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The snub-nosed monkey genus (Rhinopithecus) comprises five closely related species

(R. avunculus, R. bieti, R. brelichi, R. roxellana, and R. strykeri). All are among the

world’s rarest and most endangered primates. However, the genomic impact associated

with their population decline remains unknown. We analyzed population genomic data

of all five snub-nosed monkey species to assess their genetic diversity, inbreeding

level, and genetic load. For R. roxellana, R. bieti, and R. strykeri, population size

is positively correlated with genetic diversity and negatively correlated with levels of

inbreeding. Other species, however, which possess small population sizes, such as

R. brelichi and R. avunculus, show high levels of genetic diversity and low levels of

genomic inbreeding. Similarly, in the three populations of R. roxellana, the Shennongjia

population, which possesses the lowest population size, displays a higher level of

genetic diversity and lower level of genomic inbreeding. These findings suggest that

although R. brelichi and R. avunculus and the Shennongjia population might be at risk,

it possess significant genetic diversity and could thus help strengthen their long-term

survival potential. Intriguingly, R. roxellanawith large population size possess high genetic

diversity and low level of genetic load, but they show the highest recent inbreeding

level compared with the other snub-nosed monkeys. This suggests that, despite its

large population size, R. roxellana has likely been experiencing recent inbreeding, which

has not yet affected its mutational load and fitness. Analyses of homozygous-derived

deleterious mutations identified in all snub-nosed monkey species indicate that these

mutations are affecting immune, especially in smaller population sizes, indicating that

the long-term consequences of inbreeding may be resulting in an overall reduction of

immune capability in the snub-nosed monkeys, which could provide a dramatic effect
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on their long-term survival prospects. Altogether, our study provides valuable information

concerning the genomic impact of population decline of the snub-nosed monkeys. We

revealed multiple counterintuitive and unexpected patterns of genetic diversity in small

and large population, which will be essential for conservation management of these

endangered species.

Keywords: snub-nosed monkeys, population genomics, genetic diversity, inbreeding, genetic load,

population decline

INTRODUCTION

The snub-nosed monkey genus (Rhinopithecus) comprises
five closely related species. The golden snub-nosed monkey
(R. roxellana), Yunnan snub-nosed monkey (R. bieti), and
Guizhou snub-nosed monkey (R. brelichi) are endemic to
China, while the Tonkin snub-nosed monkey (R. avunculus)
is distributed in northern Vietnam, and the Myanmar/Nujiang
snub-nosed monkey (R. strykeri) inhabits northern Myanmar
and the Nujiang prefecture in China (Geissmann et al., 2011;
Liedigk et al., 2012; Ma et al., 2014; Meyer et al., 2017) (Figure 1).
Currently, all five species are classified as endangered or critically
endangered on the International Union for Conservation of
Nature (IUCN) Red List.

Fossil records indicate that the snub-nosed monkeys were
widely distributed across East Asia during the Late Pleistocene
and Early Holocene (Han, 1982; Jablonski and Pan, 1988;
Jablonski, 1998). Environmental changes during the Holocene,
however, led to habitat loss and fragmentation for all five species,
and this process was likely accelerated by increasing human
activities over the last 400 years (Li et al., 2002; Nuchel et al.,
2018). In fact, recent field surveys indicated that the population
sizes in these species were extremely low. For example, there
are only 22,500 individuals of R. roxellana, the most numerous
species, which are isolated in three fragmented populations
in the Minshan and Qionglai mountains (SG; Sichuan/Gansu
provinces), the Qinling mountain (QL; Shanxi province), and
the Shennongjia National Nature Reserve (SNJ; Hubei province)
(Quan and Xie, 2002; Liu et al., 2015; Li et al., 2018). Other
species, such as R. bieti and R. strykeri are only ∼3,000 (Li et al.,
2018; Zhao et al., 2019) and∼950 individuals (Meyer et al., 2017;
Ren et al., 2017; Yang et al., 2019), respectively, and there are
fewer than 400 and 200 individuals of most endangered species
R. brelichi (Guo et al., 2020) and R. avunculus (Nadler, 2018) left
in the wild, respectively.

