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Abstract: Focused soft X-ray beam induced deposition (FXBID) is a novel technique for direct-write
nanofabrication of metallic nanostructures from metal organic precursor gases. It combines the
established concepts of focused electron beam induced processing (FEBIP) and X-ray lithography
(XRL). The present setup is based on a scanning transmission X-ray microscope (STXM) equipped with
a gas flow cell to provide metal organic precursor molecules towards the intended deposition zone.
Fundamentals of X-ray microscopy instrumentation and X-ray radiation chemistry relevant for FXBID
development are presented in a comprehensive form. Recently published proof-of-concept studies on
initial experiments on FXBID nanolithography are reviewed for an overview on current progress and
proposed advances of nanofabrication performance. Potential applications and advantages of FXBID
are discussed with respect to competing electron/ion based techniques.

Keywords: direct-write nanofabrication; additive nanofabrication; X-ray lithography; X-ray
microscopy

1. Introduction

Several recent studies have demonstrated that focused electron beam induced processing (FEBIP)
has high potential for the controlled bottom-up fabrication of metallic 3D nanostructures [1–14].
Furthermore, the basic processes during FEBIP are understood to more and more detail leading
to developments towards more diverse, cleaner and more defined deposits for various potential
applications [7,15–18]. The method employs a focused electron beam to induce local dissociation
of surface-absorbed metal organic precursor molecules supplied from the gas-phase. While the
dissociation products containing the metal center of the initial complex are non-volatile and will stay on
the substrate, volatile portions from the ligands are pumped off by the vacuum system. Dissociation is
generated mainly by low- and medium-energy secondary or backscattered electrons which have a high
interaction cross-section with matter. Depending on the substrate and the chemical composition of the
targeted nanostructure, several in-situ and ex-situ cleaning procedures have been developed [14,19,20].

The concept of focused soft X-ray beam induced deposition (FXBID) is basically a combination of
FEBIP and X-ray lithography (XRL) [21,22]. FEBIP and XRL are based on very similar fundamental
principles. The radiation chemistry in XRL is also mainly caused by low-energy secondary electrons
evolving from the decay processes after the initial photoexcitation [23–25]. XRL, however, is mainly
targeting soft matter photoresists that are chemically altered by radiation chemistry and subsequently
etched. Furthermore, standard XRL uses relatively large spot sizes and nanostructuring is typically
achieved by lithography masks [26–32]. Very few studies have employed the focused beam of a
scanning transmission X-ray microscope (STXM) for maskless direct-write patterning of polymer
films [33–37]. Since synchrotron-based X-ray microscopes offer continuously tunable excitation photon
energy, it has been shown that within a multilayer of several photoresists consecutively stacked at the
same spot, each layer can be addressed separately by the resonant photon energy of the respective
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polymer resulting in 3D patterning by radiation chemistry [33,34]. The approach is limited to materials
with significantly different absorption cross-sections at the chosen incident photon energies, as in
transmission geometry, all layers are exposed to the beam at different degrees of focusing. However,
such experiments open a completely novel perspective for complex direct-write nanofabrication.
It should be mentioned that during the late 1980s and early 1990s several groups attempted to exploit
broad-band synchrotron light [38–41] as well as the monochromatic X-ray beam of a photon-induced
scanning Auger microscope [42,43] for additive manufacturing of metal deposits from metal organic
precursors. However, due to limited instrumental capabilities, only spatially extended thin films with
an optimum of some 10 µm resolution could be produced [43].

FXBID exploits the photon energy-selectivity of synchrotron-based XRL and extends it by the idea
of depositing metal nanostructures from suitable precursor gases [21,22]. The use of a STXM setup for
these experiments offers several advantages. STXM is a raster-scanning technique which avoids the
necessity of shadow masks. According to comparable results from polymer lithography the theoretical
minimum feature size of the deposited metal structures is mainly determined by the spot size of
the incident beam [36,37]. Recent developments in X-ray optics have pushed this parameter below
10 nm [44,45]. Finally, STXM can be employed for an in-situ analysis of the metallic deposits directly
after fabrication by means of resonant imaging and near-edge X-ray absorption fine structure (NEXAFS)
spectroscopy to evaluate confinement, growth rates, oxidation state and chemical purity [21,22,46,47].
X-ray magnetic circular dichroism (XMCD) can be used to characterize magnetic deposits with respect
to their magnetization and coercivity [48].

This review presents some basic principles of X-ray optics and X-ray microscopy as well as X-ray
beam dosimetry that are relevant for FXBID experiments. In accordance, limitations, challenges and
opportunities of additive nanofabrication with FXBID will be discussed with respect to the currently
used STXM-based set-up, potential experimental improvements and fundamental limits. Potential
applications of FXBID nanofabrication, with a special focus on porous substrates, are discussed.

