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Drought is a major abiotic factor limiting plant growth and crop production. There is limited information
on effect of interaction between biochar and Arbuscular mycorrhizal fungi (AMF) on okra growth, root
morphological traits and soil enzyme activities under drought stress. We studied the influence of biochar
and AMF on the growth of Okra (Abelmoschus esculentus) in pot experiments in a net house under drought
condition. The results showed that the biochar treatment significantly increased plant growth (the plant
height by 14.2%, root dry weight by 30.0%) and root morphological traits (projected area by 22.3% and
root diameter by 22.7%) under drought stress. In drought stress, biochar treatment significantly enhanced
the chlorophyll ‘a’ content by 32.7%, the AMF spore number by 22.8% and the microbial biomass as com-
pared to the control. Plant growth parameters such as plant height, shoot and root dry weights signifi-
cantly increased by AMF alone, by 16.6%, 21.0% and 40.0% respectively under drought condition. Other
plant biometrics viz: the total root length, the root volume, the projected area and root diameter
improved significantly with the application of AMF alone by 38.3%, 60.0%,16.8% and 15.9% respectively
as compared with control. Compared to the control, AMF treatment alone significantly enhanced the total
chlorophyll content by 36.6%, the AMF spore number by 39.0% and the microbial biomass by 29.0% under
drought condition. However, the highest values of plant growth parameters (plant height, shoot dry
weight, root dry weight) and root morphological traits (the total root length, root volume, projected area,
root surface area) were observed in the combined treatment of biochar and AMF treatment viz: 31.9%,
34.2%, 60.0% and 68.6%, 66.6%, 45.5%, 41.8%, respectively compared to the control under drought stress.
The nitrogen content, total chlorophyll content and microbial biomass increased over un-inoculated con-
trol. The soil enzymes; alkaline phosphatase, dehydrogenase and fluorescein diacetate enzyme activities
significantly increased in the combined treatment by 55.8%, 68.7% and 69.5%, respectively as compared to
the control under drought stress. We conclude that biochar and AMF together is potentially beneficial for
cultivation of okra in drought stress conditions.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Drought stress is a major environmental stress, causing reduc-
tion of biological function in many crops (Pereira et al., 2006;
Golldack et al., 2014; Hussain et al., 2018; Shehzad et al. 2021).
Drought stress negatively impacts seed germination (Kaya et al.,
2006; Farooq et al., 2009). Under drought condition the germina-
tion rate was reduced in chickpea (Awari and Mate 2015). Several
studies have observed the negative effects of drought stress on
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plant growth of maize (Anjum et al., 2017; Dar et al, 2021), chick-
pea (Samarahet al., 2009; Pushpavalli et al., 2015), rice (Hussain
et al., 2016; Wang et al., 2016), tomato (Starck et al., 2000) and soy-
bean (Kobraee et al., 2011; Li et al., 2013; Maleki et al.,2013;
Sheteiwy et al., 2021). Maes et al. (2009) reported that Jatropha
curcas under different water regimes identified anatomical and
morphological changes with an increase in adaxial stomatal ratio
in response to drought. Drought negatively affects yield in different
crops such as okra (Mueller et al., 2019; Chaturvedi et al. 2019;
Ranawake et al., 2012; Haider et al. 2021), faba bean (Li et al.,
2018) and chickpea (Pushpavalli et al., 2015). The impact of
drought stress was studied on plant growth and yield of okra plant
by Abdulrahman and Nadir (2018).

Physiological and biochemical functions of plants such as turgor
(Chowdhury et al. 2016), mesophyll conductance (Zhou et al.,
2013; Zhou et al., 2014), photosynthesis ( Christophe et al., 2011;
Mak et al., 2014; Osakabe et al., 2014; Lyu et al., 2016; Asha
et al., 2021), transpiration rate (Asha et al., 2021), and relative
water content (Saccardy et al., 1998; Sanchez-Blanco et al.,
2006), reduced under drought stress. Soltys-Kalina et al. (2016)
showed that the 3-week drought treatment decreased the leaf
water content of potato cultivars. Drought stress significantly
reduced chlorophyll a, b and total pigments in wheat and pumpkin
(Al.-Ayed 1998; Sawhney and Singh 2002). Farooq et al. (2009)
reported drought stress reduced leaf water potential and turgor
pressure, stomatal closure, and decreased cell growth. Water stress
reduced the amounts of starch and total sugar (Sawhney and Singh
2002). Begum et al. (2019) indicated that drought stress decreased
plant height, chlorophyll and carotenoid content in Maize (Zea
mays). Chaturvedi et al. (2019) observed that the significant reduc-
tion in relative water content and membrane stability index along
with reduced leaf photosynthetic rate explains the possible mem-
brane damage in okra affecting photosynthetic efficiency in
drought condition. Several studies have reported that drought
stress decreases the protein concentration of plants (Schwanz
et al., 1996; Heckathorn et al., 1997).

