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Abstract

The evaluation of eye blinking has been used for the diagnosis of neurological disorders and

fatigue. Despite the extensive literature, no objective method has been found to analyze its

kinematic and dynamic behavior. A non-contact technique based on the high-speed record-

ing of the light reflected by the eyelid in the blinking process and the off-line processing of

the sequence is presented. It allows for objectively determining the start and end of a blink,

besides obtaining different physical magnitudes: position, speed, eyelid acceleration as well

as the power, work and mechanical impulse developed by the muscles involved in the physi-

ological process. The parameters derived from these magnitudes provide a unique set of

features that can be used to biometric authentication. This possibility has been tested with a

limited number of subjects with a correct identification rate of up to 99.7%, thus showing the

potential application of the method.

Introduction

Eye blinking is one of the fastest human reflexes [1]. A blink is a temporary closure of both

eyes involving movements of upper and lower eyelids. Blinks’ role is fundamentally keeping

the eye hydrated, allowing the tear film distribution over the ocular surface [2,3], and protect-

ing against foreign objects [4,5]. It represents a normal, simply observable and easily accessible

phenomenon that reflects central nervous activation processes without voluntary manipula-

tion. Eyelids movements require simple neural commands and few active forces, so their anal-

ysis may reveal any abnormality and show if it is derived from a muscular or a neural disorder

[4,6]. In all types of blinks, i.e. spontaneous, reflex and voluntary blinks, the movement of the

upper eyelid is a result of three active forces (the orbicularis oculi -OO- muscle, the levator pal-

pebrae -LP- muscle and Mueller’s muscle) and a passive force produced by the mechanical

arrangement of the eyelid [4,7]. The tonic activity of the LP holds the upper eyelid against pas-

sive downward forces. The eyelid drops due to the inhibition of the LP and the activation of

the OO muscles. Then, it opens again when the OO muscle activity has turned off and the LP

has returned to its tonic activity.
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In the past four decades, there have been a huge number of longitudinal studies involving

the eye blink. Environmental conditions, age and gender variations in blink rate have been

reported [8–11]. In healthy subjects, blinking frequency decrease when subjects are conducting

tasks with high cognitive and visual demands [12,13]. Esteban [14] asserted the blink reflex

evaluation as an essential tool for the diagnosis and pathophysiological insight into an im-

portant number of human neurological disorders. The spontaneous eye blink is also consid-

ered a suitable ocular indicator for fatigue diagnostics [15,16] and drowsiness measurement

[17,18]. On the other hand, Shultz et al. [19] showed that measures of blink inhibition timing

can serve as precise markers of perceived stimulus salience and they are useful quantifiers of

atypical processing of social affective signals in toddlers. Another recent application is human

biometric for authentication purposes. Abo-Zahhad et al. [20] achieved a high recognition rate

(up to 97.3%) from blink waveforms of 25 subjects extracted from electro-oculograms (EOG)

signals.

Traditionally, the eye blink was assessed by procedures requiring the application of elec-

trodes to monitor the OO electromyographic activity and get the EOG signal [20–26], or the

use of direct magnetic search coil technique [27–30]. Nevertheless, contact-free recording pro-

cedures such as photo or video, that permit a quantitative assessment for eye movement during

blinking without interfering with the subject, have also been used [2,3,13,17,18,31–47].

The most evaluated blink properties are the rate and the duration because of their relation-

ship with mental stages as fatigue, lapses of attention and stress. The start and the end of the

blink are usually considered interdependent and they are determined through the definition of

pre-calibrated threshold variables. Indeed, an objective method to determine the end of a blink

has not been reported [30]. Other blink features like amplitudes and speeds are also assessed in

literature but, up to our knowledge, a thorough report that gathers and analyzes all the physical

magnitudes related to the kinematics and dynamics of the process has not been yet published.

An accurate evaluation of the blinking process through video recording needs of high-

speed videos. In normal speed videos (60 fps), the difference in the position of the eyelid

between two frames may be too large to track it precisely. Hence, Bernard et al. [31], with an

eye tracking system, and Corthout et al. [32], with a high-speed Kodak camera, video moni-

tored eye blinks with a temporal resolution of 2 ms.