2. Things to Know about STXM and X-ray Induced Radiation Damage

Following the development of suitable focusing optics for soft X-rays [49–51], the first soft
X-ray microscopes were installed in the mid-1980s [52,53]. Since then, STXM has developed into a
versatile method for characterization of suitably thin specimens from various scientific disciplines,
such as biology, medicine, catalysis, material science, magnetism, geology, cosmology, and cultural
heritage [54–64].

Figure 1 depicts a scheme of a modern STXM with all basic elements and their respective degrees
of freedom [59,65,66]. The monochromatic X-ray beam from the synchrotron source (bending magnet
or undulator) is focused by a Fresnel zone plate into a small focal spot. The incident photon energy can
be tuned by adjustment of a monochromator grating in front of the microscopy setup. The innermost
part the zone plate is not transmitting any light and is referred to as central stop. A proper alignment
of central stop and order sorting aperture (OSA) filters undesired diffraction orders from the zone
plate optics. Therefore, the OSA has to be smaller than the central stop to block non-diffracted zero
order light (progressing parallel to the optical axis) and it has to be placed at an axial position far
enough downstream to avoid shadowing of the first order illumination cone, but sufficiently upstream
to block higher order light that has a smaller focal length and is already divergent. Presence of
unintended diffraction orders with deviating focal lengths leads to aberration artefacts and unnecessary
additional radiation dose. The sample is raster-scanned through the focal spot by piezo-scanners and
with interferometric position control. Various detectors can be used in STXM. Usually a scintillator
assisted photomultiplier tube (PMT) or a photodiode will count transmitted photons. However, also
diffraction patterns [67–69] or undirected secondary radiation, such as secondary electrons [70–72] or
fluorescence [73–75] can be recorded. STXMs are operated inside an (ultra)-high vacuum chamber to
reduce unnecessary photon absorption within the atmosphere.
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Figure 1. Scheme of main scanning transmission X-ray microscope (STXM) components and their
typical degrees of freedom. The monochromatic X-ray beam is focused by a Fresnel zone plate. A proper
alignment of central stop and order sorting aperture (OSA) filters undesired diffraction orders. The
specimen is raster-scanned through the focal spot of the Fresnel zone plate. Signals are detected in
transmission either in form of directly transmitted photons (black) or as undirected secondary radiation
(gray arrows).

The heart of an X-ray microscope is the focusing optics. Extended zone plate math is provided in
a comprehensible form by [76]. The most important zone plate characteristics in terms of FXBID are
the minimum spot size or resolution ∆x (coherent illumination assumed), focal length f, and depth of
focus (DOF):

∆x =
1.22 ∆rN

m
(1)

f =
4N(∆rN)

2

λ × m
(2)

DOF = ±
2(∆rN)

2

λ×m2 . (3)

N is the total number of zones and m is the diffraction order (usually only the first order is
employed, while higher orders are blocked by the OSA). Equation (1) shows that the spot size in STXM
is mainly dependent on the outermost zone width of the applied Fresnel zone plate ∆rN. Since the
zones also need to be placed precisely with high aspect ratios of the structures, resolution in X-ray
microscopy is mainly an issue of nanofabrication [44,45]. It is very important that f is determined by
the wavelength of the incident photons in nanometers λ and the square of the outermost zone width
∆rN (Equation (2)). Higher resolutions as well as smaller photon energies both lead to shorter distances
of the optics and the sample. Thus, ultra-high resolution is so far limited to photon energies above
600 eV [45,77]. The focal length is also a limiting factor for the use of higher diffraction orders (m > 1) for
improved spatial resolution. In terms of FXBID experiments the focal length becomes important with
respect to the necessity to keep the Fresnel zone plate of the microscope and the precursor gas apart.
Otherwise the zone plate would be quickly covered with metal deposits. Ultra-high resolution or very
small photon energies compete with the manufacturing of a gas cell sealing around the substrate [21].
The depth of focus is also directly proportional to ∆rN and indirectly proportional to λ (Equation (3)).
This has to be taken into account for experiments requiring a certain axial resolution. In FXBID
processes DOF might become important when free-standing 3D structures are fabricated or when 3D
substrates are functionalized.
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STXM can be operated with various contrast mechanisms, but contrast based on material
dependent variations in NEXAFS is most common [55,56,59]. Figure 2 presents a scheme of the
NEXAFS process. For simplicity, the six electron system carbon is used instead of transition metals
with more electron levels. Soft X-ray absorption leads to excitation of a core level electron into an
unoccupied state. When the photon energy fits to the energetic distances of the respective energy levels,
this excitation is resonant and very likely, resulting in a high absorption coefficient [55,78]. Lowest
unoccupied molecular orbital (LUMO) levels are typically well-defined and yield sharp absorption
peaks at the low-energy end of the NEXAFS spectrum, while energetically higher levels result in broad
peaks. The exact position of the unoccupied states is dependent on the chemical state of the excited
atom and, therefore, fine tuning of the excitation energy can yield a strong absorption contrast for
slightly chemically different materials [55,59,72].
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Figure 2. Schematic depiction of electron excitation induced by X-ray absorption and the generation of
near-edge X-ray absorption fine structure (NEXAFS) spectra. Resonant soft X-ray illumination induces
excitation of core level electrons into unoccupied states. The resulting absorption spectrum exhibits
discrete resonant peaks that are a probe of the density and energy levels of respective unoccupied states
and, thus, of the chemical state of the excited atom.

