and isolation

May 18

Jun 17

0

1000

2000

3000

4000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

 Intervention date
2020-05-18
2020-06-17

R0 reduce to 10%
R0 reduce to 25%

Nigeria: contact restriction and social distancing

May 18

Jun 17

0

50000

100000

150000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

 R0 reduce to 25%
DI =2 days
DI =4 days

Nigeria: early identification and isolation

May 18

Jun 17

0

1000

2000

3000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

R0 reduce to 10%
R0 reduce to 25%

Tanzania: contact restriction and social distancing

May 18

Jun 17

0

40000

80000

120000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

 R0 reduce to 25%
DI =2 days
DI =4 days

Tanzania: early identification and isolation

May 18

Jun 17

0

100

200

300

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

R0 reduce to 10%
R0 reduce to 25%

Zambia: contact restriction and social distancing

May 18

Jun 17

0

5000

10000

2020-04-01 2020-06-01 2020-08-01 2020-10-01 2020-12-01
Time

C
O

V
ID

-1
9 

ca
se

s

Intervention date
2020-05-18
2020-06-17

 R0 reduce to 25%
DI =2 days
DI =4 days

Zambia: early identification and isolation

Fig. 3  The simulation of COVID-19 epidemic in Ethiopia, Nigeria, Tanzania, and Zambia under different NPIs implemented on May 18 and June 17, 
2020. The left column shows the number of newly-reported COVID-19 cases over time under the NPI of contact restriction and social distancing, 
where R0 is reduced to 25% and 10% of its original value. The right column shows the cumulative number of reported COVID-19 cases under 
combined NPIs, where R0 is reduced to 25% and DI is reduced to two or four days
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country in 2020. Specifically, based on the simulated 
COVID-19 epidemic under various NPIs, we estimate 
the reduction of malaria transmission potential through-
out 2020. The results are shown in the second column in 
Fig.  4. The purple lines show the expected reduction of 
malaria transmission potential when the COVID-19 pan-
demic did not occur. It can be observed that in Ethiopia 
and Nigeria, the trend of reduction is generally consist-
ent with the annual pattern of VCAP. The reason is that 
based on our assumption, most ITNs in Ethiopia and 

Nigeria will be distributed during the malaria transmis-
sion reason from June to October. While in Tanzania and 
Zambia, the reduction of malaria transmission potential 
will gradually increase in the second half of the year. This 
is because some ITNs will be distributed in the first half 
of the year, and the cumulative number of ITNs will play 
an important role in reducing the malaria transmission 
potential in the second half of the year.

In addition, the second column in Fig. 4 also shows the 
difference of VCAP compared to the expected VCAP 
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Fig. 4  The impact of various NPIs for COVID-19 pandemic on the transmission potential of malaria in 2020. The first column shows the annual 
pattern of VCAP and corresponding confidence interval in each country, which is treated as malaria transmission potential through a year. The 
second column shows the reduction of transmission potential through ITN distribution under various NPIs implemented on June 17, 2020. The third 
column shows the negative effects of COVID-19 pandemic under various NPIs that cannot achieve the desired reduction in transmission potential 
of malaria. The gray bars are the real number of reported COVID-19 cases
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(i.e., �Vi(t) = Vdis
i (t)− V

exp
i (t) ) caused by various NPIs 

implemented on June 17, 2020. It can be observed that in 
the first quarter of 2020, there is no difference between 
the red, yellowgreen, and turquoise lines in each coun-
try because no COVID-19 cases are reported. As the 
COVID-19 epidemic becomes more and more serious, 
the difference �Vi(t) begins to grow in Tanzania and 
Zambia due to its negative effect on the distribution of 
ITNs. On the contrary, in Ethiopia and Nigeria, the differ-
ence becomes large during the malaria season (i.e., from 
June to October) due to the simultaneous transmission of 
COVID-19 and malaria. When the COVID-19 epidemic 
is controlled and ITNs are distributed as scheduled after 
October, the malaria transmission season is over. As a 
consequence, the distributed ITNs cannot contribute to 
malaria intervention and control this year anymore.

