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Systematically missing confounders in individual participant data
meta-analysis of observational cohort studies

The Fibrinogen Studies Collaboration∗

SUMMARY

One difficulty in performing meta-analyses of observational cohort studies is that the availability of
confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others
only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and
disease either are restricted to cohorts with full confounder information, or use all cohorts but do not
fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use
information from all available cohorts while still adjusting for all the potential confounders. Our method
uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder
information, together with an estimate of their within-cohort correlation. The method is applied to estimate
the association between fibrinogen level and coronary heart disease incidence using data from 154 012
participants in 31 cohorts.† Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Results from observational studies, such as epidemiological cohort studies, are susceptible to the
distorting influence of confounders. These variables, through their association with the outcome
of interest, can result in misleading inferences for the effect of other covariates unless they are
properly adjusted for. Although including potential but unimportant confounders results in a loss
of precision, inappropriately excluding them can lead to erroneous conclusions, and hence it is
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preferable to err on the side of caution by including all available possible confounders when
modelling data [1].

Meta-analysis of observational studies using published data is fraught with difficulties: for
example, different studies may define key variables differently, handle quantitative exposures
differently (for example, with or without categorization), adjust for different confounders and use
different analysis models [2]. Meta-analysis of individual participant data (IPD) avoids many of
these problems [3]. However, one problem typically remains in IPD meta-analysis of observational
studies: it is highly unlikely that all studies will provide information on the same set of potential
confounders.

In such situations, two simple approaches are obvious: either use only those studies that provide
full details of a set of potential confounders, and provide a statistical analysis that is fully adjusted
for all potential confounders, or use all the available studies but omit some potentially impor-
tant confounders. Although both are easily implemented, the first procedure has the limitation
that it discards information and results in an inevitable loss of precision, while the second may
omit important confounders and therefore be misleading. A compromise may therefore also be
considered by making a judgement concerning which potential confounders to include while not
disregarding too many studies.

In this paper we aim to improve on these simple methods by exploiting the relationship between
fully and partially adjusted analyses and use all the available cohorts to make inferences about the
fully adjusted effect. Studies that provide full details of all potential confounders can be used to
obtain both fully and partially adjusted estimates, and hence can be used to ascertain the nature
of the association between the two, while those that provide only a subset of confounders can
be used to provide partially adjusted estimates alone. We propose a joint model for the fully and
partially adjusted estimates. We allow for statistical heterogeneity between studies by using the
standard bivariate random-effects model for meta-analysis [4–6] for the partially and fully adjusted
estimates of effect. This enables inferences concerning both partially and fully adjusted effects
to ‘borrow strength’ [6] from the other type of estimate. Most importantly, the fully adjusted
estimate borrows strength from the studies that only provide partially adjusted estimates. The
bivariate model also facilitates making inferences concerning the two types of effect simultaneously.
A related idea is the ‘adaptation method’ suggested by Steyerberg and colleagues [7, 8] and this
is discussed further in Section 8.

A two-stage approach will be adopted. At the first stage, partially and (where possible) fully
adjusted estimates are obtained from each study, together with their standard errors; a key issue is
estimating the ‘within-study’ correlation of the two estimates. At the second stage, the results are
combined in a bivariate meta-analysis.

A two-stage approach is unavoidable for the meta-analysis of published time-to-event data
[9, 10]. It has the disadvantage of implicitly making a quadratic approximation to the within-
study log-likelihoods (i.e. assuming the within-study estimated effects are normally distributed),
an approximation that is likely to be poor when studies have few events. With IPD, a one-stage
approach to analysis is possible: in this a single model for all studies, typically incorporating study-
level random effects, is fitted directly, thus avoiding the within-study quadratic approximation.
One-stage approaches for IPD random-effects meta-analyses have been suggested for continuous
[11], binary [12], ordinal [13] and time-to-event outcomes [14]. In this paper, we do not adopt a one-
stage approach because of its computational complexity with time-to-event outcomes [14], because
of the large size of our motivating data set, and because it is not clear how to encompass both
fully adjusted and partially adjusted models. The two-stage approach retains the other advantages
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of IPD meta-analyses over their aggregate data counterparts, such as ensuring that all studies have
the same variable definitions and the same analysis models, and enabling subgroup analyses [11].

The paper is set out as follows. In Section 2 we describe our motivating example, an IPD
meta-analysis of 31 cohort studies relating plasma fibrinogen levels to time to coronary heart
disease events [15]. Here only 14 cohorts provide information on all confounders, so 17 cohorts
cannot provide fully adjusted estimates. In Section 3 our proposed model is described. In Section 4
procedures for estimating the within-study correlations are derived and in Section 5 the numerical
implementation is discussed. Some illustrative analyses are performed in Section 6 and in Section 7
we return to the original data analysis and perform analyses more directly applicable to this.
Section 8 summarizes our conclusions.

2. THE FIBRINOGEN DATA

We re-examine the database of our large collaborative IPD meta-analysis which explored the
association between plasma fibrinogen and coronary heart disease in 31 cohort studies with 154 012
participants [15]. This was assessed using a proportional hazards (Cox) model, stratified by cohort,
sex and (for the two cohorts that were randomized controlled trials) trial arm.

All 31 cohorts record whether or not coronary heart disease events occurred, and the times to
event or censoring. They also provide details of every participant’s fibrinogen level, age, smoking
status, total cholesterol, systolic blood pressure and body mass index. Particular interest lies in
the effect of participants’ fibrinogen levels on coronary heart disease-free survival times, and the
other covariates included in the models below represent potential confounders.