These dramatically low population sizes, if maintained
long enough, may cause loss of genetic diversity, increase of
inbreeding, and accumulation of deleterious mutations (genetic
load), all of which can reduce adaptive potential and dramatically
increase risk of extinction (Hansson and Westerberg, 2002;
Frankham, 2005; Heller and Zavaleta, 2009; Jump et al., 2009).
These issues, however, can be mitigated with appropriate
conservation management that takes into account genetic
diversity (Frankham, 2005). Yet, despite the fact that many
studies have investigated the taxonomy, phylogeography, and
deep evolutionary history of the snub-nosed monkeys based on
mitochondrial DNA and microsatellites (Zhang and Ryder, 1997;

Li et al., 2004, 2007; Liu et al., 2007, 2009, 2015; Chang et al.,
2012; Liedigk et al., 2012; Yang et al., 2012; Kolleck et al., 2013;
Hong et al., 2017), and more recently based on whole genome
sequencing (Zhou et al., 2014, 2016; Yu et al., 2016; Kuang et al.,
2019), little is known about the genetic diversity and levels of
inbreeding in these populations.

To explore the genetic diversity, inbreeding level, and
genetic load in these species, we analyzed 62 genome sequences
representing individuals from all five snub-nosed monkeys.
Our study provides valuable information concerning the
genomic impact of population decline of the snub-nosed
monkeys. In particular, we unravel unexpected patterns
of genetic diversity in small and large population, which
will be essential for conservation management of these
endangered species.

MATERIALS AND METHODS

Data Collection and Genome Sequencing
Ninety-five published genomic data from all five snub-nosed
monkeys, including 57 R. roxellana, 28 R. bieti, 1 R. avunculus,
5 R. brelichi, and 4 R. strykeri (Zhou et al., 2014, 2016; Yu
et al., 2016; Kuang et al., 2019) were downloaded from the
National Center for Biotechnology Information (NCBI). An
additional, seven R. bieti, three R. strykeri, and one R. avunculus
were sequenced in this study (Supplementary Table 1). A bone
(R.strykeri-7) and two skin (R.strykeri-5 and R.strykeri-6)
samples of R. strykeri individuals from the Gaoligong Mountain
National Nature Reserve were provided by the Nujiang Forest
Public Security Bureau and the Institute of Eastern-Himalaya
Biodiversity Research, respectively. A skin (R.avunculus-2)
sample of R. avunculus from the Ba Be National Park of northern
Vietnam was provided by the Gene Bank of Primates at the
German Primate Center. DNA samples of R. bieti from the
Baima Mountain National Nature Reserve were provided by
the Animal Branch of the Germplasm Bank of wild Species
of Chinese Academy of Science. With the addition of these
new samples, we obtained a total of 106 population genomes
(average 12.02-fold coverage) representing all five snub-nosed
monkeys. The genomic sequences from Pygathrix nemaeus (red
shanked douc langur) and Macaca mulatta (rhesus macaque;
SRS748669; Zhang et al., 2014) were used as outgroups. The DNA
sample of Pygathrix nemaeus obtained from the Animal Branch
of the Germplasm Bank of wild Species of Chinese Academy
of Science was used to generate the genomic sequences (32.13-
fold coverage).
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FIGURE 1 | Geographic distribution of the Rhinopithecus species. The map is drawn using ESRI ArcGIS 10.2.

Genomic DNAs from the skin and bone samples of R. strykeri
and R. avunculus were extracted in the ancient DNA extraction
facility of the Institute of Vertebrate Paleontology and
Paleoanthropology (IVPP), Chinese Academy of Sciences,
Beijing, China (for details, see Supplementary Notes).
Sequencing libraries were produced using a double stranded
library preparation protocol (Meyer and Kircher, 2010;
Kircher et al., 2012) with uracil-DNA-glycosylase (UDG)
and endonuclease (Endo VIII) treated (for details see
Supplementary Notes). Sequencing libraries were sequenced
using paired-end (PE) 150-bp reads on an Illumina HiSeq
X-ten platform. Reads were demultiplexed by allowing one
mismatch on each pair of reads. A modified version of SeqPrep
(John, 2011) were used to collapse the PE reads (at least 11-bp
overlap with one mismatch allowed), and base quality in the
overlapping regions was set to the highest Phred score. Collapsed
pairs were aligned using BWA samse v 0.6.1 (Li and Durbin,
2009) after stripping adapters. All duplicates were removed with
bam-rmdup (https://github.com/mpieva/biohazard-tools) by
keeping only the read for each set of duplicates with the highest
quality bases.

