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Regulatory T-cell vaccination independent of
auto-antigen
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To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the

disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity

coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic

approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To

forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to

ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I

fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine’s capacity to protect against travelers’

diarrhea or salmonellosis. By adapting the vaccine’s anti-inflammatory properties, it was found that it could also dampen

experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander

effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the

required Treg cell subset for each disease. For MS-like disease, conventional CD25þ Treg cells are stimulated, but for arthritis

CD39þ Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without

having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming

growth factor-b and interleukin-10.
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COLONIZATION FACTOR ANTIGEN I (CFA/I) FIMBRIAE

AND ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

ETEC, the causative agent of travelers’ diarrhea, is the most
common bacterial diarrheal disease of children in Latin
America, Asia and Africa,1 and it is contracted upon
ingestion of contaminated food or water. It is estimated that
this disease is responsible for 400 million cases annually
resulting in 300 000 deaths of preschool children.2,3 E. coli
becomes enterotoxigenic upon acquisition of a plasmid or
plasmids containing the heat-stable enterotoxin4 or the
cholera-like exotoxin, which is commonly termed the heat-
labile enterotoxin (LT).5,6 Both toxins are responsible for
inducing fluid loss and electrolyte imbalance in the host.
Facilitating infection and subsequent colonization, ETEC also
acquires a plasmid encoding for the pili or fimbriae referred to
as colonization factor antigens (CFAs), which mediate the
colonization of E. coli in the gastrointestinal tract. The CFA pili

are a heterogenous group of fimbrial adhesins responsible for
adherence to small intestinal epithelial cells via their fimbriae
or long, hairlike projections extending from the bacterial cell
surface to epithelial mannose-containing glycoproteins.7 This
adherence is generally host-specific for intestinal epithelium.8

While a specific natural receptor for CFA/I fimbriae has yet to
be identified in the small intestine, some studies suggest that in
eukaryotes a sialylated glycoprotein is the receptor,9,10

although others suggest that epithelial mannose-containing
glycoproteins and/or glycosphingolipids may also serve as
receptors.11,12 The low incidence rates in adults from ETEC-
endemic regions have correlated with the presence of anti-LT
and anti-CFA antibodies (Abs), suggesting that acquired
immunity to these virulence factors are protective.13

Epidemiological studies show that children aged o3 years
from these endemic regions are susceptible to multiple ETEC
infections, which may provide for broad-spectrum immunity
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later in life,14,15 while adult travelers to these endemic regions
are unprotected and remain susceptible to infection.2,3,16,17

CFA/I fimbriae are an archetype of class 5 fimbriae
characterized by a common four-gene operon.18,19 For CFA/
I, this is cfaABCE.11 This operon contains four genes in the
following order: periplasmic chaperone cfaA, major fimbrial
subunit cfaB, outer membrane usher protein cfaC, and minor
fimbrial subunit cfaE.11,18 CfaA functions as a chaperone to
facilitate proper folding of other components of the operon to
the outer membrane, while CfaC ‘ushers’ the structural
fimbrial proteins and orchestrates their assembly at the cell
surface. The extracellular portion of CFA/I fimbriae comprises
two proteins, CfaB and CfaE, and assembles with a single copy
of CfaE followed by multiple copies of CfaB.19,20 In fact, CfaB
is the major pilin subunit, and it is present as approximately
1000 copies on the cell surface per single copy of the minor
subunit, CfaE.19

CFA/I FIMBRIAE ARE HIGHLY IMMUNOGENIC AND

CONFER PROTECTION AGAINST ETEC

Attempts to successfully vaccinate against ETEC have met with
varied success. Oral vaccination of human volunteers with
CFA/I or CFA/II fimbriae failed to induce significant serum
immunoglobulin G (IgG) or secretory IgA (SIgA) Abs.21 As a
result of poor anti-fimbriae Ab titers,22,23 the human
volunteers were not protected against virulent ETEC.22

Despite neutralization of their stomach acidity,23 poor SIgA
anti-CFA Ab responses were obtained in these volunteers.
Subsequent work showed that gastric proteases altered the CFA
fimbriae antigenicity even at a neutral pH.24 Overcoming the
deleterious effects of the gastrointestinal tract, oral vaccination
of rabbits with microencapsulated CFA/I fimbriae still failed to
induce serum and fecal IgA anti-CFA/I Abs.21 Although in a
separate study, microencapsulated CFA/II fimbriae when
directly intubated into the rabbit duodenum revealed that
CFA/II fimbriae-specific Ab-forming cell responses could be
induced in the Peyer’s patches and spleens.25 Once elicited, Abs
to these fimbriae do protect against ETEC infection.26,27 An
effective vaccine for ETEC still remains elusive, but promising
results have been obtained from recent human trials using
heat-killed ETEC plus recombinant LT-B/CT-B,1 suggesting
the fimbriae are optimally immunogenic when associated with
the bacilli.