Only 14 cohorts give near complete data on participants’ HDL cholesterol, LDL cholesterol,
alcohol consumption, triglycerides and history of diabetes. A summary of the completeness of these
additional covariates is provided in Table I. This table shows that cohorts generally have relatively
few missing observations on variables that their designs intended to collect; the overwhelming
majority of the missing observations are therefore systematically missing. There is however a
single cohort that attempts to provide details of all five of the additional confounders but has much
lower response rates for the cholesterol variables and triglycerides. In order to ensure consistency
with our previous analysis [15], this particular cohort is treated as not providing details of these.
A further issue is that total, HDL and LDL cholesterol levels are likely to be fairly collinear so
only HDL and LDL cholesterol covariates, and not total cholesterol, were previously included in
the full model [15]. Hence the covariates used in the partial models, using just the first set of
covariates described above, were not quite a subset of those used in the full model.

We [15] previously performed two series of analyses: the first using information from all 31
cohorts, but adjusting only for covariates in the first set, and the second adjusting for covariates in
both sets, but using just the information from the 14 cohorts that adequately record the necessary
details. The intention here is to produce an analysis that takes into account all of the various
potential confounders but also uses information from all 31 cohorts.

3. A BIVARIATE MODEL FOR MISSING CONFOUNDERS

In this section, a model is developed for the scenario where all cohorts provide the same subset
of confounders and only some cohorts provide all of the confounders. It is also assumed that the
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Table I. Details of the completeness of the partially reported confounders.

Number of participants Per cent reported
Confounder Number of cohorts in these cohorts in these cohorts

HDL cholesterol 23 109789 99.3
LDL cholesterol 20 98263 98.0
Alcohol consumption status 25 120909 98.1
Triglycerides 18 91226 99.9
History of diabetes 28 123257 97.0
All of the above 14 75899 94.8

response is the time until event, and that the proportional hazards model is appropriate. For the
purposes of model development, we assume that the full model uses all the available covariates,
and return later in Section 7 to the issue concerning the omission of total cholesterol from this
model. We further assume no nonsystematically missing values within cohorts and also address
this issue in Section 7.

3.1. Modelling individual participants within cohorts

In a particular cohort, let XS denote the vector of an individual participants’ stratifying covariates
(sex and trial arm in our data), let X1 denote the column vector of other covariates that are also
observed by all cohorts (including the covariate of particular interest) and let X2 denote the column
vector of covariates that are only observed by some cohorts.

For each cohort where X2 is observed we assume the full proportional hazards model for the
time to event,

�(t)=� f
(0,XS)

(t)exp(bf1X1+b2X2) (1)

and we similarly assume for the partial model, i.e. without the covariates X2, that

�(t)=�p
(0,XS)

(t)exp(bp1X1) (2)

where � denotes the hazard function. This notation emphasizes the difference in the parameters b1
and the baseline hazard functions in the two models: in the full model these are denoted with a
superscript f indicating quantities that are fully adjusted for (i.e. take into account all the covariates
X1 and X2) while in the partial model the superscript p denotes quantities that are only partially
adjusted, as they do not take into account the covariates X2. Both models apply to a particular
cohort, and it is anticipated that cohorts will have different baseline hazards. Although both the
full and partial models cannot simultaneously be true, unless b2=0, both are likely to provide
adequate descriptions of the data [16]. Note that bold font is used for row vectors of parameters
in these models to distinguish between these and their first entries in the notation that follows.

We can obtain estimates b̂
f
1, b̂2 (from the full model 1) and b̂

p
1 (from the partial model 2) for

each cohort that provides details of X2, by maximizing the partial likelihood in the usual way [17].
For those cohorts that do not provide details of X2, we can only obtain the corresponding estimate
from model (2).

Let the first entry in X1 denote the covariate of particular interest. We are therefore interested
only in inference regarding the first parameter in the vectors bf1 and bp1; the others represent
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potential confounders. The corresponding estimates are the first entries in b̂
f
1 and b̂

p
1, which will

be denoted by �̂
f
1 and �̂

p
1 .

3.2. Between-cohorts model

We assume for any given cohort that⎛
⎝�̂

f
1

�̂
p
1

⎞
⎠∼N

((
� f
1

�p
1

)
,

(
�21 ��1�2

��1�2 �22

))
(3)

where we assume that �21,�
2
2 and � are fixed and known, a conventional assumption when using

bivariate models in meta-analysis [5, 6] and a generalization of assuming that the within-cohort
variances are fixed and known in more usual univariate analyses [18, 19]. In practice, however,
these values must be estimated by standard methods: the variances are provided by the output of
proportional hazards regression in standard statistical packages, and obtained from the observed
information matrix [20, p. 41]. The difficulty lies in estimating �, and some approaches for obtaining
this are suggested in Section 4.

The underlying � f
1 and �p

1 may vary from cohort to cohort. We assume that this variation can
be modelled as (

� f
1

�p
1

)
∼N

((
� f

�p

)
,

(
�21 ��1�2

��1�2 �22

))
(4)

providing the marginal bivariate normal distribution for the cohort in question as⎛
⎝�̂

f
1

�̂
p
1

⎞
⎠∼N

((
� f

�p

)
,

(
�21+�21 ��1�2+��1�2

��1�2+��1�2 �22+�22

))
(5)

where we anticipate, but do not require, that both � and � will be positive. Equation (5) is simply
the standard bivariate model for meta-analysis, where the two outcomes are the partially and fully
adjusted effects. This is an innovative use of this standard model, as more usually the outcomes are
not defined so similarly (typically they are notably different types of patient responses). Despite
this, the central limit theorem implies that model (3) provides a good approximation for large
cohorts such as these and, combining this with model (4), which describes the between-cohort
variation, the bivariate random-effects model is a natural choice for data such as these.