Studies have shown that drought stress reduced uptake of plant
nutrients (Razi and Sen, 1996; Christophe et al., 2011; Sardans and
Peñuelas 2012; Rouphael et al., 2012; Heckathorn et al., 2014). soil
nutrients (Cramer et al., 2009; Waraich et al., 2011; Fierer and
Schimel, 2002) and soil enzyme activities (Sanaullah et al., 2011).
Bista et al (2018) indicated that drought reduced N and P content,
indicating that it reduced nutrient acquisition. Drought stress
decreases the concentration of nitrogen and phosphorus in plant
tissue. Ge et al. (2012) demonstrated that drought stress induced
sharp decreases in total K and P uptake of maize organs. Sardans
and Peñuelas (2005) reported that water stress decreased urease,
protease activity, phosphatase activity and b-glycosidase activity
in soil. Geng et al. (2015) reported that drought strongly affect soil
respiration, soil microbial activity and fungal properties.

Biochar is a carbon-enriched biomaterial prepared through a
process called pyrolysis (McGlashan et al. 2012). Lehmann et al.
(2006) studied biochar benefits on reducing emissions and seques-
tering of greenhouse gases, impacting soil quality. Many have
reported application of biochar, enhancing soil fertility, carbon
sequestration and bio-energy production (Fiaz et al., 2014; Ok
et al., 2015; Rizwan et al., 2016; Jabborova et al., 2020a). Biochar
application to soils increased crop production due to the improve-
ment of soil physicochemical and biological properties (Ahmad
et al. 2014). Biochar enhanced soil structure, water holding capac-
ity and surface area under drought condition (Andrenelli et al.
2016; Bamminger et al. 2016; Lim et al. 2016; (Yaseen, 2021)). Bio-
char positive effect on the plant growth (Kammann et al. 2011;
Artiola et al. 2012; Mulcahy et al. 2013), yield (Akhtar et al.
2014) plant nutrients (Usman et al., 2016) and plant physiological
properties (Haider et al. 2015; Lyu et al. 2016; Xiao et al. 2016)
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were studied in different plants under drought stress. Several stud-
ies have reported that biochar application increased plant biomass
and nutrient uptake under water stress (Kammann et al. 2011;
Akhtar et al. 2014; Haider et al. 2015; Kubar et al., 2021). The bio-
char application increased leaf quality rate and growth of tomato
over the control (Githinji 2014; Vaccari et al. 2015). Addition of
biochar significantly enhanced the photosynthetic rate, chlorophyll
contents, stomatal conductance, relative water contents and water
use efficiency in tomato leaves under drought stress (Akhtar et al.,
2014). Batool et al. (2015) demonstrated that biochar increased the
water use efficiency and photosynthesis of okra in drought stress
condition.

Arbuscular mycorrhizal fungi (AMF) are important groups of
soil microbes in symbiotic relationship with plant roots
(Brundrett and Tedersoo, 2018). AMF are major component of rhi-
zosphere microflora in natural ecosystems and play a significant
role in ecosystems through nutrient cycling (Heflish et al., 2021) .
AMF helps to improve higher branching of plant root system, plant
growth and productivity of several field crops (Cavagnaro et al.,
2006; Nunes et al., 2010; Alizadeh et al., 2011; Abd El-Aal et al.,
2021). Abdel Latef (2011) reported that the plants inoculated with
AMF increased plant photosynthesis, plant enzyme activities such
as superoxide dismutase, catalase, peroxidase and ascorbate per-
oxidase. Several studies have reported that AMF improve the
growth, plant nutrient and water uptake of host plants under
drought stress (Gholamhoseini et al., 2013; Baum et al., 2015;
Zhao et al., 2015a, 2015b; Bowles et al., 2018). Augé (2001)
reported that AMF enhance plant performance, change the plant–
water relationship, and improve plant productivity in drought con-
dition. The AMF increased water use efficiency and stomatal con-
ductance (Birhane et al., 2012; Ruiz-Lozano and Aroca, 2010).
Augé et al. (2015) demonstrated that AMF improved water use effi-
ciency and stomatal conductance in drought stress. Subramanian
and Charest (1999) reported that the AMF enhanced the nitrogen
availability of host plant in drought stress. Pedranzani et al.
(2016) observed that AMF improved plant physiological properties
such as antioxidant enzyme activity and jasmonate synthesis of
Digitaria eriantha under drought stress. Biochar amendment and
AMF inoculation improved plant growth, plant nutrition, photo-
synthetic rate and stomatal morphology under drought stress
(Hashem et al., 2019).