Attenuated, live Salmonella vectors have been extensively
used as a means to vaccinate against salmonellosis28–31 and
heterologous diseases.32 Such attenuated Salmonella strains
have been shown to be effective in delivering heterologous
antigens (Ags) because of their ability to stimulate both
mucosal and systemic immune compartments29,33 most likely
via infection of Peyer’s patches and followed by subsequent
spread into systemic immune compartment.31,34 Therefore, an
ETEC vaccine adapted as an attenuated, balanced-lethal DaroA
Dasd S. Typhimurium vaccine carrying an asdþ plasmid
encoding the CFA/I operon.35 The expression of this fimbriae
appears similar36,37 to wild-type ETEC with long, hairlike
projections extending from the bacterial cell surface.23 Upon

oral immunization, Salmonella-CFA/I was quite adept in
stimulating elevated mucosal IgA and serum IgG Abs to the
fimbriae.35,38 Interestingly, the CFA/I fimbriae stimulated a
biphasic T helper (Th) cell response with a rapid induction of
Th2 cells within the first week of vaccination followed by a
progressively increasing Th1 cell response to eliminate the
salmonellae.38 This was corroborated by the stimulation of
elevated serum IgG1 Abs relative to IgG2a shortly after
vaccination.38 This is atypical to immune responses to
Salmonella vaccines, which generally are Th1 cell-dependent
promoting serum IgG2a Abs.39–48 Despite this obvious
difference in Th cell profiles, the expression of CFA/I
fimbriae did not alter its capacity to protect against wild-
type Salmonella challenge.49 Given the highly proinflammatory
nature of Salmonella,39,42,50 subsequent analysis assessed
whether the CFA/I fimbriae interfered with the normal
recognition of the bacilli. Upon infection of RAW264.7 or
thioglycolate-induced macrophages with low infection ratios of
Salmonella-CFA/I, minimal-to-no interleukin (IL)-1a,
IL-1b, IL-6 and tumor necrosis factor (TNF)-a production
was observed in contrast to its isogenic Salmonella vector strain
eliciting all of these proinflammatory cytokines with as few as
one bacterium/80 macrophages.51 To ascertain why such a
profound disparity in proinflammatory cytokine production,
subsequent analysis could not find any differences in
Salmonella colonization or increased susceptibility to macro-
phage cell death nor were there increases in anti-inflammatory
IL-10 or IL-12p40 cytokines.51 Although the mechanism for
the stealth-like qualities of Salmonella-CFA/I was not discerned,
a possible explanation for these observations may be that the
CFA/I fimbriae thwart innate immune responses by hindering
detection by individual or a combination of pathogen-
recognition receptors, including Toll-like receptor 4 (TLR4),
TLR5, CD14, MD2 and lipopolysaccharide-binding protein,52

to indicate Salmonella’s presence. Hence, we hypothesized that
the Salmonella-CFA/I may be an anti-inflammatory vaccine.

SALMONELLA-CFA/I AS AN ANTI-INFLAMMATORY

VACCINE FOR AN ANIMAL MODEL OF MULTIPLE

SCLEROSIS (MS)

The surprising results from the macrophage infection studies
indicated that Salmonella-CFA/I was not eliciting the proin-
flammatory arm of immunity. Moreover, the stimulation of
Th2 cells and associated anti-inflammatory cytokines suggests
that this vaccine may also be therapeutic in treating auto-
immune diseases, such as MS or arthritis. MS is an inflam-
matory demyelinating disease of the central nervous system
(CNS) with destruction of white matter by autoreactive T
cells.53–56 This neurodegenerative disease affects as many as
400 000 people in United States and 42 million people
worldwide.57 The frequency of MS is thought to be age and
gender dependent, as it most frequently affects young and
middle-aged adults and occurs twice as often in females as in
males.54,57,58 Although not considered fatal, MS can progress
into considerable neurological disability, impacting the quality
of life, and resulting in a shortened lifespan.59
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Experimental autoimmune encephalomyelitis (EAE) is one
of the best and most frequently studied rodent model that
mimics the neuropathology and clinical disease of MS.60–65