In a standard univariate meta-analysis of the fully adjusted effect of fibrinogen level, using just

the cohorts that provide the necessary information on all confounders, the marginal model for �̂
f
1

from (5) is assumed and information from 17 cohorts is simply discarded. This comment applies
to all the analyses performed using the bivariate model below.

3.3. The log-likelihood function of the fibrinogen data

For cohorts that do not provide X2, only the partial model (2) is fitted, �̂
f
1 is unobserved and,

assuming that this is missing at random (MAR), the marginal distribution of �̂
p
1 from model (5)

alone is required.
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The resulting log-likelihood function of the data, i.e. the fully and partially adjusted estimates
from the 14 cohorts that give full confounder information, and the partially adjusted estimates
from the remaining 17 cohorts, obtained as described in Section 3.1, is

L(� f ,�p,�
2
1,�

2
2,�)=

14∑
i=1

log fi (�̂
f
1 , �̂

p
1 )+

31∑
i=15

log fi (�̂
p
1 ) (6)

where the bivariate and marginal densities, fi (�̂
f
1 , �̂

p
1 ) and fi (�̂

p
1 ), are obtained directly from

distributions (5), the first and second summations in (6) being over the cohorts that provide X2,
and those that do not, respectively. This likelihood involves five parameters, but � f is of primary
interest. Although the cohorts that fail to report X2 do not provide direct evidence relating to � f ,
they provide indirect information via their partially adjusted estimates and their assumed association
with the fully adjusted estimates. The bivariate random-effects model therefore allows inferences
concerning the fully adjusted effect to borrow strength from cohorts where fully adjusted estimates
are unavailable, as explained in the introduction. The bivariate model also enables us to examine
the nature of the relationship between the two types of effects.

Missing estimates are not imputed by this procedure, but the relationship between the fully and
partially adjusted estimates, for the cohorts where both estimates are available, is assumed to apply
to those where only partially adjusted estimates can be obtained. Since a bivariate normal model
is adopted this association is assumed to be linear, so that the method bears some similarities to
the approach of Riley et al. [21], who impute missing estimates and standard errors from linear
trends in the context of a sensitivity analysis.

Inferences for the partially adjusted �p are also made when fitting the bivariate model, which
makes use of the fully adjusted estimates, although this borrowing of strength is likely to be very
limited, as all 31 partially adjusted estimates are available. Once the fully and partially adjusted
estimates have been obtained, the methodology therefore becomes a fairly standard application of
the bivariate random-effects model for meta-analysis, but with one very particular difficulty: the
within-cohort correlations are assumed known but need to be estimated. Some novel approaches
are therefore developed for this purpose in the next section.

4. ESTIMATING THE WITHIN-COHORT CORRELATION �

Although values of � are estimated for each cohort, once evaluated these are regarded as fixed and
known. We therefore suppress the emphasis that � is an estimate in the notation that follows.

4.1. A nonparametric bootstrap estimate, �b

Nonparametric bootstrapping [22] is probably the simplest, but slowest, procedure for obtaining
an estimate of �. For each cohort that provides details of X2, participants can be sampled with
replacement providing a bootstrap sample, where for each sampled individual we record all their
various details: their time to event, all covariates and note whether or not they were censored. For

each bootstrap sample, the ordered pair of estimates �̂
f ∗
1 and �̂

p∗
1 provide the required bootstrap

replication. The estimate �b is then obtained as their sample correlation.
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4.2. An analytical estimate, �a

An approximate analytical estimate of � is also possible. This procedure is akin to the approach
suggested by Steyerberg et al. [7, 8], as an algebraic connection between the fully and partially
adjusted estimates is utilized. We first consider the linear regression case, in which an exact
expression is possible, and then extend this to the proportional hazards model. Consider the anal-
ogous linear regressions E[Y |X1, X2]=� f +bf1X1+b2X2,E[Y |X1]=�p+bp1X1 and E[X2|X1]=
�+cX1, where the various � parameters represent model intercepts; note that the regression of
X2 on X1 is a multiple multivariate regression and therefore that � and c denote a vector and
a matrix, respectively. Evaluating E[Y |X1]=EX2|X1[E[Y |X1, X2]], and equating terms in X1,
provides bp1 =bf1+b2c.

The corresponding identity also applies to maximum likelihood estimates, a result that may
be proved by examining the normal equations resulting from the various linear regressions. In

particular, using �̂
p
1 and �̂

f
1 to denote the first entries in the corresponding row vectors, �̂

p
1 =

�̂
f
1 + b̂2ĉ1, where ĉ1 denotes the first column of ĉ. This vector contains the estimated regression

coefficients of X2 on the first term in X1 i.e. the covariate of particular interest. This means that

Cov(�̂
p
1 , �̂

f
1 )=Cov(�̂

f
1 + b̂2ĉ1, �̂

f
1 )=Var(�̂

f
1 )+Cov(b̂2ĉ1, �̂

f
1 ).

Since �̂
f
1 and b̂2 are estimated coefficients from the regression of Y on X1 and X2, their

properties depend on the distribution of Y conditional on both X1 and X2; similarly ĉ1 is a vector
of estimated coefficients whose properties depend on the distribution of X2 conditional on X1.