Medicinal plants have been used in most parts of the world and
has become of increasing interest in recent times for the use of var-
ious plants as sources of molecules having medicinal properties
(Egamberdieva and Jabborova, 2018; Jabborova et al., 2019;
Jabborova et al. 2020b; Mamarasulov et al. 2020;Jabborova et al.,
2021a; Jabborova et al., 2021b; Jabborova et al., 2021c). Okra (Abel-
moschus esculentus L.) is a vegetable and herbal crop; possess
nutraceutical and therapeutic properties, owing to the presence
of various important bioactive compounds and their associated
bioactivities (Elkhalifa et al., 2021). A little is known about the
combined effect of biochar and AMF on plant growth and physio-
logical properties in drought stresses. The present study was con-
ducted to evaluate the prospective effect of biochar and AMF
application on okra plant growth, root morphological traits, phys-
iological properties, microbial biomass, the number of AMF spores
and soil enzymatic activities under drought condition.
2. Materials and methods

2.1. Soil, biochar, AMF and seed

Field soil collected from Indian Agricultural Research Institute
was used for the experiment. The biochar used in the study was
produced at 400–500 �C from woody biomass (Amazon online



Table 1
Effect of drought stress on plant height, shoot dry weight and root dry weight in okra.

Treatments Plant height
(cm)

Shoot dry weight
(g)

Root dry weight
(g)

Control 21.00 ± 0.80 0.76 ± 0.01 0.10 ± 0.01
Biochar 24.00 ± 0.85* 0.85 ± 0.01 0.13 ± 0.01*
AMF 24.50 ± 0.50* 0.92 ± 0.01* 0.14 ± 0.01*
Biochar + AMF 27.76 ± 0.15* 1.02 ± 0.01* 0.16 ± 0.01*

Data are means of three replicates (n = 3), * asterisk differed significantly at
P < 0.05*
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shop, New Delhi, India), with a particle size of less than 2 mm.
Variety Pusa A-4 seed was procured from Division of Vegetable
Science, and AMF from the Division of Microbiology, IARI, New
Delhi, India respectively.

2.2. Experimental design

The impact of biochar and AFM on the growth of Okra (Abel-
moschus esculentus) was studied in pot experiments in a net house
at Division of Microbiology, IARI, New Delhi, India. All the experi-
ments were carried out in a randomized block design with three
replications. Experimental treatments included: T1 control (soil
without biochar), T2 biochar alone, T3 AFM alone and T4 combined
biochar + AMF. Seed was cultivated into plastic pots (20 cm diam-
eter, 20 cm depth) containing 5.0 kg of soil. During the 40 days of
plant growth, drought conditions (50% of the field capacity) were
maintained. After forty days plants were harvest and plant height,
shoot and dry root weights were measured.

2.3. Measurement of root morphological traits of okra

The roots of okra were washed carefully with water. The whole
root system was spread out and analyzed using a scanning system
(Expression 4990, Epson, CA) with a blue board as a background.
Digital images of the root system were analyzed using Win RHIZO
software (Régent Instruments, Québec, Canada). The total root
length, the root surface area, the root volume, the projected area
and the root diameter were evaluated.

2.4. Organic elemental analysis

C and N were determined by Elemental Analyzer (CHNS)
Eurovictor. For this purpose, 0.5 mg of each sample was placed in
tin capsules and completely oxidized, at 950℃, to their elemental
gases. The resultant combustion products were mechanically
homogenized in a gas control zone and separated in a gas chro-
matographic column. Finally, eluted gases were conveyed to a
thermal conductivity detector and amounts of N and C obtained.

2.5. Physiological parameter measurement

SPAD values were analyzed using the leaves from the okra
plants using a SPAD-502 m (Konica-Minolta, Japan). SPAD mea-
surements were made as estimates of chlorophyll content.