EAE manifests as an ascending disease in the spinal cord where
initial symptoms begin as a limp or paralyzed tail, followed by
rear leg paralysis that can eventually progress into forearm
paralysis.66 It is induced upon immunization with restricted
CNS peptides, such as myelin oligodendrocyte glycoprotein,67

myelin basic protein67 or proteolipid protein (PLP),68 into
susceptible mice. This injection results in the activation of
myelin-specific CD4þ T cells in naive animals where in the
CNS inflammatory cells are recruited that secrete interferon
(IFN)-g, TNF-a and IL-1, resulting in perpetuation of
inflammation along with tissue damage, including axonal
damage, demyelination and perivascular inflammatory
lesions.69 Due to demyelination, new epitopes become
exposed, and exposure of these neoAgs acts as an
immunization process, thereby causing further epitope
spreading.62,70–72 Studies have shown that the
proinflammatory-promoting cytokine, IL-23, is primarily
responsible for encephalitogenic T-cell development in
EAE.73–75 IL-17 is the principal mediator of the
inflammation observed in EAE76–79 and in large part
induced by IL-23.73–76 IL-17 is cross-regulated by both IL-4
and IFN-g.76 Neutralization of IL-17 has been shown to be
protective,76–79 and protection can also be mediated via
regulatory T (Treg) cells.80–83 The proinflammatory cytokines
IFN-g84–87 and TNF-a73,74,82,85,88 can also impact disease
primarily via Th1 cells. Protection to EAE correlates with
Th2/Treg cell dependence as IL-4,80,89–91 IL-1071,72,85,92–94 and
transforming growth factor (TGF)-b80,82,89,95–97 can reverse or
prevent EAE. IL-27 has also been shown to be important for
induction of protective Treg cells.98–100

As for many autoimmune diseases, patients have lost the
capacity to be tolerized to self, and consequently, the patient
begins to mount an immune response to self much like
recognition of foreign Ags. This T-cell dysfunction exhibited in
these patients results in chronic activation of inflammatory
Th1 and Th17 cells.101,102 Often the course of treatment
involves anti-inflammatory drugs and does not address the
cause of the disease. Certainly, an approach that has had
experimental success is the induction of tolerance. Tolerance is
the inability to recognize self or to defined Ags (reviewed in
Faria and Weiner,103 Mueller104 and Bilate and Lafaille105) and
past efforts to induce tolerance in humans by delivering Ags
have proven successful for treating allergies.106–108 The major
obstacle in human tolerance is in part attributed to the
requirement for large doses of Ag or repeated
administrations of therapeutics.106 Although feeding auto-
Ags is effective in treating experimental autoimmune
diseases, when applied to patients, oral feeding with auto-
Ags has been deemed unsuccessful.109,110

As noted, the Salmonella-CFA/I vaccine elicited Th2-type
responses to the fimbriae38 much like an effect of soluble Ag
with adjuvant.12 The observed Th2 cell bias was directed to the
fimbriae but not as much as to the Salmonella vector, which

still retained the capacity to stimulate Th1-type responses
against Salmonella Ags.111 With this backdrop, subsequent
studies began to analyze the potential of Salmonella-CFA/I to
augment disease, first with PLP139-151-induced EAE.112 As
Salmonella-CFA/I elicits a biphasic Th cell response, groups
of mice were orally vaccinated 1 week or 4 weeks before EAE
challenge to coincide with a more Th2 cell- or Th1 cell-prone
environment, respectively. In either case, Salmonella-CFA/I still
conferred protection recovering completely from disease unlike
those mice vaccinated with an isogenic Salmonella vaccine
lacking CFA/I fimbriae or those mice treated with phosphate-
buffered saline (PBS).112 However, mice vaccinated with the
isogenic Salmonella vector did show reduced disease relative to
PBS-treated mice but still bore greater disease than those mice
vaccinated with Salmonella-CFA/I. In addition to the clinical
scores, increased disease pathology of the CNS was evident
from the enhanced demyelination and inflammatory cell
infiltration relative to Salmonella-CFA/I-vaccinated mice.
This protection was supported by increased production of
IL-4, IL-10 and IL-13 and diminished production of IFN-g by
PLP139-151- or CFA/I fimbriae-restimulated CD4þ T cells.112

In contrast, CD4þ T cells isolated from unprotected or
Salmonella vector-immunized mice112 displayed elevated
IFN-g and minimal-to-no Th2-type cytokines. Thus,
Salmonella-CFA/I was successful in reducing EAE severity in
a bystander fashion when administered before disease
induction.