Sequencing libraries based on high-quality genomic DNAs
from R. bieti and P. nemaeus were constructed with an insert size
of 350 bp and sequenced on an Illumina HiSeq 2500 platform
using PE 100–150 bp reads. All newly sequenced genomic data

generated for this study were deposited on the Short Read
Archive (SRA) database under project number: PRJNA616055.

Reads Alignment, Genotype Calling, and
Filtering
A high-quality reference genome is needed for population
genomic studies. The published chromosome-level genome
of the golden snub-nosed monkey (Wang et al., 2019a)
was used as the reference genome here. Reads were aligned
to the reference genome with BWA-MEM (Li and Durbin,
2009) and SAMtools v.1.3 to generate BAM files (Li et al.,
2009). Aligned reads were realigned around inserts/deletions
(INDELs) using GATK v3.8 indelRealigner (Mckenna et al.,
2010) and duplicate reads were marked using Picard v2.10.3
(https://broadinstitute.github.io/picard).

We called single nucleotide polymorphism (SNPs) with GATK
v3.8 HaplotypeCaller (Mckenna et al., 2010). Raw SNPs were
then filtered for quality and depth using the following criteria:
Variants failing the recommended GATK hard filters (QD < 2.0
|| FS > 60.0 || MQ < 40.0 || ReadPosRankSum <-8.0 || SB >=

−1.0 || DP < 3), low Phred score (QUAL of <30), missingness
above 20%, allele frequency <5% and sites identified within CpG
islands using CpGIScan software (Jian et al., 2017) with default
parameter values were excluded. Only biallelic autosomal SNPs
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were analyzed in this study (i.e., triallelic SNPs and SNPs with
mapping to the chromosomes X and Y were excluded).

Close Kinship Analyses
Given that the close relationship of samples has the potential
to bias the heterozygosity, inbreeding, and genetic load results,
so the kinship analyses among the collected genome sequences
from the individuals for each species were performed with the
Kinship-based Inference for Genome-wide association studies
(KING) (Manichaikul et al., 2010) to remove the potential
consanguineous individuals. Kinship coefficient was estimated
with the “-kinship” command from KING v.2.2.5, which reflects
the proportion of SNPs with identical state (IBS0, identity by
state zero) between individuals. Negative coefficients indicate
unrelated relationships, while positive coefficients indicate
genealogy links between individuals. Nonconsanguineous
individuals (kinship coefficients<0) were used in the subsequent
analyses (Supplementary Table 1).

Whole Genome Heterozygosity and
Nucleotide Mismatches Analyses
Whole genome heterozygosity (He) and pairwise nucleotide
divergence were computed in 100-kb sliding-window size with no
step using variant cell format (VCF) tools (Danecek et al., 2011)
and in-house Perl scripts, respectively.

Runs of Homozygosity and Inbreeding
Analyses
Run of homozygosity (ROHs) are contiguous homozygous
segments of the genome where the two haplotypes inherited
from the parents are identical (Gibson et al., 2006), which can
be used to estimate inbreeding level (Keller et al., 2011). Since
recombination events interrupt lengthy genome segment, thus
long ROHs (long-ROHs) represent recent inbreeding events
(Van Der Valk et al., 2019a). We used the physical length of
ROHs as an approximation for genetic length and estimated
that the long ROHs of 1-Mb trace back to <50 generations
ago (g = 100 / 2 ∗ ROHLength, where g is the number of
generations and ROHLength is the ROHs length in centimorgans)
(Thompson, 2013). ROHs were identified for each individual
using the “run of homozygosity” function in the program
PLINK v1.90 (Purcell et al., 2007). We ran sliding windows of
20 SNPs on the VCF files of all genomes, requiring at least
one SNP per 10 kb. In each individual genome, we allowed
for the maximum of one heterozygous and 50 missing calls
per windows.