The random variables �̂
f
1 and b̂2 are therefore functions of the random variable (Y |X1, X2) and

ĉ1 is a function of (X2|X1). By definition, (Y |X1, X2) and (X2|X1) are independent and hence

ĉ1 is independent of both �̂
f
1 and b̂2. Hence, Cov(b̂2ĉ1, �̂

f
1 )=Cov(b̂2E[ĉ1], �̂

f
1 ). Thus using the

approximation E[ĉ1]≈ ĉ1, the covariance of the fully and partially adjusted estimates can also be
obtained approximately, and is evaluated as

Cov(�̂
p
1 , �̂

f
1 )≈Var(�̂

f
1 )+Cov(b̂2, �̂

f
1 )ĉ1 (7)

Since all the entries in the �̂ vectors in the right-hand side of (7) are from the full model, i.e. the
model including X2 as a covariate, their variances and covariances may be obtained when fitting
this model using any standard method.

The above applies to a linear regression, but in our application we assume the proportional
hazards model for survival time T where, in addition to X1 and X2, we have stratifying variables XS .
We assume a linear regression for X2,E[X2|X1, XS]=�+cX1+dXS . From equation (1), we have

P(T>t |Xs, X1, X2)= S f
(0,XS)

(t)
exp(bf1X1+b2X2)

where S f
(0,XS)

(t)=exp(−{∫ t
0 � f

(0,XS)
(u)du}) denotes the baseline survivor function for the full

model, stratified by XS as before. Interpreting P(T>t) as the expectation of the event T>t , we
now use the iterated expectation formula E[A|B]=E[E[A|B,C]|B], with A= the event T>t,
B=(Xs, X1) and C= X2, to show that

P(T>t |Xs, X1)=E[S f
(0,XS)

(t)
exp(bf1X1+b2X2)|Xs, X1]
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Next we use the simple Taylor Series expansion E[g(V )|W ]≈g(E[V |W ]), with
V = S f

(0,XS)
(t)exp(b

f
1X1+b2X2) and W =(Xs, X1)

to show

P(T>t |Xs, X1) ≈ S f
(0,XS)

(t)exp(b
f
1X1+b2(�+cX1+dXS))

= {S f
(0,XS)

(t)exp{b2(�+dXS)}}exp{(bf1+b2c)X1}

which is of the form of the partial model (2) with bp1 =bf1+b2c, and where other terms have been
absorbed into the baseline hazard function.

We therefore suggest that �̂
p
1 ≈ �̂

f
1 + b̂2ĉ1 be used as an approximation and hence that (7) be used

to obtain the within-cohort covariance as for linear regression. An estimate of Cov(�̂
p
1 , �̂

f
1 ) can be

therefore be obtained and the within-cohort correlation �a can be obtained as �a =Cov(�̂
f
1 , �̂

f
1 +

b̂2ĉ1)/{Var(�̂
f
1 )Var(�̂

p
1 )}0.5.

4.3. Modified analytic correlations, �m

A potential difficulty is that the analytic approach in Section 4.2 provides no assurance that the
correlations lie between −1 and 1; as shown below, three fibrinogen cohorts provide analytic
correlations that are slightly greater than one.

A modification of the analytical approach that avoids such estimates can be developed by defining

�m =corr(�̂
f
1 , �̂

f
1 + b̂2ĉ1). This requires the calculation of Var(�̂

f
1 + b̂2ĉ1). The simplest way to

evaluate this variance is to derive the covariance matrix of the six terms that comprise the summa-

tion �̂
f
1 + b̂2ĉ1 and evaluate Var(�̂

f
1 + b̂2ĉ1) directly from this. Noting that ĉ1 is independent of �̂

f
1

and b̂2, the entries of this covariance matrix can be evaluated using the identity Cov(A1B1, A2B2)=
Cov(A1, A2)Cov(B1, B2)+E(A1)E(A2)Cov(B1, B2)+E(B1)E(B2)Cov(A1, A2), assuming that
A and B are independent; expected values are approximated by point estimates and the necessary
covariances are estimated when fitting the full proportional hazards and the multiple linear
regression models.

Note that we continue to use the direct estimate of Var(�̂
p
1 ) not Var(�̂

f
1 + b̂2ĉ1) for the variance

�21 in order to follow the convention that within-cohort variances are obtained using standard
methods.

4.4. Comparison of the procedures for estimating �

The procedures for estimating � provide contrasting approaches. In particular, the bootstrap is
computationally expensive, requiring considerable resampling and the repeated fitting of models
involving large numbers of participants. Estimates of � for the 14 fibrinogen cohorts can however be
obtained in minutes, rather than hours, using several hundred bootstrap replications. A technicality
here is that the resampling almost inevitably results in ties; Efron’s method [23] was used for
handling these, although other standard methods also provide very similar estimates of � for the
fibrinogen data.

The limitation of the analytical approaches is that they involve an algebraic approximation, and
it is difficult to ascertain how accurate this is. The analytical approaches should be used only
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when exactly the same participants are used to fit both full and partial models, as this is required

so that b̂
p
1 = b̂f1+ b̂2ĉ in the analogous linear regression, which motivates the approximation. For

example, some participants in the 14 fibrinogen cohorts that provide details of X2 have some
missing covariates in X2 but provide complete information for X1; including these participants
when fitting partial models but then omitting them in full models invalidates the theory. A further
issue raised by the analytic approaches is that it is required that the partial model involves a
subset of covariates from the full model. These issues do not present problems for the bootstrap
procedure.

To summarize, no single method is preferable to the others on all grounds, so they are compared
in Section 6.

5. NUMERICAL IMPLEMENTATION

R software was used throughout. The ‘survival’ package was used to fit all the necessary propor-
tional hazards models and the ‘sample’ command was used to sample random rows, with replace-
ment, from the data frame for the bootstrap replications required when evaluating �b. Having
estimated the within-cohort correlations, following van Houwelingen et al. [24], maximum like-
lihood estimation was performed and confidence intervals were obtained from the profile log-
likelihood. It should however be noted that alternative estimation procedures, such as restricted
maximum likelihood (REML), are also possible but are unlikely to make much difference here as
the sample size is relatively large.