An important limitation in X-ray microscopy is radiation damage. Photo-absorption leads to
excitation of electrons and subsequent decay channels that are dominated by the release of low-energy
secondary electrons and, thus, the basic processes of radiation damage are very similar to those
in electron beam methods [17,24,79]. Several studies have investigated radiation damage in X-ray
microscopy with respect to resonant and non-resonant excitation, radiation chemistry and fundamental
decomposition principles—mainly for soft organic matter [79–92]. All investigations found that
X-ray induced chemistry can be quantitatively correlated with the absorbed dose d that is calculated
by [83,87]:

d =
F× t× E
ε×M

(4)

F = I0 ×
[
1− e−OD

]
. (5)

Within Equation (4) F is the number of absorbed photons per second that is calculated from
the number of incident photons I0 and the energy-dependent optical density (OD) of the material
(Equation (5)). t is the acquisition time per area, E the photon energy in eV, ε is the dimensionless
detector efficiency, and M is the mass of excited material, typically calculated from excited area and
material density. ε has to be checked regularly, since it is strongly energy dependent and may vary
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over time [21,93]. Note, that this consideration of radiation damage with respect to the absorbed dose
is different from the point of view in additive lithography that usually relates the amount of deposited
material to the number of required photons [21,22].

In most STXM studies, X-ray induced radiation chemistry is considered to be avoided and,
therefore, referred to as “radiation damage”. The afore-mentioned dosimetric studies usually aim to
define critical doses or at least an estimate of experimental limits that should be respected to obtain
reliable microscopic and/or spectroscopic data from the investigated specimen. However, under
certain circumstances, radiation induced chemical alteration of materials during X-ray microscopic
investigation can be exploited for benefits, such as chemically selective direct-write X-ray lithography
with polymer resists [33–37], material selective contrast enhancement for improved microscopic
imaging of otherwise intricate specimens [90], or using X-rays as release triggers for polymer based
microcontainers with potential applications in drug transport, medical imaging and catalysis [94].
FXBID represents another useful application of X-ray induced radiation chemistry.

3. Current FXBID Set-Up

A scheme of FXBID in its present state of development is depicted in Figure 3. The setup has
been implemented into the PolLux-STXM at the Swiss Light Source (SLS) [66]. The precursor gas is
provided within an environmental gas flow cell that has been initially designed for in-situ studies
in the fields of atmosphere chemistry and catalysis [95,96]. The precursor gas flows between two
sealed Si3N4-membranes with a thickness of 50 nm each. Such membranes are standard sample
supports in STXM. After focusing on one of the two membranes, the substrate area selected for
deposition is raster-scanned through the focal spot of the Fresnel zone plate by piezo scanners.
The transmitted photons are detected down-stream by a scintillator assisted PMT or an avalanche
photodiode (APD) [21].
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Figure 3. Scheme of the current focused soft X-ray beam induced deposition (FXBID) setup implemented
at the PolLux-STXM. The precursor gas is provided within a gas flow cell mainly consisting of two
sealed Si3N4-membranes. The incident X-ray beam is focused onto one of the two membranes for
spatially confined deposition of metallic nanostructures.

The PolLux endstation is usually operated under high vacuum conditions (10−6 mbar regime) [66].
The precursor gas is supplied towards the gas flow cell in 3 mm thick tubes. Also, the gas cell itself has
to be kept as thin as possible to fit in-between OSA and photon detector. The support plate of the front
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membrane has a thickness of 100 µm and the Si frame carrying the membrane is 200 µm thick [95]. The
membranes should be mounted such that the flat side of the frame is pointing towards the inside of
the gas cell. Otherwise the membranes are more prone to breaking when the pressure inside the cell
excels the surrounding pressure within the STXM chamber. The membrane frames are glued onto the
support with adhesives suitable for vacuum. Therefore, the minimum distance of the deposition zone
from the most upstream extension of the gas flow cell towards the optics is currently ~300 µm.