The proportion of the genome within ROHs, i.e., genomic
inbreeding coefficient (FROH), was calculated as the total length of
ROHs within an individual divided by the length of the genome
(Mcquillan et al., 2008).

Genetic Load Analyses
Deleterious mutations (genetic load) are predicted to disrupt
gene function, and therefore expected to substantially reduce
the mean fitness of individuals in a species/population (Mattila
et al., 2012). To estimate genetic load in the endangered snub-
nosed monkeys, we used SnpEff v.4.3t (Cingolani et al., 2012)

to annotate variant sites (in our multisample VCF) based on
the mappings and genome annotation of the golden snub-
nosed monkey (Wang et al., 2019a) and to identify loss-of-
function (LOF), missense, and synonymous mutations. The
major homozygous alleles (allele frequency above 0.5) in each
species and also in at least one of the outgroup species were used
to represent the ancestral state. As an indicator of mutational
load, for each individual, we counted the number of genes
containing one or more homozygous-derived LOF and the total
number of homozygous-derived missense mutations divided by
the number of synonymous mutations (Fay et al., 2001; Van Der
Valk et al., 2020), respectively.

We identified candidate genes with deleterious mutations
for each species/population as those satisfying the following
criteria: (i) mutations classified as LOF and (ii) mutations being
homozygous and derived alleles.

RESULTS AND DISCUSSION

Data, Sequencing, and SNP Calling
We analyzed a total of 106 individuals from all five snub-nosed
monkey species and two outgroups, one Pygathrix nemaeus
and one Macaca mulatta (Supplementary Table 1). Short
reads from each individual were aligned to the high-quality
chromosomal reference genome of the golden snub-nosed
monkey (Wang et al., 2019a). An average mapping rate is
99.14% (78.73–100%), and average genomic depth is 12.02-fold
coverage (5.04–35.25-fold coverage) (Supplementary Table 1).
The high alignment rate and coverage ensures accurate
identification of genetic variations. After stringent quality
filtering, we identified a total of 108.28 million high-quality
autosomal SNPs in the snub-nosed monkeys and the
two outgroups.

Based on the kinship analyses, 44 potential consanguineous
individuals (kinship coefficients > 0) were removed, resulting
in a total of 62 individuals from all five snub-nosed monkeys
used in the present analyses (kinship coefficients < 0). These
included 40 individuals from R. roxellana (22 from SG, 13 from
QL, and 5 from SNJ), 14 R. bieti, 4 R. strykeri, 2 R. avunculus,
and 2 R. brelichi (Supplementary Table 1). After the removal of
consanguineous individuals, we identified a total of 98.97 million
high-quality autosomal SNPs in the 62 snub-nosed monkeys and
the two outgroups.

Genetic Diversity Analyses
Whole genome heterozygosity (He) in snub-nosed monkeys
ranged from 0.034 to 0.069% (Figure 2A). These estimates are
similar to those obtained from other endangered and critically
endangered primates, including aye-aye, Eastern lowland gorilla,
mountain gorilla, Bornean orangutan, and pileated gibbon
(0.051–0.073%) (Locke et al., 2011; Perry et al., 2012; Carbone
et al., 2014; Xue et al., 2015), as well as estimated obtained
from carnivores, including Bengal tiger, Amur tiger, white tiger,
white lion, and African lion (0.040–0.073%) (Cho et al., 2013;
Dobrynin et al., 2015). These estimates suggest that snub-nosed
monkeys possess low genetic diversity, a pattern that may be

Frontiers in Genetics | www.frontiersin.org 4 December 2020 | Volume 11 | Article 615926

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kuang et al. Genomic Consequences in Endangered Rhinopithecus

FIGURE 2 | Genetic diversity and inbreeding level in the snub-nosed monkeys. Error bars represent standard deviation (sd). (A) The whole genome heterozygosity

(He) of R. brelichi, R. roxellana, R. avunculus, R. bieti, and R. strykeri. Within R. roxellana: ALL, three populations; QL, Qinling population; SG, Sichuan/Gansu

population; SNJ, Shennongjia population. (B) Fraction of the genomes in all ROHs (>100 kb) representing the genomic inbreeding coefficient (FROH ). (C) Fraction of

genomes in long ROHs (>1Mb; ROH1Mb) representing the recent inbreeding levels of the snub-nosed monkeys.

related to recent environment change and human activities (Pan
and Jablonski, 1987; Li et al., 2002; Zhou et al., 2016).