Although these prophylactic results were clearly promising,
often with human autoimmune diseases, it is unknown which
patients will develop disease and at what time point. Therefore,
to address the therapeutic potential of oral Salmonella-CFA/I,
additional studies were conducted to determine whether it
could impact ongoing disease.68 Adapting the same PLP139-151

challenge model, mice were subjected to intervention with
Salmonella-CFA/I, Salmonella vector or PBS 6 days post-EAE
induction. As per the prophylactic studies, both the
Salmonella-CFA/I and Salmonella vector were able to subdue
disease to different degrees, but only Salmonella-CFA/I was
able to inhibit CNS inflammation unlike the Salmonella
vector-treated mice, which showed extensive neutrophil,
macrophage and T-cell infiltration into the CNS.68

Protection to EAE by Salmonella-CFA/I was attributed to the
stimulation of anti-inflammatory cytokines, IL-4, IL-10 and
IL-13 with concomitant reductions in IFN-g and IL-17.68

Because of the observed anti-inflammatory cytokines, we
queried whether these were generated by Treg cells, possibly
induced by Salmonella-CFA/I. Treg cells were originally deli-
neated in thymectomized neonatal mice that showed increased
manifestations of autoimmune disorders.113,114 As a result, Treg

cells have been shown to maintain peripheral tolerance and are
responsible for protection against a variety of autoimmune
diseases, including colitis,115 arthritis116 and EAE.81,83,105,117

Treg-cell subsets are varied in their expression of phenotypic
markers, but natural Treg cells are identified by the expression
of IL-2 receptor a-chain.113 These are also transcriptionally
regulated by forkhead box transcription factor (Foxp3),117–120
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and when Foxp3 function is ablated, CD4þCD25þ Treg cells
are abrogated producing a wasting disease and inflammatory
bowel disease in mice.118,119 Co-inhibitory molecules,
activation-induced cytotoxic T lymphocyte associated
protein-4 and glucocorticoid-induced TNF receptor may also
be expressed and contribute in mediating Teff cell
suppression.121,122 In lieu of the phenotypic markers, earlier
studies relied on functional characterization of these Treg cells,
and these were distinguished by the cell surface expression or
secretion of TGF-b120,123,124 referred to as Th3 cells125

or production of IL-10 referred to as Tregulatory 1 cells.126,127

TGF-b production by CD25þCD4þ Treg cells has been shown
to be responsible for recovery from EAE,68,89,95–97,123,128

and the presence of TGF-b has been shown to be necessary
for conversion of CD4þCD25� T cells into CD4þCD25þ

FoxP3þ Treg cells.120,121,124,129 More recently, IL-35, a member
of the IL-12 family and produced by Treg cells, was found to
have inhibitory activity capable of potently suppressing
arthritis,130,131 colitis132,133 and EAE.134 IL-35 can mediate its
effects via the stimulation of IL-10.130,131,135

To examine the possible role for induction of Treg cells by
Salmonella-CFA/I, a kinetic analysis was done. It was discov-
ered that both the Salmonella vector and Salmonella-CFA/I
could stimulate the induction of CD25þCD4þ T cells, but the
percentage of Foxp3þ Treg cells was particularly augmented in
mice treated with Salmonella-CFA/I.68 To assess their relative
contribution, in vivo CD25 neutralization was performed
resulting in the diminution of Salmonella-CFA/I’s protective
response demonstrating the importance of these Treg cells to
abate autoimmune disease.68 To assess their relative potency,
adoptive transfer of Treg cells from each of the treatment
groups (Salmonella-CFA/I, Salmonella vector and naive) was
tested.68 Treg cells derived from mice vaccinated with
Salmonella-CFA/I showed the greatest potency in PLP139-151-
challenged mice exhibiting nearly complete protection.
Conversely, although Treg cells obtained from Salmonella
vector-vaccinated mice did confer protection, some disease
was still evident that was subsequently protracted. Recipients
adoptively transferred with naive Treg cells only showed a
delayed onset of disease, and all mice developed EAE.
Interestingly, partial protection could be achieved with
CD25�CD4þ T cells adoptively transferred from
Salmonella-CFA/I-vaccinated mice unlike those same cells
from Salmonella vector-immunized mice that were unable to
confer protection. The adoptively transferred Treg cells from
Salmonella-CFA/I-vaccinated mice produced both TGF-b and
IL-10, but the majority of the IL-10 was derived from
CD25�CD4þ T cells. Moreover, these CD25�CD4þ T cells
produced IL-4 and IL-13, suggesting these are potentially Th2
cells. Treg cells from Salmonella vector-vaccinated mice
produced little TGF-b and IL-10, and their CD25�CD4þ T
cells did not produce IL-4, IL-10 or IL-13, which accounts for
the lesser potency in reducing EAE.68 As TGF-b1�/� mice
succumb to death in utero and those surviving succumb early
in life,136 additional adoptive transfer studies were performed
to test the dependence on TGF-b for protection to EAE.137