2.6. Analysis of AMF spores from soil

The AMF spores were extracted from 10 g soil samples using
wet sieving and decanting method. Soil sample was put over a ser-
ies of soil sieves arranged in descending order of sieve sizes. The
clean spores were mesh sieved and washed several times with dis-
tilled water before being transferred into water in a clean Petri-
dish. The AMF spores were counted under a stereomicroscope
(Dare et al. 2013).

2.7. Analysis of soil microbial biomass determination

The method to measure biomass C was as given by Vance et al.
(1987). Three of six 17.5 g replicates of each soil sample were fumi-
gated with purified CHCl3, for 24 h. After removal of the CHCl3, the
C was extracted from fumigated and unfumigated samples with
0.5 M K2SO4, for 1 h on an end-over-end shaker. The fumigated
and unfumigated samples were filtered sequentially through filter
paper (Whatman). The obtained supernatant liquid was measured
at 280 nm.
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2.8. Analysis of soil enzymes

The alkaline phosphatase activity was assayed by the method
given by Tabatabai and Bremner (1969). For each soil, two sets of
1 g soil were placed in conical flasks. One set was used as the con-
trol. Then 0.2 mL toluene and 4 mL of MUB (modified universal
buffer) (pH 11) were added and 1 mL of p-nitrophenyl phosphate
solution was added to the other set of samples. These were incu-
bated at 37 OC for 1 hr. Calcium chloride (1 mL of 0.5 M) and
4 mL of 0.5 M NaOH were added after incubation. Flasks were
swirled for a few seconds and 1 mL of p-nitrophenyl phosphate
solution was added to the remaining set of samples. All suspen-
sions were filtered through Whatman No. 1 filter paper quickly
and the yellow colour intensity was measured at 440 nm
wavelength.

The fluorescein diacetate hydrolytic activity was determined
following the method of Green et al. (2006). 0.5 mg soil was incu-
bated with 25 mL of sodium phosphate (0.06 M; pH 7.6). 0.25 mL of
4.9 mM FDA substrate solution was added to all assay vials. All
vials were mixed and incubated in a water bath at 37 �C for 2 h.
Then soil suspension was centrifuged at 8000 rpm for 5 min. The
clear supernatant was measured at 490 nm against a reagent blank
solution in a spectrophotometer.

Dehydrogenase activity was determined using the method
described by Casida et al. (1964). Fresh homogenized soil samples
(5 g) were placed in test tubes with 5 mL substrate (3% v/w TTC).
The tubes were incubated at 25 �C for 24 h. A blank sample was
similarly prepared with 1 mL of a 3% TTC solution. After incubation,
the samples were centrifuged at 4500 rpm for 10 min. The super-
natant liquid was discarded. The TPF formed was extracted with
methanol. 5 mL of methanol was added to each of the tubes and
vigorously shaken for a few minutes. The operation was repeated
twice (10 mL of methanol was used for extraction). Again the tubes
were centrifuged. The obtained supernatant liquid was poured into
a clean tube, and the absorbance of the solution was measured at
485 nm.

2.9. Statistical analyses

Experimental data were analyzed with the StatView Software
using ANOVA. The significance of the effect of treatment was deter-
mined by the magnitude of the F value (P < 0.05 < 0.001).

3. Results

The result presented in Table 1 indicated the biochar treatment
significantly increased the plant height by 14.2% and root dry
weight by 30.0% as compared to control under drought stress.
The okra plant height, shoot dry weight and root dry weight signif-
icantly enhanced under the treatment involving the AMF alone
(Table 1). AMF treatment significantly increased the plant height
by 16.6%, shoot dry weight by 21.0% and root dry weight by
40.0% compared to the control. In drought condition, when the
combination of biochar and AMF treatment were applied, the plant



Table 2
Effect of drought stress on root morphological traits in okra.

Treatments Total root length (cm) Projected area (cm2) Root surface area (cm2) Root volume (cm3) Root diameter (mm)

Control 69.58 ± 4.13 12.99 ± 0.76 5.38 ± 0.57 0.15 ± 0.01 0.44 ± 0.01
Biochar 102.39 ± 1.80* 15.78 ± 0.90* 6.11 ± 0.60 0.21 ± 0.01** 0.54 ± 0.01*
AMF 96.12 ± 4.11* 15.07 ± 0.36 5.94 ± 0.09 0.24 ± 0.01* 0.51 ± 0.01*
Biochar + AMF 117.28 ± 5.49** 18.78 ± 2.13** 7.52 ± 1.17** 0.25 ± 0.01** 0.56 ± 0.02**

Data are means of three replicates (n = 3), * asterisk differed significantly at P < 0.05*, P < 0.01**
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height improved by 31.9%, shoot dry weight by 34.2% and root dry
weight by 60.0% compared to the control respectively.