Contrary to the prevailing notion that smaller populations
generally show lower levels of genetic diversity (Leffler et al.,
2012; Cho et al., 2013; Prado Martinez et al., 2013; Díez-
del-Molino et al., 2018), we found that R. brelichi possessed
the highest genetic diversity (He = 0.069%; p < 0.05, Wilcox
test; Figure 2A), despite its population size being lower (<400
individuals) than most other species. The unexpectedly high
genetic diversity found in R. brelichi may be caused by
interspecific hybridization (Zhou et al., 2014) or only small
population remained from a large population in the recent
past (Kolleck et al., 2013). R. roxellana (He = 0.043%) and
R. avunculus (He = 0.042%) showed the second highest levels
of genetic diversity, both higher than R. bieti (He = 0.034%)
and R. strykeri (He = 0.036%) (p < 0.05, Wilcox test). Lower
genetic diversity estimates for R. bieti and R. strykeri are
consistent with their small population sizes (∼3,000 individuals
for R. bieti and 950 individuals for R. strykeri). The rather higher
level of genetic diversity found in R. roxellana is consistent
with their large population size (∼22,500 individuals). We
found, however, that although its small population size (<200
individuals; the lowest of all five snub-nosed monkey species),
R. avunculus possesses relatively high genetic diversity, possibly
due to ancient introgression or only small population remained
from a large population in the recent past, similarly to R. brelichi.
Intriguingly, the average pairwise nucleotide mismatches in 100-
kb windows across the genome was 0.154% within R. avunculus,
which is larger than in other snub-nosed monkeys (0.052–
0.093%), suggesting a substantial amount of genetic divergence
within the R. avunculus population. The two individuals of
R. avunculus were potentially originated from two substantially
diverged populations. These findings are consistent with field
surveys that found at least two noncontiguous subpopulations
in northern Vietnam (Boonratana and Le, 1998; Zhang et al.,

2016). Our results indicate that these populations are highly
divergent in R. avunculus, suggesting that they should be
managed independently.

As for R. brelichi and R. avunculus, we found that the
smallest population of R. roxellana, i.e., SNJ population (∼1,200
individuals) also possessed relatively higher levels of genetic
diversity (He = 0.044%) compared with the QL population
(He = 0.038%, ∼5,500 individuals, p = 0.0193, Wilcox test) and
even similarly do for the largest population of R. roxellana, i.e.,
SG population (He = 0.046%, approximately 16,500 individuals,
p= 0.5695, Wilcox test).

Genomic Inbreeding and Recent
Inbreeding Analyses
We found that genomic inbreeding coefficient (FROH) of
the snub-nosed monkeys to be between 49.37 and 78.86%
(Figure 2B). Compared with other critically endangered or
endangered species, the genomic inbreeding levels of the
snub-nosed monkeys was higher than in the eastern gorillas
(FROH = 34–39%) (Xue et al., 2015; Van Der Valk et al., 2019a),
vervets (FROH = 6–12%) (Van Der Valk et al., 2019a), and
pangolins (FROH = 12–42%) (Hu et al., 2020). These high levels of
inbreeding of the snub-nosed monkeys are consistent with recent
dramatic population decline (Zhou et al., 2016).