The necessary maximizations of the log-likelihood (6) were performed numerically using the
‘optim’ command, with the quasi-Newton ‘BFGS’ method, after transforming the variance and
correlation parameters so that the transformed values lie along the whole real line. By speci-
fying particular parameters as further arguments to be passed to the log-likelihood, these can be
constrained to particular values and hence profile log-likelihoods can be also be obtained numer-
ically. The command ‘fdHess’, from the ‘nlme’ package, provides a Hessian matrix that can be
evaluated at the maximum likelihood estimates and then inverted in order to produce the observed
information matrix from which standard errors can be obtained. When maximizing the resulting
log-likelihoods in this manner, it was necessary to reduce the ‘ndeps’ vector, which denotes the step
sizes for the finite-difference approximation to the gradient, from its default value of 10−3 to 10−5.
Although the fibrinogen data are not freely available, illustrative R code for performing the analysis
is available upon request from the first member of the writing committee.

6. SIMPLE ANALYSES OF THE FIBRINOGEN DATA

Three complications arise with this database. First, some individuals in ‘complete’ cohorts do not
in fact have complete data on X2. In order to apply the analytic methods for obtaining correlations
in Section 4, we exclude these individuals from the estimation of both full and partial models
(‘complete-case analysis’) but in Section 7 we alternatively include them in the partial model.
Second, many ‘partial’ cohorts have data on some variables in X2, as shown in Table I. We ignore
this information but consider its use in the discussion. Third, the partial model previously fitted
was not quite a submodel of the full model, as only the partial model includes total cholesterol as
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a covariate. In order to apply the methods of Section 4 we drop total cholesterol from the partial
model in this section; in Section 7 we alternatively include total cholesterol in this model.

6.1. Cohort-specific estimates for the fibrinogen data

The estimates �̂
p
1 and �̂

f
1 of the effect of fibrinogen level, their within-cohort standard errors, �1 and

�2, and the correlations described above, for the 14 cohorts that provide the necessary information,
are shown in Table II. The estimates and variances were obtained from standard proportional
hazards model output and the correlations were obtained using the bootstrap (Section 4.1, with
500 bootstrap replications), the analytical (Section 4.2) and the modified analytical (Section 4.3)
procedures. A 95 per cent confidence interval for a bootstrap within-cohort correlation of 0.95,
based on Fisher’s transformation, is (0.941, 0.958), indicating that 500 bootstrap replications are
sufficient to accurately estimate the correlations.

All values of � in Table II are large and positive, reflecting the similar nature of the two types
of estimates. However, it is interesting to note that values of �a are generally greater than the
corresponding values obtained by bootstrapping and, as noted above, three of these were estimated
to be very slightly greater than one. These were truncated to 0.999. For scenarios where the
estimates are not so highly correlated, this truncation is unlikely to be necessary suggesting that
this analytical solution is likely to perform more satisfactorily in such cases.

The pairs of estimates �̂
p
1 and �̂

f
1 are also plotted in Figure 1, where the dotted lines indicate

cohort specific 95 per cent confidence regions, obtained using model (3) and the bootstrap within-
cohort correlations; the bootstrap correlations were used in this figure as they are generally smaller
than the analytic ones, and provide more attractive and somewhat less squashed ellipses. The line
of equality indicates that all the partially adjusted estimates are greater than the corresponding
fully adjusted estimate.

Table II. The estimates �̂
f
1 and �̂

p
1 of the log hazards ratio of the effect of fibrinogen level,

their within-cohort standard errors and correlations, for complete-case analyses of the 14
fibrinogen cohorts that provide the necessary details of X2.

Cohort �̂
f
1 �1 �̂

p
1 �2 �b �a �m

1 −0.353 0.381 −0.188 0.387 0.861 0.984 0.970
2 0.334 0.088 0.425 0.085 0.971 0.981 0.961
3 0.309 0.132 0.394 0.129 0.963 0.978 0.962
4 0.324 0.198 0.435 0.191 0.963 0.988 0.976
5 0.400 0.296 0.543 0.272 0.961 0.999† 0.980
6 0.149 0.104 0.151 0.103 0.988 0.999† 0.994
7 0.262 0.120 0.327 0.117 0.974 0.996 0.982
8 0.436 0.310 0.541 0.312 0.945 0.957 0.974
9 0.337 0.113 0.451 0.108 0.965 0.998 0.976
10 0.474 0.143 0.609 0.137 0.952 0.999† 0.982
11 0.110 0.086 0.159 0.085 0.985 0.984 0.985
12 0.413 0.065 0.532 0.064 0.963 0.982 0.970
13 0.213 0.078 0.262 0.077 0.964 0.976 0.969
14 0.062 0.175 0.129 0.170 0.962 0.989 0.976

Correlations marked † were estimated to be more than unity, and hence have been truncated at
0.999.
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Fully adjusted log hazard ratio for fibrinogen level
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Figure 1. Fully and partially adjusted estimated effects of fibrinogen level and corresponding 95 per cent
confidence intervals, using the bootstrap within-cohort correlations. The line of equality is also shown.

The trend in Figure 1 appears linear, lending credence to the assumption of bivariate normality
across cohorts. Almost all the confidence regions overlap indicating that the results are broadly
comparable across cohorts. However, it should not be supposed from this plot that the random
effects model in (4) is not required and that a fixed effects model is appropriate: the univariate 	2

heterogeneity statistics for the fully and partially adjusted estimates shown in Figure 1 are 17.8
(I 2=0.27) and 28.3 (I 2=0.55), on 13 degrees of freedom, respectively. Although the first of these
	2 statistics is not significant, the second of these provides a p-value of 0.008 when testing the
null hypothesis that the partially adjusted estimates are homogenous.