The OSA has to be placed at a position between the Fresnel zone plate and the focal spot that
enables blocking of the already divergent higher diffraction order light (Equation (2)), but avoids
shadowing of the illumination cone of the first diffraction order [76]. Therefore, all FXBID experiments
so far have been performed with Fresnel zone plates with ∆rN > 25 nm and still the carbon K-edge
(280-320 eV) could not be explored [21,22]. Higher resolving zone plates or photon energies significantly
smaller than ~400 eV would lead to a collision of OSA and gas cell at proper focus position. It should
also be mentioned that the present setup does not allow for proper measurements of the pressure
within the gas cell. The pressure cell is placed outside the PolLux chamber. Due to the small required
diameters of the gas cell itself and the supply tubes, a relatively poor pumping cross-section is expected.

4. What We Have Already Learned About FXBID

FXBID experiments have been successfully performed with cobalt tricarbonyl nitrosyl
(Co(CO)3NO) [21,22], methylcyclopentadienyl manganese tricarbonyl (MeCpMn(CO)3) [22], and
meanwhile also with iron pentacarbonyl (Fe(CO)5). FXBID yields spatially defined metallic
nanostructures that can be in-situ characterized by STXM and NEXAFS in terms of shape, growth
rate and chemical purity (Figure 4). There is no evidence of significant proximity effects. However,
proximity effects for FEBIP on thin Si3N4-membranes are also small for low excitation doses due to
reduction of the interaction volume [97,98]. The amount of deposited material exhibits direct linear
dependence with the dwell time and the supplied precursor pressure. The growth rates vary with
incident photon energy. It is concluded that the growth rate at different photon energies is influenced
by the absorption cross-section of the respective precursor molecule.

Photon energy dependent growth rates have been investigated in detail at the following
absorption edges:

• Co(CO)3NO: Co L3-edge (~780 eV), O K-edge (~530 eV), N K-edge (~395 eV),
• Fe(CO)5: Fe L3-edge (~710 eV), O K-edge (~530 eV), and
• MeCpMn(CO)3: Mn L3-edge (~640 eV).

At all absorption edges deposits have been fabricated with incident photon energies below, above
and on resonance. Since gas-phase spectra of the precursors could not be recorded at the PolLux STXM,
the resonant photon energies had to be estimated based on NEXAFS spectra of previously deposited
test structures. This is, however, not necessarily correct, since the respective atoms within the deposits
might have significantly different chemical states than within the precursor complexes. Nevertheless,
in every case significant enhancement of growth rates up to 40% is detected at resonant incident photon
energies [21,22] (cf. also Section 5).

An overview of FXBID studies on Co(CO)3NO is presented in Figure 4. Figure 4a shows an in-situ
STXM image of FXBID deposits fabricated with various settings in terms of incident photon energy and
dwell time per pixel. After recording of Co L3-edge NEXAFS spectra from test deposits, the photon
energies had been chosen as follows:

• 770 eV: Well below Co L3-edge→ no resonant excitation at the Co center of the precursor,
• 780 eV: Close to absorption maximum→ resonant absorption at Co center, and
• 800 eV: Well above Co L3-edge→ declining absorption cross-section, mainly photoelectrons.
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 Figure 4. Exemplary data from FXBID with Co(CO)3NO and subsequent characterization. (a) STXM
micrograph (optical density) of FXBID nanostructures deposited with three different incident photon
energies around the Co L3-edge (pre-edge, resonant, and post-edge) and varied illumination time per
pixel (100 × 50 pixel per deposit). (b) Comparison of Co L3-edge NEXAFS spectra from an exemplary
FXBID deposit with the reference spectrum from a clean Co film. Pink and blue curves represent two
individual chemical states and their relative intensities required for fitting of the deposit spectrum.
(c) Growth rates of FXBID deposits at various photon energies (normalized to energy dependent
variations of the incident photon flux). (a,b) reproduced in revised form from [21] with permission by
Royal Society of Chemistry. (c) Reprinted from [47] with permission by Cambridge University Press.