Some years ago, some of the authors of this work presented a non-invasive technique aimed

to high speed measure some of the blinking dynamic features, with 2 ms of temporal resolution

too [33]. Lid displacement was monitored by studying the saturation of the frames in the

sequence that allowed a quantitative analysis of eyelid location at any instant. In a posterior

work [48], the authors proposed an analytical model of eye blinking including lid movement

and ocular retraction.

In this paper, we have refined the technique and the blink action is thoroughly described

from the analysis of different physical magnitudes directly related to the muscles action. In a

recorded sequence of a subject blinking, the eyelid position is directly related to changes in the

reflected light. From the variation of the position in time, its first and second derivatives, and

their product, we have obtained a set of features describing this physiological phenomenon. As

result, the obtained average values of some of the eye blink features agree with those reported

in the literature [6,44,45]. Others related to muscular dynamics (power, work and impulse) are

reported here for the first time.

Technological advances in last years have enabled the development of new biometric identi-

fication systems [20, 49, 50] based on human physical or physiological characteristics that can

be studied using digital image processing. Therefore, among the wide field of applications

where the analysis of the blink biomechanics could be of interest, we have evaluated the perfor-

mance of the extracted blink features to accurately authenticate subjects through biometrics.

Blinking characterization from high speed video records. Application to biometric authentication
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The paper is structured as follows. In the next section, we describe the subjects that partici-

pated in the experiment, the experimental setup and the method used to characterize the blink-

ing. We define different physical features related to the blinking kinematics and dynamics.

The third section deals with average results of the blinking of the subjects under study. There,

we also introduce an application of the procedure to biometric authentication using different

classification algorithms and sets of blinking data. The proposal is tested on a reduced number

of subjects in order to check its viability. Finally, in the discussion and conclusion section, we

discuss pros and contra of using the method to biometric authentication and present the main

conclusions.

Subjects and methods

Our method was tested on 26 subjects (13 females and 13 males of ages ranging from 21 to 62

years, 38±14). Students and staff from the department were recruited as participants without

compensation. No subject was discarded from the study. Video sequences were recorded

using a commercial camera (GOPRO HERO 3+) working at 240 frames per second. We

adhered to the tenets of the Declaration of Helsinki during this study. All participants were

informed about the nature and purpose of the study and all of them provided written informed

consent. Experiments were conducted in winter of 2016 with the approval of the "Comité de

Ética de la Universidad de Alicante. Nº Expediente UA-2016-04-11". Subjects rested their head

on a chinrest and the camera was placed in front of their faces at a distance of 30 cm. A halogen

lamp was used to illuminate the scene. Subjects were asked to blink naturally during each

sequence, which lasted 20 seconds. Seven sequences per subject were recorded.

An image processing algorithm based on the difference in light reflection between the eye-

lid and the open eye (the pupil, the iris and the sclera) [38] has been implemented. Visible

light, as well as infrared radiation, is considerably more absorbed by the pupil and the iris than

it is by the eyelid [43]. Some of the authors of this work showed that the variation in the inten-

sity mean value of the blinking image provides direct information about the eyelid position

[33]. Thus, by selecting the appropriate region of interest (ROI) around eye, one can observe

that the energy dispersed is a direct function of the closure status of the eye. This way Lee et al.

[39] obtained the cumulative difference of the number of black pixels of an eye region using an

adaptive threshold in successive images in order to determine the state of the eye (open or

closed).

In this work, first, a rectangular ROI around each eye was selected. This was done by hand

in the first frame of each sequence in order to make the algorithm computationally lighter,

while in the following frames, the selection is automatic. The energy contained in each region

was computed in all frames of all the sequences. The amount of light intensity reflected by the

eye is almost constant when the eyelid is open. When the eyelid closes, the reflected light

changes and so does the intensity that was registered by the camera. Therefore, blinks appear

as fast increases and decreases of light intensity recorded by the camera. This variation is

directly related to the variation of the eyelid position. Fig 1 shows an example of the variation

in time of the sum of the intensity of the pixels of one ROI in a registered sequence.

In order to locate and isolate each blink from the sequence, we used a noise tolerant peak-

finding algorithm. Peaks represent the instant when the eyelid is completely closed. Each peak

is used as reference to extract blinks by cropping the sequence from 0.25 s (60 frames) before

to 0.46 s (111 frames) after the peak maximum, which corresponds to the eyelid completely

closed. The blinks with higher frequency that overlap in this interval were discarded. Previous

works in literature measured a mean inter-blink interval of 5.97 s for normal versus 2.56 s for

dry eye subjects [11] and defined the blinking as eyelid closures with a duration of 50 to 500
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ms [18]. With the imposed limitations to the blink and inter-blink durations, we discarded

incomplete and/or double blinks and consider all the range of closure duration for normal

subjects.