Upon adoptive transfer of Treg or CD25�CD4þ T cells from
Salmonella-CFA/I-vaccinated mice, recipients induced with
EAE were neutralized of their TGF-b using a monoclonal Ab
(mAb), and this abrogated much of the protective effect by
Salmonella-CFA/I’s Treg cells. Complete abrogation was
observed upon treating recipients with Salmonella-CFA/I’s
CD25�CD4þ T cells.137 As with this latter finding, TGF-b
neutralization resulted in the complete loss of any partial
protection conferred by Salmonella vector Treg cells, and no
protection was evident in recipients given CD25�CD4þ

T cells from Salmonella vector-immunized mice.137 TGF-b
neutralization also impacted the expression of Foxp3 by the
Treg cells enabling IL-17 to be augmented, which would
account for the loss of function and ultimately protection.
Thus, TGF-b is an essential regulatory element induced by
Salmonella-CFA/I therapeutic.

In an attempt to disrupt the protective capacity of CFA/I
fimbriae, a mutant was developed to alter the cell surface
expression of the fimbriae. This mutant bears only the cfaAB
portion of the operon and lacks the genes for the outer
membrane usher protein cfaC, and minor fimbrial subunit
cfaE, and is referred to as Salmonella-CFA/I(intracellular) (Salmo-
nella-CFA/IIC).138 This restricted the major subunit CfaB
primarily to the Salmonella’s periplasm. Upon oral
vaccination, mice showed reduced fecal SIgA and reduced
serum IgG Abs to the fimbriae but remained as effective
in protecting mice against EAE as did adoptive transfer
of their Treg cells into EAE recipients.138 What was
particularly interesting of this finding was the difference in
cytokine profiles from Salmonella-CFA/I-vaccinated mice.
Examination of cytokine production by Treg cells from
Salmonella-CFA/IIC-treated EAE mice revealed no change in
TGF-b production but considerably augmented IFN-g and IL-
13 production relative to similarly treated mice with
Salmonella-CFA/I.138 The percentage of Foxp3þ Treg cells
was similar. To test the relevance of the observed IFN-g and
IL-13, in vivo Ab neutralization studies were conducted.
Adoptive transfer of Salmonella-CFA/IIC’s Treg cells into EAE
recipients neutralized of their IFN-g using a mAb resulted in
no differences in susceptibility to EAE, and both groups of
mice given Treg cells with normal rat IgG or rat anti-mouse
IFN-g mAb showed protection against disease. In contrast,
EAE recipients neutralized of their IL-13 using a polyclonal
anti-IL-13 Ab and adoptively transferred with Salmonella-
CFA/IIC’s Treg cells lost their protection further showing the
importance of IL-13 in defense against EAE.138 This further
implicated the ability of IL-13 to directly affect Treg cell
function or enhance the action of Treg cells.138 Thus, these
collective studies show the effectiveness of Salmonella-CFA/I
and Salmonella-CFA/IIC as therapeutics to defend against EAE.

SALMONELLA-CFA/I AS AN ANTI-INFLAMMATORY

VACCINE FOR AN INFLAMMATORY MODEL OF

ARTHRITIS

Rheumatoid arthritis (RA) is an autoimmune disorder and
chronic inflammatory disease of the joints impacting B1% of
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the population in North America and the United Kingdom,139

with women being three times more likely to be afflicted than
men.139,140 Although the etiology of this disease remains to be
discerned, it is manifested as a chronic synovitis and
progressive destruction of the joints, leukocyte infiltrates and
cartilage destruction and bone erosion. This destruction is
believed to be supported and perpetuated by proinflammatory
cytokines. Past studies have indeed shown that pro-
inflammatory cytokines are overexpressed in RA joints
(reviewed in Feldmann et al.,141 Brennan et al.142 and
Kannan et al.143). To understand how such cytokines are
regulated, a rodent model sharing many of the same features
for human disease (reviewed in Kannan et al.143) was
developed. This autoimmune disease, collagen-induced
arthritis (CIA), is induced by immunizing rodents, typically
with heterologous (bovine or chick) type II collagen in
combination with adjuvant, to elicit immune attack of the
host’s native collagen. Thus, components of both the innate
and adaptive immune systems are involved. Emphasis on
regulating proinflammatory cytokines, particularly TNF-a, is
key to minimizing disease as it can be detected in joints of RA
patients.144–146 Treatment with TNF-a antagonists decreases
inflammation and attenuates the destruction of cartilage and
bone.141,147–151 Such treatment is also believed to inhibit other
inflammatory cytokines, including IL-1, IL-6, IL-8 and
granulocyte macrophages colony-stimulating factor.141,142