In Table 2, mean data regarding the root morphological traits as
affected by the biochar and AMF application in drought condition
is presented. The root morphological traits indicated that root
parameters significantly increased the total root length, the root
surface area, the projected area, the root diameter and the root vol-
ume by biochar alone, AMF alone and combined with biochar with
AMF treatment under drought stress. Compared to the control, bio-
char alone treatment significantly enhanced the projected area by
22.3% and the root diameter by 22.7% under drought stress. The
total root length and root volume sharply increased by biochar
alone, which significantly increased by 47.3% and 40.0% respec-
tively than the control. The projected area and root diameter was
improved with the application of AMF by 16.8% and 15.9% as com-
pared with control, respectively. Under drought stress, the AMF
alone significantly enhanced the total root length by 38.1% and
the root volume by 60.0%. The highest values of total root length
(68.6%) and root volume (66.6%) were observed in the treatment
of biochar and AMF combination as compared to control and indi-
viduals under drought stress. Similarly, significant increase in the
projected area (45.5%), root surface area (41.8%), and root diameter
(27.2%) were also observed.

As shown in Fig. 1, the biochar alone and AMF alone treatments
marginally increased the nitrogen content in okra leaf under
drought condition. The AMF alone application increased the nitro-
gen content by 9.0% compared to the control in drought stress. The
nitrogen content was highest in the combined treatment of biochar
and AMF. Under drought stress, combination of biochar and AMF
treatment significantly enhanced the nitrogen content by 49.5%
over the control.

Results showed that combination of biochar and AMF resulted
in the highest carbon content compared to all treatment (Fig. 2).
Under drought condition, biochar alone and AMF alone treatments
gradually increased the carbon content as compared to control.
Compared to the control, combination of biochar and AMF treat-
ment significantly increased the carbon content by 10.4% under
drought stress.
Fig. 1. Effect of drought stress on the nitrogen content of leaf in okra. Data are
means of three replicates (n = 3), * asterisk differed significantly at P < 0.05*.
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Data in Fig. 3 indicated that under drought stress, biochar alone
and AMF treatments significantly increased total chlorophyll a
content compared to the control. In drought stress, biochar treat-
ment significantly enhanced the chlorophyll a content by 32.7%
than the control and AMF alone significantly enhanced total
chlorophyll content by 36.6% in drought condition. The highest val-
ues of total chlorophyll content was observed in the combined
treatment of biochar and AMF recording a significant increase of
39.9% compared to the control under drought stress.

AMF spore number (per g of soil) increased in the treatment of
biochar alone (Fig. 4). Biochar alone treatment significantly
increased the AMF spores number by 22.8%. Under drought stress,
AMF alone and combined with biochar and AMF treatments were
more effective in increasing the AMF spores number in soil
(Fig. 4). Compared to the control, the AMF spores in soil increased
by 39.0% in AMF alone treatment. However, in the treatment where
biochar and AMF were combined it significantly enhanced the AMF
spores number by 51.5% compared to the control under water
stress.

In water stress condition, biochar alone and AMF had significant
impacts on the microbial biomass in soil increased most under
18.5% and 29.0% as compared the control (Fig. 5). Under drought
stress, the microbial biomass reached a maximum in biochar and
AMF combined treatment compared with all treatments. This
treatment significantly increased the microbial biomass by 39.3%
in soil than the control under drought stress.