The third column in Fig.  4 shows the negative effects 
of COVID-19 pandemic under various NPIs that can-
not achieve the desired reduction in the transmission 
potential of malaria. Here, the negative effect is defined 
as (Vdis

i (t)− V
exp
i (t))/(Vi(t)− V

exp
i (t)) , which indicates 

the proportion of VCAP reduction that cannot com-
pleted as expected. In the first half of 2020, as the num-
ber of reported cases increases in each country (i.e., the 
gray bars), the negative effect begins to increase accord-
ingly. However, because no NPIs are implemented before 
June 17, 2020, the negative effects of different NPIs are 
all the same. Therefore, the three lines are overlapped. 
After June 17, 2020, different NPIs are implemented. 
It can be observed that the more stringent the NPI, the 
more it can achieve the desired goal. When no NPIs 
are implemented, the negative effect is the largest (see 
the red curves in Fig. 4). When R0 is reduced to 25% on 
June 17, 2020, the negative effect is alleviated after Sep-
tember. The reason is that the COVID-19 epidemic can-
not be controlled before September. However, when the 
combined NPI (i.e., R0 is reduced to 25% and DI = 2 ) 
is implemented, the epidemic can be controlled much 
earlier. Hence, the negative effect is alleviated before 
September, and the negative effects is the smallest (see 
turquoise lines in Fig. 4).

Discussion
As the COVID-19 pandemic spreads rapidly in Africa, 
there is an urgent need to mitigate the negative impact of 
the coronavirus in malaria-endemic countries and con-
tribute towards a syndemic of COVID-19 and malaria 
intervention. To achieve this goal, the first priority is to 
assess the epidemiological characteristics of the COVID-
19 pandemic in each country. Because populations in 
different countries have different contact patterns, the 
epidemiological parameters (e.g., the basic reproduc-
tion number R0 ) of COVID-19 may also vary in different 

countries [24, 25]. Even in the same country, the epidemi-
ological parameters measured with different data at dif-
ferent stages may also be different. For example, Li et al. 
have analyzed the first 425 diagnosed COVID-19 cases in 
Wuhan and found that R0 is about 2.2 [1]. Then, Wu et al. 
have combined international aviation data and domestic 
Tencent mobile data to estimate that the R0 of COVID-
19 is around 2.68 [26]. Tian et al. have analyzed through 
different stages of the COVID-19 epidemic in China: 
before the emergency response was initiated on January 
23, R0 was 3.15; since January 23, due to the expansion of 
the scope of prevention and control measures, the R0 in 
different provinces has declined; when the intervention 
coverage reaches 95%, the average R0 drops to 0.04 [27]. 
In this study, based on the time series of COVID-19 
cases as of June 2, 2020, we have employed the classical 
SEIR model to simulate the transmission dynamics of 
COVID-19, and adopted a PMCMC method to estimate 
the epidemiological parameters by fitting the cumulative 
number of reported COVID-19 cases in each country. 
Comparing with the early stage of COVID-19 spread in 
China, the estimated R0 and DI are both in a reasonable 
range  [1]. However, the epidemiological characteristics 
of the four countries are different. Therefore, to assess 
the syndemic of COVID-19 and malaria intervention, it 
would be necessary to simulate the various COVID-19 
responses in each country separately.

To simulate the impact of COVID-19 response, in this 
study, we have conduct scenarios analysis on two groups 
of NPIs: (1) contact restriction and social distancing by 
reducing R0 to 25% or 10% of its original value while 
keeping DI unchanged, and (2) early identification and 
isolation of new cases by reducing DI to two or four 
days. The results have shown that the former NPIs can 
effectively reduce the scale of the epidemic, while the 
latter can shorten the duration of the epidemic. In this 
case, a combination of them should be a better response 
to the COVID-19 epidemic. In addition to the type of 
NPIs, when to intervene is much more important. Our 
simulation results have also shown that if the NPIs are 
implemented one month earlier (see Fig. 3), the scale of 
infection will be greatly reduced, and the epidemic will 
be effectively controlled much earlier. Because of this, 
the early adoption of comprehensive NPIs like China is 
essential to timely and effective control of COVID-19 
epidemic.