Next, the curve of the intensity data (Ii) versus time (ti) of each isolated blink was fitted

using a smoothing spline s. The smoothing spline is the solution to the minimization problem

shown in (1):

min p
P

iðIi � sðtiÞÞ
2
þ ð1 � pÞ

R d2s
dt2

� �2

dt

( )

; ð1Þ

where p is the smoothing parameter set to 0.99996. The smoothed data are directly related to

the position of the lid. Therefore, the approximated derivatives of s(ti) computed following (2)

and (4) can be identified with the velocity, v(ti), and the acceleration of the lid, a(ti).

vðtiÞ ¼ ½sðtiþ1Þ � sðtiÞ�=T ; i ¼ 1; . . . ;N � 1; ð2Þ

v̂ðtiÞ ¼ vðtiÞ=maxðjvðtiÞjÞ; ð3Þ

aðtiÞ ¼ ½vðtiþ1Þ � vðtiÞ�=T ¼ ½sðtiþ2Þ � 2sðtiþ1Þ þ sðtiÞ�=T2; ð4Þ

âðtiÞ ¼ aðtiÞ=maxðjaðtiÞjÞ ð5Þ

v̂ðtiÞ and âðtiÞ respectively are the velocity and acceleration normalized to the maximum of

Fig 1. Reflected intensity vs. time. Variation in time of the sum of the intensity of the pixels computed for an example

sequence. The intensity remains almost constant in time. Peaks correspond to the eyelid closed.

https://doi.org/10.1371/journal.pone.0196125.g001
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their absolute value. T is the time interval between each one of the N samples of the data of

intensity. In our case, T = 1/240 s, i.e. the inverse of the frame rate of the camera.

In Fig 2, we represent the data corresponding to the first blink of the sequence presented in

Fig 1. The data of intensity (black crosses) are normalized to the unity. Black line represents

the smoothing spline s(ti) computed for the intensity following (1). The normalized velocity

and acceleration are represented by the green and red lines, respectively.

Up to this point, although we have defined a temporal window to isolate each eye blink

from the raw signal, the blink duration has still not been defined. As we stated at the Introduc-

tion section, the definition of the start and end of the phenomenon is approached in different

ways in literature, however no one leads to a categorical criterion [30]. The start of the eye

blink can be defined as the time when the velocity of the eyelid is zero before starting the dis-

placement. However, this moment is difficult to define from the above computed curves. In

Fig 2, one can see that both velocity and acceleration vary around zero before increasing their

value while the position of the eyelid seems not to change.

The product of the velocity and the acceleration results in the power per unit of mass (4a).

The power is the rate of doing work. It provides information about the work developed by a

force, the lid muscles force, per unit of time in the blinking process.

PðtiÞ=m ¼ vðtiÞaðtiÞ ¼ ½sðtiþ1Þ � sðtiÞ�½sðtiþ2Þ � 2sðtiþ1Þ þ sðtiþ2Þ�=T3; ð6Þ

P̂ðtiÞ ¼ PðtiÞ=maxðjPðtiÞjÞ: ð7Þ

Fig 3 shows the normalized power, P̂ðtiÞ, computed following (7) for the example blink.

When the eye is open (eyelid retracted), the sum of the activity of the muscles that take part in

the blinking process is null. Muscles do not develop power so the power curve before and after

the blink is zero. Therefore, the start and end of the blink can be defined just by determining

when the curve respectively is different to zero and turns back to be zero. The normalized

power can also be used to characterize other blink dynamic and kinematic features. Following

with Fig 3, once the blinking has started, i.e. after the first vertical black line, the curve inter-

sects the zero line three times during the blink process duration (black dashed vertical lines).