The STXM micrograph in Figure 4a has been normalized on incident flux to depict local optical
density. Therefore, the brighter an area appears in this image, the more Co has been deposited at the
respective position. The patterning time is mainly determined by the pixel density and the dwell time
per pixel, since the motion of the piezo-scanner is negligible for dwell times >20 ms). It is clearly
visible that an extension of the dwell time yields more Co, while resonant excitation at 780 eV excels
non-resonant excitation below and above the investigated absorption edge. Co L3-edge NEXAFS
spectra (Figure 4b) of these deposits confirm the presence of Co. Proper fitting of these spectra requires
two peaks representing two individual chemical states of Co within the deposits. Comparison with
a reference from a clean Co film (prepared by physical vapor deposition) shows that the dominant
contribution to the deposit spectrum stems from Co0, while a minor portion is Co in undefined oxidized
form (Co+x).
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An inspection of solely Co L3-edge NEXAFS spectra would suggest a decent chemical purity of
the investigated FXBID deposits from Co(CO)3NO. However, respective C and O K-edge spectra show
a high degree of contamination [21]. Especially C K-edge NEXAFS is a good indicator to monitor
the purity of FXBID nanostructures. It should be mentioned, however, that due to the smaller focal
length at the C K-edge (~285 eV), the respective substrate has to be removed from the present gas cell
set-up. Therefore, C NEXAFS is not recorded in-situ. The relatively high carbon content is attributed
to a comparably low base pressure within the gas cell resulting in deposition from residual gas and
the CO ligands of the precursor molecule. The detected C K-edge NEXAFS spectra are in accordance
with spectra from “dead-end”-products of long-time illuminated carbon containing material that has
reached a state that cannot be further altered solely by X-ray illumination [89,99]. Due to the relatively
high contamination level it was not surprising that XMCD imaging of the respective deposit did
not yield any contrast indicating magnetic properties from pure Co or respective pure oxides. The
spectroscopic analyses of FXBID deposits from Fe(CO)5 and MeCpMn(CO)3 yielded similar results in
terms of contamination levels. A major difference regarding MeCpMn(CO)3 is the lack of Mn0 in Mn
L3-edge NEXAFS [22]. Instead, a mixture of various oxidation states from Mn2+ to Mn4+ was detected
(Figure 5). Thus, the chemical analysis suggests that a significant improvement of deposit purity is
crucial within subsequent steps of the FXBID project.
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Figure 5. Mn L3-edge NEXAFS spectrum of an exemplary FXBID deposit from MeCpMn(CO)3

(on-resonance deposition). According to reference data at least three individual oxidation states from
Mn2+ to Mn4+ are detected [22].

Figure 4c provides a comparison of FXBID growth rates from Co(CO)3NO at various incident
photon energies. Not only resonant and non-resonant excitation are compared, but also excitation
around the Co L3-edge with respective photon energies below, above and on the main resonance
of O K-edge spectra of previous test deposits. Excitation energies at the N K-edge have also been
tested [22]. However, the resulting deposition rates were very low. This is attributed to the use of
Si3N4 membranes that are strongly absorbing at the N K-edge. Thus, the incident photon flux within
the gas cell is significantly reduced. A more detailed evaluation of this issue is intended by using
comparable SiO2 membranes in future experiments. Deposition at the C K-edge was not possible with
the current set-up due to spatial constraints from decreasing focal length (Equation (2)).

For all applied photon energies we detect a linear dependence of deposition with illumination
time. After normalization with respect to energy dependent variations of the incident photon flux
(including detector efficiency), we detect that resonant excitation always leads to increased deposition



Micromachines 2019, 10, 834 9 of 19

rates compared to non-resonant photon energies. The same trend is found for MeCpMn(CO)3 at the
Mn L3-edge [22]. When the two depicted absorption edges are compared, we observe that excitation
at the Co L3-edge is more likely to result in deposition compared to the O K-edge. A more detailed
analysis of this aspect has to take also the different absorption cross-sections at these edges and the
higher density of excitable oxygen atoms per volume (the precursor contains 4×more oxygen than
cobalt atoms) into account [22]. The sum of both factors should favor fragmentation at the O K-edge.
Therefore, the experimental results suggest an increased probability of precursor splitting when the
initial X-ray induced excitation is localized at the metal center of the precursor complex. This hints
on variations of the fragmentation process with excitation photon energy, which might be relevant in
terms of potential optimizations of the FXBID process. At the present state more detailed insights into
the fundamental processes during excitation at various relevant photon energies are required for a
more conclusive interpretation of these observations.