The effect of biochar alone, the AMF alone and combined with
biochar and AMF treatments on soil enzymes activities are given
in Table 3. Compared to the control, biochar alone significantly
influenced the alkaline phosphatase, the dehydrogenase and fluo-
rescein diacetate enzyme activities in soil under drought condition.
The dehydrogenase and fluorescein diacetate activities increased
by 36.4% and 42.7% respectively when soil was amended by bio-
char alone as compared to the control in drought stress. Similarly,
the alkaline phosphatase activity of the biochar alone and the AMF
alone treatments significantly enhanced by 35.8% and 42.0% than
the control. Under water stress, the dehydrogenase and fluorescein
diacetate enzyme activity increased by 43.7% and 46.5% in AMF
alone treatment as compared to the control. In drought condition,
interaction between biochar and AMF significantly increased the
alkaline phosphatase, the dehydrogenase and fluorescein diacetate
enzyme activities in soil and were found much greater as com-
pared to all other treatments. The increase was 55.8% (phos-
phatase), 68.7% (dehydrogenase enzyme) and 69.5% (fluorescein
diacetate) in soil as compared to the control.
4. Discussion

We have studied the influence of biochar and AFM on the
growth of okra (Abelmoschus esculentus) under drought stress con-
dition. Drought stress reduces plant height, shoot dry weight and
root dry weight. Drought stress and salinity stress decreased the
germination rate and plant growth in various crops (Farooq et al.,
2009; Awari and Mate 2015; Hussain et al., 2016; Egamberdieva
and Jabborova, 2013; Egamberdieva et al., 2016; Egamberdieva



Fig. 2. Effect of drought stress on the carbon content of leaf in okra. Data are means
of three replicates (n = 3), * asterisk differed significantly at P < 0.05*,.

Fig. 3. Effect of drought stress on the chlorophyll content of leaf in okra. Data are
means of three replicates (n = 3), * asterisk differed significantly at P < 0.05*.

Fig. 4. Effect of drought stress on the AMF spore numbers in soil. Data are means of
three replicates (n = 3), * asterisk differed significantly at P < 0.05*
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et al., 2017; Jabborova et al., 2020c; Sheteiwy et al., 2021; Ijaz et al.,
2021). Similarly, Mueller et al. (2019) reported that okra growth
and the total dry weight of okra was reduced by drought stress.
Water stress reduced the plant growth parameter such as shoot
fresh weight, dry weight, leaf number, leaf area, plant height and
stem diameter in okra (Kusvuran 2012). Similarly, drought stress
reducing plant height of Brassica napus has been reported by
Zhao et al. (2006). Raza et al. (2012) observed a decrease in plant
height in wheat by water stress.
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In the present study, biochar significantly increased plant
height, root dry weight, total root length, projected area and the
root diameter as compared to control under drought stress.
Numerous scientists reported that biochar improved plant growth,
development and yield in various plants under stress (Kammann
et al. 2011; Artiola et al. 2012; Mulcahy et al. 2013; Jabborova
et al., 2021d). Similarly, Hashem et al. (2019) reported that biochar
enhanced shoot length, root length, leaf area, number of primary
branches, plant number of secondary branches in chickpea under
drought stress.

Haider et al. (2015) observed a positive effect of biochar amend-
ment on stem and leaf dry weight in maize. This finding is consis-
tent with the report of de MeloCarvalho et al. (2013) who observed
biochar amendment increased the leaf area index, biomass and
yield in rice under water stress.

According to Batool et al. (2015) biochar application increased
the leaf area, plant height in okra (Abelmoschus esculentus L.).
Olmo et al. (2014) reported that biochar increased biomass of field
grown wheat under semiarid Mediterranean conditions.

Studies have shown that the AMF significantly increased
improved plant height, shoot dry weight, total root length, root
volume and root diameter under drought stress. Numerous studies
have reported that AMF improve the growth and water uptake of
host plants under drought stress (Gholamhoseini et al., 2013;
Baum et al., 2015; Benhiba et al., 2015; Zhao et al., 2015a,
2015b; Chitarra et al., 2016; Quiroga et al., 2017; Bowles et al.,
2018). This finding is consistent with the report of Hashem et al.
(2018) who observed an increase in chickpea shoot length, root
length, leaf area, number of primary branches, plant number of
secondary branches by AMF compared to the control under
drought stress. Similarly, Begum et al. (2019) reported that AMF-
inoculated maize plants showed significant increase in height
(36.32%) and dry weight (75.73%) over the control under drought
stress. Drought stressed AM plants exhibited increased perfor-
mance in terms of growth and biomass production, water and
nutrient acquisition, and oxidative stress alleviation compared to
control plants was reported by Essahibi et al., (2018).