These moments are when the velocity or the acceleration of the eyelid are zero. Additionally,

the power curve shows two local maxima (blue dash lines) and minima (red dashed lines). The

timing of the physiological process is as follows: a few hundredths of a second after the blink

has started, the total power developed by the muscles is maximum at the time t1P in the closure

phase (1st blue-dashed line). Next, in t2P, the eyelid muscles stop working, the power turns

zero and the eyelid gets a maximum velocity of closure (1st black-dashed line). After that, the

eyelid starts braking and the power is developed with the opposite sign. There is a moment

Fig 2. Normalized data of intensity, smoothing spline, velocity and acceleration for a blink. Data correspond to the

first blink of the sequence of Fig 1. The data of intensity are the black crosses, the black line represents the smoothing

spline, the data of velocity and acceleration are plotted in green and red lines, respectively.

https://doi.org/10.1371/journal.pone.0196125.g002
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(t3P) when the curve reaches the minimum, which corresponds to the maximum power devel-

oped to brake the closure of the eyelid (1st red-dashed line). Then, the power decreases in

absolute value until it returns to zero (2nd black-dashed line). This moment (t4P) corresponds

to the eye closed, when the closure phase ends and the opening phase starts.

The shape of the curve in the opening phase is similar to that in the closure one. The total

power developed by the muscles reaches a local maximum at t5P (2nd blue-dashed line), which

happens when the eye is in the upward phase. Then, the power diminishes until it is zero at t6P

and the eyelid reaches a maximum velocity (3rd black-dashed line). After that, the sign of the

power changes when the eyelid opening is braking and the curve reaches a local minimum

(2nd red-dashed line) at t7P. At that moment, the eye still is not completely open. Finally, the

power decreases in absolute value until zero (t8P), when the eyelid is again retracted, the mus-

cles forces are compensated and the blink is finished (2nd black line).

The values of the normalized power at the above described instants can be of interest to

characterize the blinking. Therefore, we obtained the absolute values of the local maxima

jP̂ðt1PÞj and jP̂ðt5PÞj, and local minima, jP̂ðt3PÞj and jP̂ðt7PÞj. Moreover, zeros of the accelera-

tion are local maxima and minima of the velocity. However, the local maxima and minima of

the acceleration do not match to those from the power per unit of mass. For example, in Fig 4,

we represent the normalized velocity and acceleration computed for the above case with the

time features previously obtained. We have shifted the time scale so that the blinking starts at

time equal to zero. One can see that the zeros and the local maxima and minima of the velocity

(green line) have already been characterized whereas local maxima and minima of the acceler-

ation provide new time features.

Chronologically, t1a is the time after beginning the blinking when the eyelid is in the closure

phase and reaches a maximum in the acceleration. Next, after the maximum in the developed

power and reaching a maximum in velocity, the total force brakes the eyelid (a change in the

sign of the acceleration). This braking force reaches its maximum at t2a, before closing the eye.

Then, in the opening phase, the dynamics is similar. The sum of forces accelerates the lid until

Fig 3. Normalized power per unit of mass developed by the eyelid muscles for the example blink. Black, blue and red dashed lines represent feature times obtained

from zero-line intersections and local maxima and minima.

https://doi.org/10.1371/journal.pone.0196125.g003
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a maximum at t3a. Later, that force diminishes and probably reaches a local minimum, which

corresponds to the time when the eyelid’s braking acceleration in the upward phase is maxi-

mum, just before stopping the blinking. However, contrary to what happens in the power

curve, this braking phase does not appear clear in the acceleration graphs, so, that local mini-

mum of acceleration cannot be defined.

By proceeding with an analysis similar to that performed with the power, we obtained the

absolute local peaks-values of normalized acceleration and velocity: jâðt1aÞj, jâðt2aÞj, jâðt3aÞj,

jv̂ðt2PÞj and jv̂ðt6PÞj.

Other magnitudes that we used to analyze the dynamics of the blinking were the work and

the mechanical impulse developed by the eyelid muscles. The work done by those muscles is

defined as the integral of the power developed by them (P(t) = d W(t)/dt)). Therefore, the area

under the curve of the normalized power is related to the work developed by the muscles in a

given period of time. Following the Eq (8), four new features are defined: Wt2P
0 is related to the

work performed from 0 to t2P, Wt4P
t2P

, from t2P to t4P, Wt6P
t4P

, from t4P to t6P and Wt8P
t6P

, from t6P to

t8P (see Fig 5A).