Subsequent experiments focused on the application of in-situ cleaning procedures. Within a
first test, several Co deposits were fabricated under identical FXBID conditions (1 × 0.5 µm, 100 ×
50 pixel, 3.0 × 10−5 mbar Co(CO)3NO, 100 ms dwell time per pixel) and subsequently exposed to
1.0 × 10−4 mbar H2O. While H2O was constantly provided, some deposits were illuminated again
with identical pixel density and dwell time as during the initial fabrication cycle. The excitation photon
energy for both cycles was 781 eV (Co L3-resonance). Afterwards NEXAFS spectra were recorded
for deposits that were illuminated during H2O dosing and for those that were not illuminated. H2O
exposure without X-ray illumination shows no spectroscopic effect with respect to deposits that were
not treated with H2O at all. Deposits that were exposed to H2O and X-rays simultaneously, however,
exhibit significant differences in their respective NEXAFS spectra. Exemplary C K-edge NEXAFS
spectra are shown in Figure 6. The post-treatment leads to a drop of post-edge optical density. This
is a clear indicator for an overall loss of carbonaceous material during the process. Furthermore, a
new sharp resonant at ~290 eV appears within the spectrum. Those peaks are a typical fingerprint for
the presence of C=O bonds and excitations into π*C=O-orbitals [55]. We can conclude that the applied
post-treatment procedure induces photo-oxidation of the carbonaceous material within the deposits
that is also partially degassing and pumped off. It is not surprising, that the Co NEXAFS spectra,
however, also show a significant oxidation of the metallic portion of the respective deposits. Within a
subsequent step it must be evaluated whether H2O processing can be used to remove carbonaceous
material more or less completely. Other reactive gases such as H2 might be investigated aiming on not
only clean deposit, but also a higher portion of Co0 in the final product.
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Figure 6. C K-edge NEXAFS spectra from Co FXBID deposits (Co(CO)3NO precursor) before (black)
and after dosing and photo-induced reaction with H2O (red). Green arrows highlight the prominent
changes in the spectrum. While a post-edge decrease of optical density indicates an overall removal of
carbonaceous material, the rise of a peak at ~290 eV is a sign of oxidation.
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It was also investigated whether FXBID deposits show significant autocatalytic growth. Under
the present experimental conditions this effect was very small, more or less negligible. It took several
hours of subsequent precursor dosing to observe a noticeable increase of optical densities of previously
deposited FXBID structures. On the one hand this is advantageous at the current status of the project,
since deposits do not alter significantly during fabrication of further structures and several deposits
can be analyzed in parallel after removal of the precursor gas. However, autocatalytic growth is an
important mechanism towards clean deposits in FEBIP [1,15,100,101]. We propose that the current
gas flow cell does not provide sufficiently clean conditions for proper autocatalytic growth and any
catalytic effect is quenched by rapid contamination of deposited metal atoms.

5. Required Next Steps

It has been confirmed by previous experiments that deposition rates in FXBID are influenced by
the incident photon energy [21,22,47]. However, this effect has to be studied in more detail. Transition
metal L-edge spectra exhibit usually very sharp and intense LUMO peaks excelling non-resonant
absorption cross-section by several factors [46,102,103]. The X-ray absorption resonances of the applied
precursor molecules should, therefore, be much more dominant compared to the present results of
growth rate enhancements of up to 40% [21,22]. To address this topic, it is necessary to record calibrated
gas-phase NEXAFS spectra of the intended precursor molecules at a suitable instrument [104,105] and
to correlate those spectra with time-dependent density functional theory (TD-DFT) calculations for
proper evaluation of the recorded spectral features [106,107]. Such calculations will for each relevant
excitation photon energy yield details on the localization of the respective final state levels within
the precursor molecules. Recording mass spectra of the fragmentation products at the same photon
energies might yield correlations between final state localization and precursor splitting. Furthermore,
incident photon energy dependent secondary electron spectra will be measured, since changes in
the energy distribution of the emitted secondary spectra should influence precursor decomposition
drastically. Deviations from the resonance energies detected for gas-phase precursor molecules and the
photon energies yielding maximum FXBID deposition rates might give insights into chemical states of
the precursor molecules when absorbed onto the respective substrate.

In terms of purity of the FXBID deposits it is of course possible to apply ex-situ post-processing
techniques that are known from the FEBIP community [15,19]. However, it is also intended to evaluate
further in-situ cleaning procedures such as co-dosing of reactive gases and in-situ annealing. The
latter requires the implementation of heatable Si3N4-membranes into the gas flow cell. This can be
addressed by deposition of Pt or Au wires onto the membrane resulting in a microstructured resistivity
heater [108].