We found that R. brelichi (FROH = 49.37%) possessed
the lowest level of genomic inbreeding and that R. bieti
(FROH = 78.86%) and R. strykeri (FROH = 73.43%) have
the highest level among the five snub-nosed monkey species
(FROH = 68.11–78.86%) (p < 0.05, Wilcox test). Those of
R. roxellana (FROH = 68.11%) and R. avunculus (FROH = 68.17%)
are in between. As for heterozygosity levels, we found that
the SNJ population of R. roxellana also possessed the lowest
level of genomic inbreeding (FROH = 62.83%) compared with
the SG (FROH = 67.24%, p = 0.2495, Wilcox test) and QL
populations (FROH = 72.71%, p= 0.00262,Wilcox test). Analyses
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of long-ROHs (>1Mb; ROH1Mb) indicated that although there
are more individuals of R. roxellana than other snub-nosed
monkey species, this species generally possessed more long-
ROHs (ROH1Mb, 14.78%) than other species (R. brelichi, 7.41%;
R. bieti, 10.85%; R. strykeri, 3.92%; and R. avunculus, 7.18%) (p <

0.05,Wilcox test), which all have smaller population sizes.Within
R. roxellana, the SNJ with the smallest population size possessed
the lowest recent inbreeding level (ROH1Mb, 10.19%) compared
with the other two populations (SG, 13.01% and QL, 19.30%) (p
< 0.05, Wilcox test) (Figure 2C).

It is generally thought that the smaller the population, the
higher the inbreeding level (Keller and Waller, 2002). However,
the results demonstrated that R. brelichi, R. avunculus, and
the SNJ population of R. roxellana, which represented small
populations, show high genetic diversity and low genomic and
recent inbreeding. Thus, it seems that a potential mechanism
could avoid inbreeding between close relatives, for example, the
individual dispersal/transfer between social groups among these
species/populations (Qi et al., 2009, 2014; Guo et al., 2010; Chang
et al., 2014).

In comparison, R. roxellana has a large population size
and demonstrates high genetic diversity and low genomic
inbreeding, but high recent inbreeding. We speculate that the
high recent inbreeding might result from the lower levels of
population connectivity and habit utilization (∼0.528–0.587
km²/individual) that was shaped by a recent increase in human
activity for R. roxellana compared with the other snub-nosed
monkeys (1–3.763 km²/individual; Supplementary Table 2) (Liu
et al., 2015; Meyer et al., 2017; Guo et al., 2020). Thus,
R. roxellana populations have experienced dozens of recent
generations of close inbreeding in spite of their largest population
size in the wild compared with other snub-nosed monkeys
(Zhou et al., 2016).

Genetic Load Analyses
High levels of inbreeding can lead to increased homozygosity
of recessive deleterious mutations, especially for small and
isolated species/populations (Charlesworth and Willis, 2009),
which will disrupt gene function or reduce individual fitness.
We found that among the snub-nosed monkeys, individuals of
R. roxellana with the highest recent inbreeding level carried
significantly fewer homozygous-derived LOF (homozygous
LOF/synonymous, 0.36%) than the other snub-nosed monkey
species (R. brelichi: homozygous LOF/synonymous, 0.45%;
R. strykeri: homozygous LOF/synonymous, 0.49%; R. avunculus:
homozygous LOF/synonymous, 0.49%; and R. bieti: homozygous
LOF/synonymous, 0.55%) (p < 0.001, Wilcox test) (Figure 3A).
A similar pattern was observed when analyzing homozygous-
derived missense mutations (Figure 3B). This suggests that
purging homozygous-derived deleterious mutations is more
efficient in R. roxellana compared with the other snub-nosed
monkeys with smaller population sizes.

Our finding that R. roxellana possess high levels of inbreeding
and relatively lower levels of mutational load results suggest that
inbreeding do not necessarily lead to higher level of mutational
load as previously suggested (Reed and Frankham, 2003), which
is corroborated by the evidence that there is very low overlapping

of homozygous-derived deleterious mutation regions with the
long-ROH regions (4.86 and 12.90% overlapping between the
homozygous-derived LOF and missense mutations with the
long-ROHs, respectively), but rather more overlap with the
short-ROHs regions (47.18 and 54.99%, respectively) (Figure 4).
The present observation in R. roxellana that recent inbreeding
did not lead to an excessive accumulation of homozygous-
derived deleterious mutations was also recently reported in
the snow leopard, island fox, and cheetah (Van Der Valk
et al., 2019b). Interestingly, although the three populations of
R. roxellana possessed highly different ROHs and heterozygosity
profiles, we found that their levels of mutational load were
remarkably similar (SNJ: homozygous LOF/synonymous, 0.33%;
SG: homozygous LOF/synonymous, 0.38%; QL: homozygous
LOF/synonymous, 0.38%) (p > 0.05, Wilcox test). Altogether,
these findings support the idea that mutational load may
build up over much longer time frame than inbreeding
(Van Der Valk et al., 2019b).