Wtd
tc
¼ T �

Ptd
tc

P̂ðtiÞ: ð8Þ

Fig 4. Normalized velocity and acceleration computed for the example blink. Velocity and acceleration are plotted in green and red lines, respectively. Local

maxima and minima of the acceleration are used to define three new features (t1a, t2a and t3a).

https://doi.org/10.1371/journal.pone.0196125.g004
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Similarly, the area under the curve of the acceleration in a time interval is represented by J,

the mechanical impulse per unit of mass developed by the muscles in that period of time:

JðtÞ ¼
R td

tc
m � aðtÞdt; ð9Þ

�Jtd
tc
¼ Jtd

tc
=½m �maxðjaðtiÞjÞ� ¼ T �

Ptd
tc

âðtiÞ ð10Þ

We have computed a magnitude proportional to the mechanical impulse developed by the

eyelid muscles in different intervals following the Eq (10): �Jt2P
0 , from the start to t2P, �Jt6P

t2P , from

t2P to t6P, and �Jt8P
t6P , from t6P to the end (see Fig 5B).

Finally, from the analysis of the displacement curve s(ti), we have defined two more features

that characterize the blinking: the full width at half maximum (fwhm) of the curve of the eyelid

displacement in time, w, and the relation between the mean velocities in the closure and open-

ing phases (S), given by Eq (11). In Fig 6, we represent both features for the blink that we are

using as an example.

S ¼ tanðy1Þ=tanðy2Þ ¼ ½ðsðt4PÞ � sðt0ÞÞðt8P � t4PÞ�=½ðsðt4PÞ � sðt8PÞÞt4P� ð11Þ

Fig 5. Normalized power per unit of mass and normalized acceleration. a) Normalized power per unit of mass. Gray areas represent the work

developed by muscles between each zero-line intersection. b) Normalized acceleration. Gray areas represent the impulse of the eyelid at different

stages.

https://doi.org/10.1371/journal.pone.0196125.g005

Fig 6. Displacement of the eyelid. θ1 and θ2 describe the mean velocities in the downward and upward phases, and w stands for the fwhm of the

displacement.

https://doi.org/10.1371/journal.pone.0196125.g006
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Results

We applied the just explained analysis to the recorded video sequences and obtained 3251 eye

blinks, ranging from 74 to 191 blinks per subject. The difference in the number of blinks per

subject was due to losses in the processing of the signals (overlapping or incomplete blinks)

and different subjects’ blink rates. However, all subjects retained at least 74 trials, so 74 random

trials were selected from each participant to keep the size of each participant’s data set uniform

(http://hdl.handle.net/10045/74398). Thus, we reduced the number of blinks resulting in a set

of 1924 blinks (74 blinks for each of the 26 subjects). The above defined blink features were

computed and grouped for each blink in a vector M�!j;k ¼ fMj;kðf Þg, being j = 1,. . .,n subjects,

k = 1,. . .,b trials and f = 1,. . .,F features, following the order stated in Table 1. There, we also

Table 1. Features computed for the set of 1924 blinks.

f Mð f Þ σ(f) Feature Brief descriptiona

1 0.065 0.012 t1P Time (s) Local max. pow.

2 0.088 0.013 t2P Zero pow. crossing

3 0.113 0.015 t3P Local min. pow.

4 0.148 0.019 t4P Closed

5 0.169 0.028 t5P Local max. pow.

6 0.205 0.032 t6P Zero pow. crossing

7 0.237 0.037 t7P Local min. pow.

8 0.392 0.088 t8P End (Zero pow.)

9 0.765 0.102 jP̂ ðt1PÞj Normalized absolute power

10 0.997 0.019 jP̂ ðt3PÞj

11 0.415 0.180 jP̂ ðt5PÞj

12 0.303 0.169 jP̂ ðt7PÞj

13 7.407 1.124 Wt2P
0

Work

(a.u.)

From 0 to t2P

14 8.530 1.140 Wt4P
t2P

From t2P to t4P

15 3.528 1.462 Wt6P
t4P

From t4P to t6P

16 4.009 1.684 Wt8P
t6P

From t6P to t8P

17 0.055 0.012 t1a Time (s) Max. acc.

18 0.131 0.017 t2a Min. acc.

19 0.242 0.036 t3a Max. acc.

20 0.703 0.141 jâ ðt1aÞj Normalized absolute acc.

21 0.997 0.021 jâ ðt2aÞj

22 0.327 0.122 jâ ðt3aÞj

23 14.040 1.254 �J t2P
0

Impulse

(a.u.)