Components of both the adaptive and innate immune
systems contribute as a source for TNF-a and other
proinflammatory cytokines.143,152,153 IFN-g also contributes
to disease, but it is phase dependent154–157. Th17 cells, which
can regulate both Th1 and Th2 cells,158,159 may be important
for mediating RA disease as ICOS�/� DBA/1 mice showed
depressed IL-17 production, but not TNF-a or IFN-g, and still
conferred complete resistance to CIA.160 IL-17 is also expressed
by the human synovium and is particularly elevated in patients
with RA161,162 and is IL-23 dependent.163 In vivo neutralization
of IL-17 results in significantly reduced CIA and could also
lessen the progression of the established disease.164

Given the results from the EAE studies, we queried whether
Salmonella-CFA/I would be effective in treating CIA, a rodent
model for RA.153 DBA/I mice are susceptible to chick or
bovine collagen II (CII) challenge, and develop a progressive
disease affecting multiple joints.153,165 As such, DBA/1 mice
were orally dosed with Salmonella-CFA/I, Salmonella vector or
PBS 7 days before CII challenge. Mice were followed for a
course of 42 days, and Salmonella-CFA/I protected against CIA
as evidenced by minimal clinical disease and significantly
reduced incidence unlike mice treated with the Salmonella
vector or PBS.166 The observed reduction in disease was
supported by the production of the cytokines IL-4, IL-10
and TGF-b by CD4þ T cells. In addition, mononuclear cells
from Salmonella-CFA/I-treated animals had decreased levels of
TNF-a, IL-1b, IL-6 and IL-27.166 To distill which CD4þ T cells
were responsible for the regulatory and anti-inflammatory
cytokines in DBA/1 mice void of disease, mice were orally
vaccinated with Salmonella-CFA/I, and cytokine profiles from

CD25þCD4þ and CD25�CD4þ T cells were assessed. The
CD25þCD4þ T cells produced significantly more IL-4, IL-10
and TGF-b than the CD25� T cells. Interestingly, IFN-g and
IL-17 were significantly elevated relative to CD25�CD4þ T
cells but less than CD25þCD4þ T cells from Salmonella
vector-immunized mice.166 As the CD25þCD4þ T cells from
similarly vaccinated mice were highly protective against EAE,68

adoptive transfer studies were performed to measure the
potency of these Treg cells in conferring protection against
CIA. Surprisingly, neither the individual CD25þCD4þ nor
CD25�CD4þ T-cell subset was adequate in treating CIA
relative to whole CD4þ T-cell isolates with respect to disease
onset and mice with reduced clinical disease.166 Thus, it
appeared that both CD25þCD4þ and CD25�CD4þ T cells
were required for protection against CIA. Subsequently,
adoptive transfer studies using total CD4þ T cells in
combination with anti-IL-4 mAb or anti-TGF-b mAb were
performed and revealed that inhibition of either cytokine
resulted in disease and loss of the protective response.166

Collectively, these data showed that Salmonella-CFA/I could
treat CIA via the induction of diverse populations of Treg cells.

As neither CD25þ nor CD25�CD4þ T cells could com-
pletely protect following adoptive transfer into DBA/1 mice,
our data suggested that perhaps a different Treg-cell subset was
being induced. To investigate such a possibility, the Salmo-
nella-CFA/I-induced CD4þ T cells were screened for expres-
sion of alternative Treg-cell markers other than CD25. One
such alternative is CD39. These CD39þ Treg cells are also able
to suppress Th17 cells, and their absence has been linked to
MS.167 Specifically, CD39 is an ectonuleoside triphosphate
diphosphohydrolase, and it is expressed on the cell surface of
Foxp3þ Treg cells, dampening proinflammatory cells by
ultimately converting proinflammatory extracellular ATP to
anti-inflammatory adenosine.166,168,169 Subsequent evaluation
of CD39þ expression was conducted in C57BL/6 male mice,
which also are susceptible to arthritis.170 Thus, CIA mice
were orally dosed with Salmonella-CFA/I, and it was revealed
that only half of the CD39þCD4þ T cells was Foxp3þ

CD25þCD4þ , although CD39 was also expressed on the
CD25�CD4þ T cells.170 To determine whether these CD39þ

T cells were protective against disease, C57BL/6 mice were
adoptively transferred with CD39þCD4þ or CD39�CD4þ