Our findings of a significantly fewer homozygous-derived
deleterious mutations in R. roxellana than in the other snub-
nosed monkey species contradict that of a previous study,
which identified similar numbers of LOF and derived missense
mutations in R. roxellana, R. bieti, and R. brelichi (Zhou et al.,
2016). These differences are likely the results of difference in
sample sizes (R. roxellana: 40 in the present study vs. 26 in Zhou
et al., 2016; R. bieti: 14 in the present study vs. 8 in Zhou et al.,
2016; R. brelichi: 2 in the present study vs. 3 in Zhou et al.,
2016) and the use of a high-quality chromosome-level reference
genome assembly in the present study.

Many of the genes containing homozygous LOF mutations in
the snub-nosed monkey genomes were associated with functions
related to immunity (three genes in R. roxellana, nine genes
in R. bieti, eight genes in R. strykeri, nine genes in R. brelichi,
and nine genes in R. avunculus, Supplementary Table 3). For
example, we found LOF mutations at the coagulation factor
II receptor-like 3 gene (F2RL3), which is involved in the
recruitment and behavior of immune cells and blood coagulation
(Vergnolle et al., 2002; Leger et al., 2006; Gomides et al., 2012;
Hossain et al., 2015), segregating in all five species. In addition,
more immune genes with LOF mutations were found in the
snub-nosed monkey species with the smaller population sizes
(i.e., R. bieti, R. strykeri, R. brelichi, and R. avunculus). These
include genes such as calmodulin-like protein 6 (CALML6)
and lymphocyte-specific protein tyrosine kinase genes (LCK),
both of which play a key role in the activation of T/B
lymphocytes and the maintenance of balance of the immune
system (Tewari et al., 2006; Wang et al., 2019b; Sheng et al.,
2020). Altogether, this suggests that inbreeding depression may
manifest in the form of lowered immune capability in the
snub-nosed monkeys.

CONCLUSION

Overall, this study provides new insights into the impact
of population decline on genomic diversity in a set
of highly endangered species, the snub-nosed monkeys
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FIGURE 3 | Genetic load of the snub-nosed monkeys. Error bars represent standard deviation (sd). (A) The ratios of the total numbers of homozygous-derived loss of

function (LOF) to synonymous mutations of the species/populations. (B) The ratios of the homozygous-derived missense to synonymous mutations.

FIGURE 4 | Fractions of homozygous LOF and missense mutations in the ROHs. Error bars represent standard deviation (sd). Bars with solid lines represent short

ROHs (100 kb−1Mb), and bars with dashed lines represent long ROHs (>1Mb).

(genus: Rhinopithecus). Our analyses demonstrated multiple
counterintuitive patterns. For example, R. brelichi, R. avunculus,
and SNJ population of R. roxellana with the small population
size showed higher levels of genetic diversity, lower levels of
genomic diversity, and recent inbreeding than other snub-nosed
monkeys and other populations in R. roxellana with the larger
population sizes. These findings suggest that, although their

census population size is low, they have not yet lost much (if
any) of their genetic variability over recent years. However,
R. roxellana with the largest population size possesses high levels
of recent breeding, despite low levels of genomic inbreeding and
genetic load as well as high overall genetic diversity. This suggest
that, despite its large population size, this species has likely been
experiencing recent inbreeding, which has not yet affected its
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overall mutational load, and perhaps has not yet affected its
fitness. Analyses of homozygous-derived deleterious mutations
identified in all snub-nosed monkeys, however, suggest that
these types of mutations are affecting immune, especially in
smaller population sizes. This suggests that the long-term
consequences of inbreeding may be resulting in an overall
reduction of immune capability in the snub-nosed monkeys,
which could provide a dramatic effect on their long-term
survival prospects.
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