From 0 to t2P

24 23.981 2.669 �J t6P
t2P

From t2P to t6P

25 9.590 2.287 �J t8P
t6P

From t6P to t8P

26 0.997 0.008 jv̂ ðt2PÞj Normalized absolute velocity

27 0.694 0.146 jv̂ ðt6PÞj

28 0.142 0.031 w Time (s) fwhm of displacement

29 1.778 0.528 S Ratio between average velocities

Shaded cells correspond to the closing phase and no shaded cells to the opening one. 24th, 28th and 29th features comprise both phases and are shaded with a lighter

gray.
aacc. = acceleration, max. = maximum; min. = minimum; pow. = power

https://doi.org/10.1371/journal.pone.0196125.t001
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present the resulting mean (12) and standard deviation (13) of all the features of the set of

blinks under study.

Mð f Þ ¼ ð1=BÞ
Pn

j¼1

Pb
k¼1

Mj;kð f Þ; B ¼ n � b; ð12Þ

sð f Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1=ðB � 1Þ�
Pn

j¼1

Pb
k¼1
jMj;kðf Þ � Mð f Þj2

q

; ð13Þ

From Table 1, we can see that the closure is faster than the opening. The eyelid is closed at

around 0.15 s and expends around 0.25 s in the opening phase. Thus, the closure is almost

twice as fast as the opening phase. This agrees with the work of Schelini et al. [44]. To blink,

the nervous system turns off the tonically active LP and the OO muscle rapidly lowers the

upper eyelid. To raise the eyelid again, the OO activity ceases and the LP activity, which con-

sists of raising and holding the eyelid up, resumes [3,7]. Regarding the absolute value of the

developed powers, those of the closure phase are larger than those of the opening phase. The

same happens with the absolute values of the acceleration. That reveals differences in the

mechanics of both processes. Those differences can be thoroughly evaluated from the analysis

of the work features. In the closure phase, the muscles develop more work than in the opening

one.

The analysis of the maximum eyelid velocities both for closure and opening phase revealed

that it was always faster in the closure than in the opening phase, in agreement with previous

works [6,45]. Furthermore, Niida et al. [45] reported that, in the closure, the lid velocity shows

two-phase distributions: an initial flat phase with small displacement and a second phase with

a steep large displacement for the spontaneous blink. This fact is easily visible in the example

in Fig 7. From the start to t1a (the moment of maximum acceleration), along 5 ms, the dis-

placement is small. Then, during the next 3 ms approximately and until the maximum closing

velocity is reached at t2P, there is a large displacement (around half of the total distance to

cover by the eyelid).

Fig 7. Eyelid displacement (black), normalized velocity (green) and acceleration (red) for the example blink.

https://doi.org/10.1371/journal.pone.0196125.g007
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Eye blinking waveform can be used as biometric identifier, so features extracted from it

does [20]. Thus, we propose using the obtained blinking features to biometric authentication.

In order to test this possibility, we have first evaluated the discriminative ability of the extracted

features. The coefficient of variation (CV), defined as standard deviation to the mean, permits

assessing the inter and intra subject variability. A feature with a low intersubject CV means

poor variability and therefore worthless discriminative skills. In Fig 8A), we have represented

the CV of all the features computed for the 74 blinks of each subjects (blue to yellow bars) and

for all the set of blinks (black bars). The graph manifests that the coefficient variation of the

10th, 21st and 26th features are always minimum (inter and intra subjects) and near zero. They

respectively correspond to jP̂ðt3PÞj, jâðt2aÞj and jv̂ðt2PÞj, i.e. the maximum absolute value of the

power and acceleration braking the eyelid at the closure phase and the maximum velocity of the

Fig 8. Coefficient of variation and boxplots of all the features. a) Coefficient of variation of all features for the blinks of each subject (color bars) and all the blinks

(black bars). b) Boxplots of the features computed following Eq (9).

https://doi.org/10.1371/journal.pone.0196125.g008
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eyelid also at the closure phase. Their mean values in Table 1 are all close to 1, the maximum

possible. They are maxima in around the 96% of all the measurements.

Another way to visualize the discriminative skills of the features is through boxplots. In Fig

8B), we represented the boxplots computed for all features following the Eq (14):

M0
j;kð f Þ ¼ ðMj;kð f Þ � Mð f ÞÞ=Mð f Þ ð14Þ

Thus, Mð f Þ values correspond to the zero line. Boxes are plotted in blue, the bottom and

top of the box are always the first and third quartiles, and the red band inside the box is the sec-

ond quartile (the median). The spacing between the different parts of the boxes indicate the

degree of dispersion (spread) and skewness in the data. The narrower is the boxplot, the less

scattered are the data. One can see that, for the 10th, 21st and 26th features, the upper and

lower quartiles coincide with the mode and the average and there are no whiskers. Therefore,

we discarded those features and did not use then in biometric classification.