T cells from Salmonella-CFA/I- or Salmonella vector-dosed
mice into recipients challenged 14 days earlier with CIA. Only
mice receiving CD39þCD4þ T cells from Salmonella-CFA/I-
dosed mice were protected against CIA, indicating that again
the CFA/I fimbriae are essential in stimulating this therapeutic
subset of Treg cells. As these CD39þCD4þ T cells were
composed of both Foxp3þ and Foxp3� cells, further
analysis was performed to determine whether Foxp3þ

CD39þCD4þ T cells were protective against CIA. Notably,
CIA recipients given either Foxp3þCD39þCD4þ or
Foxp3�CD39þCD4þ T cells protected equally to disease
but not as effectively as total CD39þCD4þ T cells.170 These
subsets were further teased to discern how they differ.
Cytokine analysis revealed that IL-10 and TGF-b segregated
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with Foxp3þCD39þCD4þ and Foxp3� CD39þCD4þ

T cells, respectively.170 Neutralization of TGF-b reduced the
percentage of CD39 expression, implicating the importance
of TGF-b for induction of CD39.170

CONCLUSIONS

Outside of our studies, there have only been a few reports
where bacterial infections have been used to subdue EAE,171,172

and even less for CIA. However, it is important to emphasize
that the induction of Treg cells is mediated not so much by the
attenuated Salmonella vaccine strain as these cells are induced
by the fimbriae or the combination of bacteria with fimbriae.
Current studies are addressing these possibilities. Nonetheless,
our studies demonstrate the feasibility of a simple oral
treatment with Salmonella-CFA/I to render protection
against EAE and CIA without having previous knowledge of
the auto-Ag. Consequently, in a bystander fashion, both
fimbriae- and PLP139-151-specific, TGF-b-producing,
FoxP3þCD25þCD4þ T cells were induced for EAE and
CII-specific, IL-10-producing FoxP3þCD39þ and TGF-b-
producing FoxP3�CD39þCD4þ T cells. For the protective
Treg cells in CIA, co-expression of CD25 did not specifically
segregate with either subset.170 The advantage of using
Salmonella-CFA/I is that intervention of autoimmunity can
be achieved upon vaccination with an innocuous Ag, and in
this case the side-effect would be the additional protection
against the diarrheal diseases, ETEC and salmonellosis.
Moreover, this therapeutic can be administered orally
enabling patient compliance. Additionally, this approach
does not polyclonally activate Treg cells, which have been
shown to have a cataclysmic outcome.173
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30 Desin TS, Köster W, Potter AA. Salmonella vaccines in poultry: past,
present and future. Expert Rev Vaccines 2013; 12: 87–96.

31 Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for
clinical trials of attenuated Salmonella enterica serovar Typhi live oral
vaccines and live vectors. Vaccine 2003; 21: 401–418.

32 Curtiss R 3rd, Xin W, Li Y, Kong W, Wanda SY, Gunn B et al. New
technologies in using recombinant attenuated Salmonella vaccine vec-
tors. Crit Rev Immunol 2010; 30: 255–270.

33 Mestecky J, Nguyen H, Czerkinsky C, Kiyono H. Oral immunization: an
update. Curr Opin Gastroenterol 2008; 24: 713–719.

34 Curtiss R 3rd. Bacterial infectious disease control by vaccine develop-
ment. J Clin Invest 2002; 110: 1061–1066.

35 Wu S, Pascual DW, VanCott JL, McGhee JR, Maneval DR Jr, Levine MM
et al. Immune responses to novel Escherichia coli and Salmonella
typhimurium vectors that express colonization factor antigen I (CFA/I)
of enterotoxigenic E. coli in the absence of the CFA/I positive regulator
cfaR. Infect Immun 1995; 63: 4933–4938.

36 Yang X, Suo Z, Thornburg T, Holderness K, Walters N, Kellerman L et al.
Expression of Escherichia coli virulence usher protein attenuates wild-
type Salmonella. Virulence 2012; 3: 29–42.

37 Cao L, Suo Z, Lim T, Jun S, Deliorman M, Riccardi C et al. Role of
overexpressed CFA/I fimbriae in bacterial swimming. Phys Biol 2012; 9:

036005.
38 Pascual DW, Hone DM, Hall S, van Ginkel FW, Yamamoto M, Walters N

et al. Expression of recombinant enterotoxigenic Escherichia coli
colonization factor antigen I by Salmonella typhimurium elicits
a biphasic T helper cell response. Infect Immun 1999; 67:

6249–6256.
39 Nauciel C, Espinasse-Maes F. Role of gamma interferon and tumor

necrosis factor alpha in resistance to Salmonella typhimurium infection.
Infect Immun 1992; 60: 450–454.