The estimates �̂
p
1 from the remaining 17 cohorts are shown in Table III. Cohort 31, although

providing an apparently unusual estimated effect is also much the smallest cohort (only 418
participants), and there are no obvious signs of outliers. Removing this very small cohort makes
virtually no difference to the resulting inferences, although very slightly larger effects of fibrinogen
level are obtained if this is discarded.

6.2. A complete-case meta-analysis using �a

In this section the analytic within-cohort correlations are used. The implications of using other
within-cohort correlations are explored in Section 6.3.

The profile log-likelihood was adopted to make inferences about � f . In computing this, we fix
the value � f and maximize the log-likelihood (6) over the remaining four parameters, subject to
the constraints that �1�0,�2�0 and −1���1. This profile log-likelihood is shown in Figure 2.

The maximum likelihood estimate �̂ f is 0.275 and a corresponding 95 per cent confidence

interval, given by values of � f
1 that provide a profile log-likelihood within 1.962/2 of its maximum,
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Table III. The estimates �̂
p
1 of the log hazards ratio of the effect

of fibrinogen level and their within-cohort standard errors, for the 17
fibrinogen cohorts that do not provide full details of X2.

Cohort �̂
p
1 �2

15 0.438 0.342
16 0.484 0.115
17 0.154 0.120
18 0.660 0.252
19 0.290 0.083
20 0.333 0.117
21 0.122 0.147
22 0.666 0.349
23 0.219 0.053
24 0.354 0.126
25 0.553 0.148
26 0.338 0.087
27 0.439 0.083
28 0.215 0.045
29 0.304 0.278
30 0.429 0.108
31 1.190 0.499

0.20 0.25 0.30 0.35 0.40

32

34

36

38

Fully adjusted log hazard ratio for fibrinogen level

Figure 2. Profile log-likelihood plot for � f using the analytic within-cohort
correlations, shown in column 7 of Table I.
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Figure 3. Profile log-likelihood plot for � using the analytic within-cohort
correlations, shown in column 7 of Table I.

is (0.223, 0.332). Figure 2 masks an important finding that �̂=1 and hence this parameter estimate
is located at the edge of the parameter space; indeed this is the case for all the analyses described
below. Furthermore the values of � required to maximize the log-likelihood for all the values of
� f used to draw Figure 2 are greater than 0.9999. The corresponding profile log-likelihood plot in
terms of � is shown in Figure 3, which shows that there is strong evidence for a large and positive
between-cohort correlation.

This finding presents difficulties when using information matrices to obtain confidence intervals,
although by constraining �=1 we may easily obtain confidence intervals in this way. This comment
applies for all the analyses below. This finding is not particularly surprising, given the analogous
nature of fully and partially adjusted estimates and the finding of Riley et al. [6] that estimates of
between-cohort correlation frequently lie at the edge of the parameter space. In particular, there is
not a very large number of cohorts providing information concerning this parameter, and reasonably
large within-cohort variances, relative to the between-cohort variation, which are features of data
that tend to give rise to �̂±1 [6].

6.3. Comparison of results

The results for the different estimates of � are shown in Table IV, where results for both the fully
and partially adjusted effect of fibrinogen level are shown and ‘modified’ refers to the modified
analytic within-cohort correlations described in Section 4.3. Estimates of � are not tabulated here
because, as noted above, �̂=1 for all models fitted.

Constraining �=1 and obtaining confidence intervals using this reduced model, and the observed
information matrix, provides very similar inferences for the effect of fibrinogen level as when using
the profile log-likelihood and avoids the difficulty that �̂ lies at the edge of the parameter space.
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Table IV. Parameter estimates for simple analyses where partial models
omit total cholesterol and include only complete cases.

Correlations � f �21 �p �22

Bootstrap 0.271 (0.026) 0.005 (0.004) 0.346 (0.030) 0.011 (0.006)
Analytic 0.275 (0.027) 0.006 (0.004) 0.358 (0.031) 0.013 (0.006)
Modified 0.272 (0.027) 0.005 (0.004) 0.350 (0.030) 0.011 (0.006)

‘Correlations’ refers to the method used to obtain within-cohort correlations. Standard errors,
obtained from the observed information matrix, having constrained �=1, are shown in parentheses.

The standard errors of all estimates in Table IV are shown in parentheses, using the observed
information matrix and this reduced model. It should be noted that the extreme estimate of � tends
to lead to inflated estimates of between-cohort variance [6] but these are not insubstantial and all
the various models in Table IV provide similar results. It is interesting to note that estimates of
between-cohort variance of the partially adjusted effects are much greater than the corresponding
estimates for the fully adjusted effects, suggesting that the additional confounders incorporated
into the full model explain some of the heterogeneity in the estimates of the effect of fibrinogen
level.

We conclude that the choice of method for estimating � is not important in these data. Using the
bootstrap within-cohort correlations provides a 95 per cent confidence interval of (1.24, 1.38) for
the fully adjusted hazard ratio for fibrinogen level. The average fibrinogen level in the sample is
3.02 and the upper and lower quartiles are 2.47 and 3.47, respectively, indicating that participants
with fibrinogen levels in the top quartile are at considerably more risk of a coronary heart disease
event than those in the lower quartile.