Different classifiers like Linear and Quadratic Discriminant Analysis (LDA and QDA)

[51,52], K-Nearest Neighbor (KNN) [53], Classification Tree (CT) [54] have been tested for

the proposed system. A classifier assigns a new observation to a class from the training set. In

our case, given a vector of features of a blink, any of the above classifier assigns that vector to a

subject from the 26 subjects under study. The assignation can be the correct or not, so the per-

formance of each classifier was evaluated through the correct identification rate (CIR), that is

the correctly classified samples divided by the classified samples. The validation was performed

through non-exhaustive cross-validation, concretely 10-fold cross-validation. Each set of data

was proportionally partitioned into 10 disjoint subsets or folds. 9 folds were used for training

and the last fold was used for evaluation. The process was repeated 10 times, leaving one differ-

ent fold for evaluation each time.

We evaluated through 10-fold cross-validation the performance of the proposed features

and the above classifiers over five sets of data: the original set with 1924 blinks (74 blinks for

each of the 26 subjects) and four additional sets that were synthetically generated by using a

bootstrapping procedure in a similar way to Armstrong et al. [21]. It consisted in generating

100 blinks for each participant. Each blink was constructed with the arithmetic mean of β ran-

dom blinks of that participant’s 74 trials selected each time, being β = 3, 5, 10 and 25 for each

set (named β-mean). This way, we constructed 100 unique vectors of β elements that range

from 1 to 74. Each vector determined the β blinks from a subject used to compute each average

blink. After this kind of resampling, 100 different blink features vectors were available from

each participant, forming a set with a total of 2600 blink vectors for each β -mean set.

The different classifiers and sets can be compared through the computed CIR in Table 2.

One can see that LDA provides better results than any other classifier with any set of data. We

Table 2. Correct identification rateA.

Set 10-fold cross-validation leave-one-out

CT QDA KNN LDA LDA

Original 31.6 34.2 36.7 41.7 41.5

3-mean 57.9 56.7 64.7 75.7 76.5

5-mean 69.7 71.5 77.2 86.7 88.0

10-mean 84.3 85.4 91.1 96.0 96.5

25-mean 94.9 96.7 99.5 99.7 99.7

APercentage obtained for all the classifiers and all the sets

https://doi.org/10.1371/journal.pone.0196125.t002
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have validated this classifier using leave-one-out cross-validation, thus using one observation

as the validation set and the remaining observations as the training set testing on all possible

ways. Leave-one-out results agree with those obtained with 10-fold cross-validation so this

non-exhaustive cross-validation method provide accurate results.

The proposed method provided similar or better results than previous works. Thus, in the

work of Abo-Zahhad et al. [20], with a training set composed by 50 blinks per subject from 25

subjects and taking as test averages of 25 blinks, the authors achieved a correct identification

rate of around 97% in the best of the cases. Here, if we take averages of 25 blinks to construct

the training set and bootstrap to get 100 blinks per subject, we reach a CIR for the LDA of

99.7%. For the 10-mean set and LDA classifier, the resulting CIR is a bit lower (96.5%) but tak-

ing the averages of only 10 blinks.

In an attempt to determine the discriminative skills of all features when they are used to

biometric authentication, we have recursively tested the LDA algorithm. Starting from an

empty feature set, candidate feature subsets were created by adding in each of the features that

had not been yet selected. For each candidate feature subset, 10-fold cross-validation was per-

formed by repeatedly calling the LDA algorithm with different training and test subsets. Each

time the LDA was called, the number of misclassified observations was computed, i.e. the loss.

Then, the candidate feature subset that minimized the loss was chosen. The process continued

until adding more features did not decrease the loss.

We recursively computed the features subsets selected for the trials subsets used above

(original, 3-mean, 5-mean, 10-mean and 25-mean) 60 times. Thus, we got 300 vectors of

selected features. In Fig 9, we represent the selection rate of the features. One can observe that

almost all features are selected around half times at least, and only 3 of them (f = 5, 6 and 7) are

selected around the 30% or less of times so they could be discarded as differentiating features.