The interactions of the precursor and the X-ray beam with the substrate have to be investigated in
detail. While these topics have been addressed in depth by the FEBIP community [2,3,15,98,109], there
is still very limited literature about the chemical and physical interactions of metal organic precursors
with Si3N4-membranes. Furthermore, it is important to understand to which portions secondary
electrons from the substrate are contributing to precursor splitting compared to excitation of the
precursor molecules themselves. Figure 7 depicts two potential situations. In Figure 7a decomposition
from resonant excitation of the precursor molecules is dominant over the constant background from the
substrate. This does not necessarily require that the precursor molecules are emitting more secondary
electrons than the substrate. It could also means that the resonantly emitted electrons are in sum
more destructive towards the precursor. In this case FXBID would exhibit a strong enhancement of
deposition rates for resonant energies and tuning of the excitation energy would yield large effects. In
Figure 7b the constant background from the non-resonantly excited substrate is dominant. In that case,
photon energy dependent effects would be close to negligible. However, an excitation photon energy
close to the N K-edge should induce enhanced secondary electron emission from the substrate. The
respective yields might differ for various substrates and precursors. Without a major change of the
present FXBID setup an evaluation of substrate effect could be performed by using SiO2-membranes
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that have similar technical properties as the standard Si3N4-membranes. Furthermore, lab-based
thermal desorption spectroscopy (TPD) investigations of the intended precursors on such membranes
might contribute valuable insights on precursor-substrate interactions by analysis of the respective
absorption energies.
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strong dependence on excitation photon energy at the respective absorption edge. (b) Excitation of the
substrate is dominant. Excitation photon energy has little impact on deposition rate.

In the long term a significant improvement of the chemical purity of the fabricated nanostructures
and the successful application of in-situ purification techniques is expected to require a more dedicated
setup. The current gas flow cell should be replaced by a two chamber setup with the Fresnel zone
plate located in the upstream chamber to be protected from the precursor gas and the substrate in the
downstream chamber that can be pumped well into the (U)HV regime. The precursor gas could then
be provided by a gas nozzle close to the substrate to achieve a configuration more similar to common
FEBIP setups. The two chambers would be connected by a small pinhole along the optical axis that
might act as OSA and could even be sealed by a sufficiently transparent membrane window without
excessive loss of photon flux. The most sophisticated issue in the design of a two chamber setup is the
design of a separator with confined thickness in the area close to the optical axis to allow for a proper
alignment of all optical elements and proper focusing of the substrate. In the best case, OSA-to-sample
distances <200 µm should be aimed for to enable the use of higher resolving Fresnel zone plates and
deposition at the C K-edge. Previous experiments on XRL with STXM have shown that the achievable
patterning resolution for that approach is in the range of the minimum spot size of the applied Fresnel
zone plate [36,37]. In FXBID the mean free path of the occurring secondary electrons is negligible and
it is proposed that proximity effects play a minor role. Therefore, the spot size should again be the
major limitation for spatial resolution. With the suggested setup improvements, implementation of
Fresnel zone plates with 15 nm spot size should be realistic.

An important step towards complex FXBID nanostructures would be the implementation of 3D
deposition. STXM is in general a technique for 2D imaging of thin specimens and the respective
instruments are designed for such experiments. Only few real 3D studies on suitable objects have been
performed employing either focal stack reconstruction [110,111] or tomography [112–114]—each dealing
with various experimental constraints. However, recent developments are using the laminography
concept that is similar to tomography, but uses a rotation angle that is not perpendicular to the optical
axis and extend this approach towards soft X-ray 3D imaging [115–117]. This method requires a
proper 3D scanning of the specimen with retained focus. The hardware activation, controls scripts
and reconstruction resources required for laminography imaging can be exploited for controlled
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and automatized 3D FXBID deposition as well as the subsequent 3D spectroscopic imaging of the
resulting nanostructures.

6. Perspectives or: What FXBID Might Be Good For

The major disadvantage of current FXBID is the necessity of a synchrotron source and a STXM
setup which heavily restricts availability and accessibility of the technique. However, on the long term
it might be possible to transfer the technique to lab-based X-ray sources and simplified instrumentation.
If further investigations reveal a limited effect of incident photon energy on the respective deposition
rates, it is not necessary to provide a tunable X-ray source for specified technical applications.

One of the advantages of FXBID is that by tuning of the incident photon energy, the approach
provides an adjustable trigger for different precursor splitting rates. Depending on the dimension of
this effect, monochromatic focused soft X-rays could be employed for various applications similar to
FEBIP, such as 3D nanofabrication, spatially confined substrate functionalization or pattern repair.
A potential strength, however, may be photon energy dependent fragmentation of precursor molecules,
which has potential to further enhance the in-situ purity of the resulting FXBID deposits. It has been
shown that X-ray induced fragmentation of certain relevant precursor molecules exhibits photon
energy dependency not only in terms of fragmentation rates, but also fragmentation chemistry, i.e.,
changing relative intensities of various fragments [103,118,119]. Such effects could be exploited to
select photon energies for FXBID that result in a high ratio of low mass fragments (in ideal cases only
the metal center itself) versus high mass fragments leading to implantation of a large amount of alien
atoms from the ligands into the resulting deposits.