In our study, combining biochar and AMF treatments improved
plant height, shoot dry weight, root dry weight, the total root
length, root volume, projected area, root surface area compared
to the control and other treatments under drought stress condition.
Our results were similar with a previous study which found that
the combination of biochar and AMF increased plant growth
(Hashem et al., 2019). Combination of biochar and AMF increased
shoot and root biomass, leaf area meter, root surface area and root
length in soursop (Annona muricata L.) seedlings (Harun et al.
2021). Similar results were reported by Budi and Setyaningsih
(2013). They observed biochar and AMF significantly increased
shoot dry weight, and root dry weight.

The present study demonstrated that drought stress reduced
the nitrogen, carbon and chlorophyll content in the plants. Many
previous studies found that drought stress decreased plant nutri-
ents (Christophe et al., 2011; Rouphael et al., 2012; Heckathorn
et al., 2014; Khalofah et al. 2021). Similarly, He et al. (2014)
observed reduction in the concentration of nitrogen and phospho-
rus in plant tissue under drought stress. Total K and P uptake of
maize organs showed a sharp decrease under drought stress (Ge
et al., 2012). Drought reduced nitrogen and P content (Bista
et al., 2018). Similarly, drought reduced chlorophyll content and
leaf photosynthesis (Zhang et al., 2011; Hazrati et al., 2016;
Bashri et al. 2021). This finding confirms earlier studies of
Sawhney and Singh (2002) who observed that drought stress
reduced chlorophyll a, b and total pigments in pumpkin. In drought
stress reduced chlorophyll and carotenoid content in maize were
demonstrated by Begum et al. (2019).



Fig. 5. Effect of drought stress on the microbial biomass in soil. Data are means of three replicates (n = 3), * asterisk differed significantly at P < 0.05*

Table 3
Effect of drought stress on soil enzymes activities.

Treatments Alkaline
phosphatase (lg
g�1h�1)

Dehydrogenase
activity (lg
g�1h�1)

Fluorescein
diacetate activity
(mg g�1h�1)

Control 41.73 ± 0.64 32.00 ± 1.00 34.83 ± 0.76
Biochar 56.67 ± 1.15* 43.67 ± 2.21* 49.67 ± 1.53*
AMF 58.67 ± 1.53* 46.00 ± 1.00* 51.00 ± 1.00*
Biochar + AMF 65.00 ± 1.00* 54.00 ± 2.05** 59.00 ± 1.07**

Data are means of three replicates (n = 3), * asterisk differed significantly at
P < 0.05*
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In the present study, the biochar addition significantly
increased the carbon content and the chlorophyll a content in okra
compared to control under drought stress. Numerous researchers
have reported that biochar application increased nutrient uptake
(Kammann et al. 2011; Akhtar et al. 2014; Haider et al. 2015)
and plant physiological properties (Haider et al. 2015; Lyu et al.
2016; Xiao et al. 2016) in various plants under water stress. Similar
results were reported by Akhtar et al. (2014). Biochar significantly
enhanced the photosynthetic rate, chlorophyll contents, stomatal
conductance, relative water contents and water use efficiency in
tomato leaves under drought stress condition. In another study,
biochar (Lantana camara, 450 �C) increased the photosynthesis,
the WUE, and Gs of okra (Abelmoschus esculentus L. Moench) under
drought stress as compared to the control (Batool et al. 2015). Sim-
ilarly, biochar improved photosynthesis and the water use effi-
ciency of okra in drought stress.

The present study demonstrates that AMF treatment signifi-
cantly enhanced the nitrogen and carbon content. Numerous
researchers noticed that AMF inoculation improved plant nutrient
and water uptake in various plants under drought stress
(Gholamhoseini et al., 2013; Baum et al., 2015; Zhao et al.,
2015a, 2015b; Bowles et al., 2018). A similar positive effect was
reported with AMF treated maize showing enhanced nitrogen
uptake under drought stress (Subramanian and Charest 1999).
Wang et al. (2008) reported that AMF-inoculation increased uptake
of minerals such as N, Mg and K in cucumber under water stress.
Zhao et al. (2015a, 2015b) noted that AMF inoculation significantly
increased P concentration in maize plants under drought condition.
Similar results were obtained with AMF treated plants showing an
increase in the plant physiological properties such as antioxidant
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enzyme activity and jasmonate synthesis of Digitaria eriantha
under drought stress (Pedranzani et al., 2016). This finding con-
firms the observations of Abdel-Salam et al. (2018) who reported
that AMF inoculation increased chlorophyll content and rate of
photosynthesis in damask rose under drought stress condition.
Gong et al. (2013) demonstrated that mycorrhizal seedlings had
greater shoot dry weight, root dry weight, plant height, root length,
instantaneous water use efficiency, net photosynthetic rate, stom-
atal conductance and photochemical quenching values when com-
pared with non-mycorrhizal seedlings under water stress.