Contrary, some features are almost always selected. That mean that are good discriminant fea-

tures. We could set a rate of selection threshold to define the best ones and use them in a new

identification biometric system based on the combination of them with others from face rec-

ognition, fingerprint, iris, etc.

Fig 9. Rate of selection obtained for each feature. Percentage of selection of each blink feature obtained after recursively computing 60 times the feature subset that

minimized the number of misclassified observations.

https://doi.org/10.1371/journal.pone.0196125.g009
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Discussion and conclusions

We have applied different discriminant classifiers using different sets of vectors of blink fea-

tures as an example of application of the presented method. Linear Discriminant Analysis pro-

vided the best correct identification rates for all the analyzed sets. We have constructed four

different sets of blink vectors by computing new vectors from averages of vectors computed

form real measurements. Resulting CIR improves with the number of samples used to com-

pute the mean due to the fact that the intra-subject average vector eliminates noise but remains

the discriminant ability of the features. Nevertheless, the 25-mean case may not be suitable for

some practical application due to the fact that the identification process first would require

obtaining at least 25 blinks from the subject. Taking into account the normal spontaneous

interblink duration [55], that would imply recording blinking during more than 2 minutes.

On the other hand, the system should be designed to authenticate using voluntary blinks.

Then the recording time would drastically decrease. Anyway, the 10-mean case provided good

results and the recording time is reduced to around 35 seconds.

Eye blinking is a physiological act related to intrinsic physical characteristics of the human

body, so cannot be easily forged. This fact represents an advantage in its use to biometric

authentication compared to others with lower security [20]. Moreover, our method is compu-

tationally less complex than authentication systems based on image processing of fingerprint,

face or iris that deal with great number of data. Another advantage is that the authentication

can be performed remotely and unconsciously for the subject. For instance, it can be used to

identify or double-check a person in front of an ATM or a cell phone, or to prevent access of

restricted contents in TV or computers. The use of blinking features to biometric authentica-

tion also may seem to present some drawbacks. On the one hand, it is well-known that fatigue

is associated with increased blink frequency. Moreover, average individual rates of blinking

increase with age [9,10] and those rates are correlated with dopamine levels in human and

nonhuman primates [56]. Note that, in all cases, the blink feature that varies is the frequency

or the blink duration in case of assessing fatigue. All the features presented in this work are

obtained from one single blink, so the rate variation is not a problem. Of course, the variation

of the blink latency will affect the performance of the biometric authentication and further

analysis on this question should be done but it is out of our scope. On the other hand, the

video sequences in this work are recorded in laboratory conditions, with approximately con-

stant illumination and distance of capture. In real application, those conditions will probably

vary and affect the performance of the method getting worse results. Fortunately, some solu-

tion could be applied to the registered signal in order to reduce the noise introduced by those

changes. For example, in each frame, we could subtract the background light to the registered

signal. It contains all variations due to changes in light or distance of capture. Background

light could be estimated as the energy of a background region. Another possible solution

would be employing Independent Component Analysis to the eye blink signal [57]. The valida-

tion of all these hypothesis, together with the evaluation of the authentication performance of

the blink features combined with other biometric characteristics (finger-print, iris, face, . . .),

remains as future work.

In this work, we have proposed obtaining distinctive subject features from a video sequence

of the blinking taken with a widely available high-speed sports camera. We based our analysis

on the fact that the change of the light reflected by the eyelid when it moves appears as changes

in the registered intensity. The features extracted from the data describe the biomechanics of

the blinking process and provide information about time, speed, acceleration, mechanical

impulse, work and power developed by the muscles participant in the process. Up to our

knowledge, kinematic parameters (position, speed, acceleration and the instants of time
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derived from them) are commonly used in the literature. However, the parameters related

with the work, the impulse and the power developed by the muscles, and the times derived

from them, are originally proposed in this work. Note that these include a categorical criterion

to define the start and the end of the blink. Furthermore, results have shown that the power

and the acceleration are maxima in absolute value when braking the eyelid at the closure phase

and the maximum eyelid velocity is reached also at the closure phase. The method can be

applied to deepen in the research of the blinking process and its relationship with fatigue,

drowsiness, neurological diagnosis, etc. We have used the blinking features to biometric iden-

tification reaching a correct identification rate up to 99.7%.
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