An inherent advantage of FXBID over FEBIP/FIBIP is illustrated in Figure 8. Focused X-rays have
a significantly higher penetration depth than electrons or ions [78]. Depending on the material density
and composition, soft X-rays can penetrate matter up to several µm prior to significant decay. Therefore,
FXBID could be useful for the functionalization of porous substrates or buried structures with the only
limitation that the precursor gas has to reach the intended deposition zone. Deposition in the depth of
(nano)porous substrates is a common task in recent atomic layer deposition (ALD) studies targeting on
highly reactive catalysts or absorbing agents with extra-large surfaces [120–126]. FXBID could also be
used in terms of a photon assisted ALD process and contribute to increased functionalization rates,
deposition from otherwise too stable precursors and spatially confined functionalization.
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Taking all aspects into account FXBID has the potential to provide completely new routes for
controlled bottom-up fabrication of complex metallic nanostructures and for the functionalization of
sufficiently thin 3D substrates targeting a broad field of applications.
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characterization of ALD Al2O3 coated porous silicon. Vacuum 2015, 113, 52–58. [CrossRef]

121. Sharma, K.; Routkevitch, D.; Varaksa, N.; George, S.M. Spatial atomic layer deposition on flexible porous
substrates: ZnO on anodic aluminum oxide films and Al2O3 on Li ion battery electrodes. J. Vac. Sci. Technol. A
2016, 34, 01A146. [CrossRef]

122. Haschke, S.; Pankin, D.; Petrov, Y.; Bochmann, S.; Manshina, A.; Bachmann, J. Design rules for oxygen
evolution catalysis at porous iron oxide electrodes: A 1000-fold current density increase. ChemSusChem 2017,
10, 3644–3651. [CrossRef]

123. Xiong, S.; Yang, Y.; Zhong, Z.; Wang, Y. One-step synthesis of carbon-hybridized ZnO on polymeric foams by
atomic layer deposition for efficient absorption of oils from water. Ind. Eng. Chem. Res. 2018, 57, 1269–1276.
[CrossRef]

http://dx.doi.org/10.1021/acs.inorgchem.9b00226
http://dx.doi.org/10.1063/1.3435349
http://www.ncbi.nlm.nih.gov/pubmed/20707545
http://dx.doi.org/10.1002/chem.201200649
http://dx.doi.org/10.1063/1.3640407
http://dx.doi.org/10.3762/bjnano.6.157
http://dx.doi.org/10.1016/j.ultramic.2014.04.004
http://dx.doi.org/10.1364/OE.27.007787
http://dx.doi.org/10.1107/S0909049507029962
http://dx.doi.org/10.1007/s00339-008-4588-x
http://dx.doi.org/10.1016/S0029-5493(98)00319-7
http://dx.doi.org/10.1038/s41928-019-0309-z
http://dx.doi.org/10.1063/1.4933060
http://dx.doi.org/10.1063/1.5018719
http://dx.doi.org/10.1016/j.vacuum.2014.12.015
http://dx.doi.org/10.1116/1.4937728
http://dx.doi.org/10.1002/cssc.201701068
http://dx.doi.org/10.1021/acs.iecr.7b03939


Micromachines 2019, 10, 834 19 of 19

124. Xu, D.; Wang, S.; Wu, B.; Huo, C.; Qin, Y.; Zhang, B.; Yin, J.; Huang, L.; Wen, X.; Yang, Y.; et al. Tailoring
Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane
aromatization. J. Catal. 2018, 365, 163–173. [CrossRef]

125. Eswar, N.K.R.; Singh, S.A.; Heo, J. Atomic layer deposited photocatalysts: Comprehensive review on viable
fabrication routes and reactor design approaches for photo-mediated redox reactions. J. Mater. Chem. A 2019,
7, 17703–17734. [CrossRef]

126. Cao, Y.; Wu, Y.; Badie, C.; Cadot, S.; Camp, C.; Quadrelli, E.A.; Bachmann, J. Electrocatalytic performance of
titania nanotube arrays coated with MoS2 by ALD toward the hydrogen evolution reaction. ACS Omega
2019, 4, 8816–8823. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcat.2018.07.001
http://dx.doi.org/10.1039/C9TA04780H
http://dx.doi.org/10.1021/acsomega.9b00322
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Things to Know about STXM and X-ray Induced Radiation Damage 
	Current FXBID Set-Up 
	What We Have Already Learned About FXBID 
	Required Next Steps 
	Perspectives or: What FXBID Might Be Good For 
	References