6.4. Comparison with analyses of ‘full’ cohorts

The bivariate model gives estimated fully adjusted effects of fibrinogen in the range 0.259–0.275,
with standard errors of around 0.027. For comparison, a simple univariate random-effects meta-
analysis, using just the 14 cohorts that provide the necessary information (and hence using just
the data in columns 2 and 3 of Table II), provides a point estimate of �̂ f =0.273 with a standard
error of 0.038. Furthermore, a standard bivariate random-effects meta-analysis using just these 14
cohorts and the bootstrap within-cohort correlations (i.e. using only the data in columns 2–6 of
Table II) gives �̂ f =0.282 with a standard error, obtained in the same way as in Table IV, of
0.041. These much larger standard errors indicate that the extra information incorporated into the
model developed here has been worthwhile in estimating the effect of fibrinogen, as the reduction
in the standard error using the proposed procedure is around 30 per cent. It is also interesting to
note that the standard error resulting from using the bivariate random-effects model for just the 14
cohorts that provide details of X2 is very similar to that from the usual univariate meta-analysis of
the fully adjusted effects. This indicates that little or no ‘borrowing of strength’ from unadjusted
estimates of effect occurs for this example unless partially adjusted estimates from the remaining
17 cohorts are also used in the analysis. This is not surprising, as a number of previous articles
highlight that, given complete data, there is little benefit of bivariate over univariate meta-analysis
[6, 25, 26].
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7. EXTENDED ANALYSES

The analyses in the previous section are not entirely in the spirit of those performed previously [15].
First, some individuals in ‘full’ cohorts had incomplete X2. We excluded these individuals from
estimation of both full and partial models in Section 6, which we called a complete-case analysis.
Now we will follow the previous analysis by including these individuals in estimating the partial
model.

Second, we have omitted total cholesterol from the partial model. Now we follow the previous
analysis by including it.

These changes invalidate the assumptions underlying the analytic approaches for estimating �.
We therefore use bootstrap within-cohort correlations in this section. Here the bootstrap replications
simply include total cholesterol and incomplete cases when fitting partial models but are otherwise
obtained as before. Making the above changes slightly modifies the cohort-specific values of �̂

p
1

and the accompanying standard errors, but leaves �̂
f
1 unchanged. Following the same procedure as

before provides �̂ f =0.259 and a 95 per cent confidence interval from the profile log-likelihood
is (0.208, 0.314). This is broadly similar to the analyses above but a slightly smaller effect of
fibrinogen is inferred; very similar inferences are also made by assuming that �=1 and using the
observed information matrix, as shown by the second set of results in Table V.

7.1. Comparison of results

The choices concerning whether or not to include incomplete cases and total cholesterol when
fitting partial models are somewhat arbitrary and the implications of these decisions are now
explored. The results for models that exclude both total cholesterol and incomplete cases have
been summarized in Table IV; the corresponding results for the other three possibilities, using
bootstrapping to obtain the within-cohort correlations, are summarized in Table V. A comparison
of Tables IV and V indicates that the inferences are not particularly sensitive to these choices
when fitting partial models.

7.2. A simplified model

A plot similar to Figure 1, but with the difference between fully and partially adjusted estimates on
the horizonal axis, and where partial models include total cholesterol, is shown in Figure 4. The
differences between the fully and partially adjusted estimates (horizontal axis of Figure 4) appear
homogenous, and the usual 	2 heterogeneity statistic of these differences is just 8.0 on 13 degrees

Table V. Parameter estimates for extended analyses. All within-cohort correlations
are obtained by bootstrapping.

Total cholesterol Complete-case � f �21 �p �22

Yes Yes 0.263 (0.026) 0.005 (0.003) 0.319 (0.028) 0.008 (0.005)
Yes No 0.259 (0.026) 0.005 (0.004) 0.320 (0.026) 0.006 (0.004)
No No 0.269 (0.027) 0.005 (0.004) 0.341 (0.027) 0.008 (0.004)

Affirmative ‘Complete-case’ and ‘Total cholesterol’ indicate that a complete-case analysis has been performed,
and that total cholesterol is included in partial models, respectively. Standard errors, obtained from the observed
information matrix, having constrained �=1, are shown in parentheses.
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Figure 4. The difference between fully and partially adjusted, and partially adjusted, estimated
effects of fibrinogen level and corresponding 95 per cent confidence intervals. Note that the
partially adjusted estimates shown here adjust for total cholesterol, and hence are not quite the

same as those shown in Figure 1 or Table I.

of freedom. This apparent homogeneity is however highly sensitive to the estimated within-cohort
correlations, so although not too much emphasis should be placed on this finding, this does suggest
a simpler model that adequately describes the data. The point estimate �̂=1 is obtained for all the
various models, as noted above, and assuming that both �=1 and Var(� f

1 −�p
1 )=0 is equivalent

to assuming that both �=1 and �21=�22 in model (5). Hence a much simpler model that appears
to describe the data well is model (5) subject to these two constraints.

Using the data shown in Figure 4, this model provides a point estimate �̂ f =0.259 with a
standard error of 0.027. This is very similar inference to the analyses performed above, so little is
gained by this simplification: the change in deviance of this model, compared with the full model
where �,�21 and �22 are allowed to take any value in their joint parameter space, is just 1.1 on 2
degrees of freedom.