Combination of biochar and AMF resulted in significant
enhancement in the nitrogen content, the carbon content and total
chlorophyll content under drought stress. Similar findings were
also noticed by Hashem et al. (2019), who showed that the com-
bined application of AMF significantly increased total nitrogen con-
tent and total phosphorus content of shoot and root in chickpea
under drought stress. Li and Cai (2021) reported that dual biochar
and AMF increase the phosphorus content in maize under drought
stress. Similarly, Hashem et al. (2019) has documented that the
combined application of AMF and biochar significantly increased
photosynthetic rate, relative water content chlorophyll a, chloro-
phyll b and total chlorophylls in chickpea under drought stress.
Similar results have been reported by Li and Cai (2021) signifi-
cantly enhanced the chlorophyll content and photosynthetic rate
in maize under water stress.

This research demonstrated that drought stress decreased AMF
spore number, microbial biomass and soil enzyme activities. Simi-
lar findings were reported by Geng et al. (2015) and Mariotte et al.
(2015) drought strongly decreased soil microbial activity and fun-
gal properties. Water stress reduced enzyme activities such as
urease, protease activity, phosphatase activity and b-glycosidase
activity in soil as reported by Sardans and Peñuelas (2005). Li
and Sarah (2003) observed that drought stress decreased enzyme
activities with increasing activity along a climatic transect in Israel.

The experiment demonstrated that biochar significantly
improved the AMF spores number, the microbial biomass, the alka-
line phosphatase, the dehydrogenase and fluorescein diacetate
enzyme activities in soil under drought stress. Hashem et al.
(2019) reported biochar treatment protected AMF from the delete-
rious effects of drought by improving the number of spores
(36.73%), mycelium (79.68%), vesicles (28.65%) and arbuscules
(28.55%) over drought stressed plants. Similar findings were also
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noticed by Li and Cai (2021). Biochar application significantly
increased microbial biomass by 38.0% and 65.9% under drought
condition. Jabborova et al. (2020a) reported that biochar addition
improved protease, acid phosphomonoesterase and alkaline phos-
phomonoesterase activities in soil. Similar result was confirmed by
Ahmad et al. (2014). He found a stronger positive effect of biochar
amendment on microbial biomass activity.

In a previous study, under drought stress AMF alone signifi-
cantly increased the AMF spores number, the microbial biomass,
the alkaline phosphomonoestrase, the dehydrogenase and fluores-
cein diacetate enzyme activities in soil. Similarly, Hashem et al.
(2019) improved the number of spores of Arbuscular mycorrhizal
fungi in chickpea under drought stress. Similar findings were also
noticed by Li and Cai (2021) AMF inoculation improved soil micro-
bial biomass. Qin et al. (2020) indicate that AMF can enhance the
release of soil nutrients required for plant growth in response to
increased soil enzyme activity.

However, combination of AMF and biochar strongly enhanced
the AMF spores number, the microbial biomass, alkaline phos-
phatase, the dehydrogenase and fluorescein diacetate enzyme
activities in soil compared to control and other treatments. Similar
resulted were observed by Hashem et al. (2019) and Li and Cai
(2021). Dual biochar and AMF inoculation significantly improved
soil microbial activity, phosphatase activity by 40% in the maize
rhizosphere under drought stress.

5. Conclusion

This study investigated the impact of biochar and AMF inocula-
tion in mitigating the drought stress on okra. Under drought stress,
biochar application could enhance root morphological traits viz:
the total root length, the projected area, the root diameter and
the root volume and soil enzyme activities. In drought stress,
AMF could form a good symbiotic relationship with okra seedlings,
and AMF symbiosis indeed improved root morphology, chlorophyll
content, AMF spores number, microbial biomass, and improved the
uptake of N. Combined inoculation with biochar and AMF clearly
showed best results compared to the biochar alone and AMF alone
treatments under drought condition. Dual application was more
effective in enhancing plant growth, root morphological traits
and chlorophyll content compared to other treatments. The AMF
had synergetic effect with biochar for improving microbial bio-
mass, AMF spores and enzymes activities in soil under drought
stress. This finding reveals the prospective and potential use of
okra combined with biochar and AMF for the successful crop culti-
vation under drought stress.
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