Different from the COVID-19, malaria is a mosquito-
borne infectious disease, whose transmission depends on 
various impact factors, such as climate  [28, 29], human 
movement [30–33], and socio-economic factors [34, 35]. 
In this study, we adopt the notion of vectorial capac-
ity to represent the transmission potential of a mos-
quito population in the absence of Plasmodium. Existing 



Page 11 of 12Shi et al. Infect Dis Poverty            (2021) 10:5 	

studies have shown that the value of VCAP can be esti-
mated based on meteorological factors, such as precipi-
tation and temperature [19]. Because different countries 
have different meteorological conditions, the patterns of 
VCAP vary greatly through a year (see Fig. 4). In Ethio-
pia and Nigeria, the high-risk season for malaria trans-
mission is from June to October. In contrast, Zambia has 
a relatively low risk of transmission during this period. 
While in Tanzania, the risk of transmission is relatively 
stable throughout a year.

To assess the syndemic of COVID-19 and malaria inter-
vention, it would be necessary to consider whether they 
spread together over a period of time. On the one hand, 
if the COVID-19 occurred during the malaria transmis-
sion season, it would have a great impact on the alloca-
tion of resources for malaria prevention and control, 
thereby greatly reducing the expected effect of malaria 
intervention. For example, in Ethiopia and Nigeria, even 
with strict prevention and control measures, it is still 
impossible to contain the COVID-19 epidemic before the 
malaria transmission season (from June to October). In 
this case, the negative impact of the COVID-19 epidemic 
will be amplified due to the cumulative effect on unal-
located ITNs (see the third column in Fig. 4). To jointly 
address endemic malaria and pandemic COVID-19 in 
such countries, as suggested by World Health Organiza-
tion, it would be necessary to maintain core malaria con-
trol services (e.g., ITN distribution) while implementing 
stringent NPIs for COVID-19. On the other hand, if the 
simulated peak of the COVID-19 epidemic is not in the 
malaria transmission season (e.g., Zambia), it will have 
little impact on the expected effects of malaria interven-
tion in a short period. Even so, the cumulative effects still 
can be amplified in the future. Therefore, to avoid the 
resonance of COVID-19 and malaria, the best way is to 
do everything possible to contain COVID-19 before the 
next malaria transmission season. Otherwise, it would 
be necessary to allocate as many resources as possible for 
malaria prevention and control before the arrival of the 
next malaria transmission season. In summary, in African 
countries where malaria is considered to be epidemic, 
strategically maintaining core malaria control services 
such as the distribution of ITNs, is crucial important 
during the COVID-19 pandemic.

Limited by the data available at the moment, the pro-
posed method in this study still has several limitations 
that are worthy of being improved in the future. First, 
without identifying asymptomatic infections, it would 
be difficult to quantitatively assess the impact of asymp-
tomatic infections on the COVID-19 epidemic in the 
real world. Second, asymptomatic infections can also 
increase the difficulty of case identification and result in 
the underreporting of COVID-19 cases. This will lead 

to an underestimation of the severity of the COVID-19 
epidemic. Nevertheless, in reality, the decisions to reduce 
or suspend the distribution of ITNs are based on the 
reported COVID-19 cases. Therefore, even the severity of 
the COVID-19 epidemic is underestimated, it may have 
little impact on assessing the impact of NPI response on 
the potential risk of malaria transmission as long as the 
number of reported cases can be correctly estimated. 
In the future, when information about asymptomatic 
infections is available, it would be possible to tackle the 
underreporting issue by constructing more precise trans-
mission models.

Conclusions
In this study, we have presented a data-driven method to 
assess the syndemic of COVID-19 and malaria interven-
tion in four malaria-endemic countries in Africa: Ethio-
pia, Nigeria, Tanzania, and Zambia. To achieve this goal, 
we have first estimated the epidemiological parameters, 
i.e., the basic reproduction number R0 and the dura-
tion of infection DI , based on the time series of reported 
COVID-19 cases of each country. Then, we have simu-
lated COVID-19 epidemic under two groups of NPIs: (1) 
contact restriction and social distancing, and (2) early 
identification and isolation of cases. Based on the simu-
lated epidemic curves of COVID-19, we have quantified 
the impact of COVID-19 response on the distribution of 
ITNs in each country. Finally, we have further assessed 
the negative effects of COVID-19 pandemic and various 
NPIs on the transmission potential of malaria using the 
notion of vectorial capacity. The results and findings in 
this paper provide a way to jointly address COVID-19 
and malaria transmission, as well as to efficiently utilize 
limited health services in malaria-endemic countries in 
Africa.
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