8. CONCLUSIONS

Observational studies are likely to differ in terms of the information that they provide and are
particularly susceptible to the influence of confounders. Provided that fully and partially adjusted
estimates are kept distinct however, and assuming that at least some studies provide enough
information to produce fully adjusted estimates, the methodology we have developed can be used
or modified to incorporate data from all available cohorts. Similar methods are likely to be useful
in other individual participant data (IPD) meta-analyses such as the million-person Emerging Risk
Factors Collaboration [27].
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Various extensions of the model are possible. For example, this kind of procedure could be
used for other types of outcome, such as continuous and binary variables, or for other types of
study, such as case–control studies. Furthermore, the fibrinogen data were analysed as providing
two types of cohorts: those that provide adequate details of all the extra variables and those that do
not. In other scenarios there may be much more complicated patterns of missingness and Table I
shows that this distinction between the two types of fibrinogen cohort is a simplification. In other
examples, further dimensions may be needed than the bivariate model suggested here allows. For
example, one could fit models containing X1, X1 and X2, X1 and X3 and X1, X2 and X3, and
perform a four-dimensional meta-analysis. Whether the additional model complexity is justified
by increases in precision is a topic for further research.

An alternative way to estimate the within-cohort correlation is to estimate the unadjusted
and adjusted Cox regressions simultaneously. Individuals from cohorts with complete data each
contribute two records to this analysis, whereas individuals from other cohorts contribute only
one record. The within-cohort correlation is obtained from the robust variance–covariance matrix
of Wei et al. [28], which allows for dependence of different records on the same individual.
This method provided similar correlations and inferences to those in Tables II, IV and V (results
not shown). For situations where they are computationally feasible, the bootstrap correlations are
perhaps preferable in practice because no linear approximation is required to derive them. Even if
within-cohort correlations provided by alternative methods differed more notably, a recent simula-
tion study concludes that a variety of types of errors when approximating within-cohort correlations
have little impact on the estimation of the population means if there is complete data [25]. Here
we borrow strength from 17 cohorts with incomplete data, however, and the correlation between
the partially and fully adjusted estimates is crucial to the procedure adopted.

A recent proposal [29] for fitting a bivariate normal meta-analysis model, without estimating
the within-cohort correlations, was not adopted as this does not separately reflect the within and
between-cohort correlations, on which the borrowing of strength so critically relies when analysing
the fibrinogen data in this way. The within-cohort correlations can be obtained with effort and
‘If practitioners are fortunate to have the within-study correlations available, or if they can be
assumed zero, then we recommend that they still perform a bivariate random-effects meta-analysis
using the general model’ [29] (model (5), as used here). Despite this, borrowing of strength can
mostly be achieved without separating the within and between-cohort correlations and a referee
pointed out that fitting this alternative model resulted in a similar estimate and confidence interval
for the fully adjusted effect of fibrinogen. Those who wish to avoid estimating the within-cohort
correlations altogether therefore have a viable alternative to consider.

Simply assuming that all the within-cohort correlations �=1 provides very similar inferences
for the fibrinogen data, and one might consider assuming �=1 in order to quickly obtain some
indicative results. Reparameterizations of the model, in order to avoid estimates �̂=1, were also

considered. In particular, a bivariate normal model for �̂
f
1 − �̂

p
1 and (�̂

f
1 + �̂

p
1 )/2 was examined but

this provided �̂=−1 for almost all the types of analyses described above, and hence did not avoid
the difficulties associated with estimating this correlation. A further extension is to consider the
possibility of addressing measurement error when measuring fibrinogen levels [30].

Our method assumes that confounders unmeasured in a particular cohort are MAR: that is, there

is no systematic difference in �̂
f
1 between studies that do and do not measure X2, once we allow

for differences in �̂
p
1 . It is possible, but not likely, that some studies did not measure X2 because

they thought it was not an important confounder in their study (which might contradict MAR).

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1218–1237
DOI: 10.1002/sim



SYSTEMATICALLY MISSING CONFOUNDERS IN INDIVIDUAL PARTICIPANT DATA 1235

By contrast, the standard univariate method of analysing the cohorts that measured X2 assumes
that the confounders are missing completely at random: that is, there is no systematic difference

in �̂
f
1 between cohorts that do and do not measure X2. This seems much less plausible, since for

example the studies that did not measure X2 may be earlier studies that used alternative methods
including different ways to measure the exposure of interest.

Combining unadjusted and adjusted estimates was previously proposed by Steyerberg and
colleagues [7, 8]. They started with just three estimates: unadjusted and fully adjusted estimates
from IPD, and an unadjusted estimate from published literature. Their proposed estimate of the
fully adjusted coefficient equals the fully adjusted estimate from the IPD plus an ‘adaptation factor’
times the difference between the unadjusted estimates. The adaptation factor is computed from the
observed standard errors and within-study correlations to minimize the variance of the resulting
‘adapted estimate’. One could extend this approach here, obtaining fully adjusted ‘individual
participant’ estimates by conducting a bivariate meta-analysis using the 14 cohorts that provide
full confounder information, and replacing the unadjusted estimate from published literature with
the result of a univariate meta-analysis of the remaining 17 cohorts. If fixed-effect meta-analyses
are performed then the adapted estimate turns out to be the same as a fixed-effect version of
our procedure (i.e. setting �1=�2=0 in equation (4)). This equivalence is lost if random-effects
models are used. Our method has the advantages of greater transparency, because the model is
clearly stated, and greater statistical efficiency because �22 is assumed equal across the two subsets
of cohorts. Our procedure also has the benefit of ease of computation, because only one bivariate
random-effects meta-analysis is needed, and facilitates an entirely likelihood-based approach.

The methodology developed here could also be applied if some cohorts provide IPD while others
provide only aggregate results, for example just one of the estimated effects and accompanying
standard error. This is the scenario specifically considered by Steyerberg et al. [7, 8] and Riley
et al. [31] provide a recent review of such methods. If necessary, one might assume that aggregate
within-cohort correlations are comparable to those where the IPD are available. The assumption
that estimated effects are MAR becomes a much stronger assumption when using aggregate data in
this way however, as the publication of a particular analysis might depend on the results obtained,
rather than just the availability of the covariates.
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