40 Killar LM, Eisenstein TK. Delayed-type hypersensitivity and immunity to
Salmonella typhimurium. Infect Immun 1986; 52: 504–508.

41 Pope M, Kotlarski I. Detection of Salmonella-specific L3T4þ and Lyt-
2þ T cells which can proliferate in vitro and mediate delayed-type
hypersensitivity reactivity. Immunol 1994; 81: 183–191.

42 Mastroeni P, Villareal-Ramos B, Hormaeche CE. Role of T cells, TNF
alpha and IFN gamma in recall of immunity to oral challenge with virulent
salmonellae in mice vaccinated with live attenuated aro- Salmonella
vaccines. Microb Pathog 1992; 13: 477–491.

43 VanCott JL, Staats HF, Pascual DW, Roberts M, Chatfield SN,
Yamamoto M et al. Regulation of mucosal and systemic antibody
responses by T helper cell subsets, macrophages, and derived cytokines
following oral immunization with live recombinant Salmonella. J Immunol
1996; 156: 1504–1514.

44 Ravindran R, Foley J, Stoklasek T, Glimcher LH, McSorley SJ. Expression
of T-bet by CD4 T cells is essential for resistance to Salmonella infection.
J Immunol 2005; 175: 4603–4610.

45 Yang DM, Fairweather N, Button LL, McMaster WR, Kahl LP, Liew FY.
Oral Salmonella typhimurium (AroA-) vaccine expressing a major leish-
manial surface protein (gp63) preferentially induces T helper 1 cells and
protective immunity against leishmaniasis. J Immunol 1990; 145:

2281–2285.
46 Fouts TR, Tuskan RG, Chada S, Hone DM, Lewis GK. Construction and

immunogenicity of Salmonella typhimurium vaccine vectors that express
HIV-1 gp120. Vaccine 1995; 13: 1697–1705.

47 Xu D, McSorley SJ, Chatfield SN, Dougan G, Liew FY. Protection against
Leishmania major infection in genetically susceptible BALB/c mice
by gp63 delivered orally in attenuated Salmonella typhimurium
(AroA- AroD-). Immunol 1995; 85: 1–7.

48 Hess J, Gentschev I, Miko D, Welzel M, Ladel C, Goebel W et al. Superior
efficacy of secreted over somatic antigen display in recombinant
Salmonella vaccine induced protection against listeriosis. Proc Natl Acad
Sci USA 1996; 93: 1458–1463.

49 Walters N, Trunkle T, Sura M, Pascual DW. Enhanced immunoglobulin A
response and protection against Salmonella enterica serovar Typhimurium
in the absence of the substance P receptor. Infect Immun 2005; 73:

317–324.
50 Tite JP, Dougan G, Chatfield SN. The involvement of tumor necrosis

factor in immunity to Salmonella infection. J Immunol 1991; 147:

3161–3164.

51 Pascual DW, Trunkle T, Sura J. Fimbriated Salmonella enterica serovar
Typhimurium abates initial inflammatory responses by macrophages.
Infect Immun 2002; 70: 4273–4281.

52 Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease
diversity. Nat Rev Microbiol 2005; 3: 36–46.

53 Swanborg RH. Experimental autoimmune encephalomyelitis in rodents as
a model for human demyelinating disease. Clin Immunol Immunopathol
1995; 77: 4–13.

54 Smith ME, Eller NL, McFarland HF, Racke MK, Raine CS. Age
dependence of clinical and pathological manifestations of autoimmune
demyelination. Implications for multiple sclerosis. Am J Pathol 1999;
155: 1147–1161.

55 Hafler DA. Multiple sclerosis. J Clin Invest 2004; 113: 788–794.
56 Batoulis H, Addicks K, Kuerten S. Emerging concepts in autoimmune

encephalomyelitis beyond the CD4/TH1 paradigm. Ann Anat 2010; 192:

179–193.
57 Prat E, Martin R. The immunopathogenesis of multiple sclerosis. J Rehab

Res Dev 2002; 39: 187–200.
58 Steinman L, Martin R, Bernard C, Conlon P, Oksenberg JR. Multiple

sclerosis: deeper understanding of its pathogenesis reveals new targets
for therapy. Annu Rev Neurosci 2002; 25: 491–505.

59 Inglese M. Multiple sclerosis: new insights and trends. AJNR Am J
Neuroradiol 2006; 27: 954–957.

60 Fujinami RS. Can virus infections trigger autoimmune disease? J
Autoimmun 2001; 16: 229–234.
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