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Abstract – Plasmodium vivax is the most widely distributed human malaria parasite. Outside sub-Saharan Africa,
the proportion of P. vivax malaria is rising. A major cause for concern is the re-emergence of Plasmodium vivax
in malaria-free areas. Oman, situated in the south-eastern corner of the Arabian Peninsula, has long been an area
of vivax malaria transmission but no locally acquired cases were reported in 2004. However, local transmission
has been registered in small outbreaks since 2007. In this study, a local outbreak of 54 cases over 50 days in 2014
was analyzed retrospectively and stained blood slides have been obtained for parasite identification and genotyping.
The aim of this study was to identify the geographical origin of these cases, in an attempt to differentiate between
imported cases and local transmission. Using circumsporozoite protein (csp), merozoite surface protein 1 (msp1),
and merozoite surface protein 3 (msp3) markers for genotyping of parasite DNA obtained by scrapping off the surface
of smears, genetic diversity and phylogenetic analysis were performed. The study found that the samples had very low
genetic diversity, a temperate genotype, and a high genetic distance, with most of the reference strains coming from
endemic countries. We conclude that a small outbreak of imported malaria is not associated with re-emergence of
malaria transmission in Oman, as no new cases have been seen since the outbreak ended.
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Résumé – Une épidémie de paludisme à Plasmodium vivax acquise localement chez des travailleurs migrants
en Oman. Plasmodium vivax est le parasite du paludisme humain le plus répandu. En dehors de l’Afrique
subsaharienne, la proportion de paludisme par P. vivax augmente. Une préoccupation majeure est la réémergence
de Plasmodium vivax dans les zones sans paludisme. Oman, situé dans le coin sud-est de la péninsule arabique,
est depuis longtemps une zone de transmission de P. vivax mais aucun cas localement acquis n’a été signalé en
2004. Cependant, la transmission locale a été rapportée dans de petites épidémies depuis 2007. Dans ce travail,
une épidémie locale de 54 cas pendant 50 jours en 2014 a été analysée rétrospectivement et des lames de sang
colorées ont été obtenues pour l’identification et le génotypage du parasite. L’objectif de cette étude était
d’identifier l’origine géographique de ces cas, afin de différencier les cas importés et la transmission locale. Une
analyse de la diversité génétique et une analyse phylogénétique ont été effectuées en utilisant les marqueurs csp,
msp1 et msp3 pour le génotypage de l’ADN des parasites, obtenu en grattant la surface des frottis. L’étude a
révélé que les échantillons avaient une très faible diversité génétique, un génotype tempéré et une grande distance
génétique avec la plupart des souches de référence provenant de pays endémiques. Nous concluons qu’une petite
flambée de paludisme importé n’est pas associée à la réémergence de la transmission du paludisme en Oman, car
aucun nouveau cas n’a été observé après la fin de la flambée.
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Introduction

Malaria due to P. vivax results in considerable morbidity
and mortality [2, 6, 11, 16]. P. vivax is currently the most
widely distributed human malaria parasite with an estimated
2.5 billion people at risk [14]. P. vivax accounts for more than
half of all malaria cases in Latin America, the Middle East,
Asia, and the Western Pacific. Outside sub-Saharan Africa,
the proportions of P. vivax malaria are rising, a clear indication
of the resilience of this parasite to control measures [10, 40].
P. vivax has long been considered a neglected parasite while
its socio-economic burden in endemic areas is huge. P. vivax
exist in a temperate form with a long latency period up to nine
months and a tropical form with a short latency period [4, 5,
20, 28, 39]. The two forms can be separated by haplotype
analysis [24, 38].

The risk of introducing P. vivax into previously malaria-
free areas is related to population movements [28], as recently
demonstrated in Greece [1, 8, 34]. Thus, extensive knowledge
about local epidemiology and the genetics of P. vivax malaria is
of the highest importance in order to achieve effective control
measures in malaria-endemic areas.

Oman is situated in the south-eastern corner of the Arabian
Peninsula, bordering the Kingdom of Saudi Arabia, the United
Arab Emirates, and Yemen. The summer is hot and humid and
the winter is colder with some rain. The population in 2017
was estimated to be 2.5 million Omani nationals plus an
expatriate population of 2.12 million (National Centre for
Statistics and Information: https://www.ncsi.gov.om/Pages/
NCSI.aspx). Oman has long been an area of P. vivax malaria
transmission (33,000 cases in 1990), but control aiming at
eradication was started in 1991 and in 2000 the annual parasite
incidence had been reduced to 1 per 10,000 population [25].
Oman registered no locally transmitted cases of malaria cases
in 2004 for the first time after the eradication program started.
However, in September 2007, a focus of local transmission
(four cases) was found in Dakhiliya governorate and in 2008
in North Batinah governorate (eight cases). Secondary cases
occurred in North Sharqiya governorate in 2010, North
Sharqiya and Dakhiliya in 2011, and North and South Sharqiya
and North Batinah in 2012. Local transmission was again
found in 2013 in Al Dakhiliya, North, Al Batinah, and South
Sharqiya governorates [25]. The number of imported cases
(99.24% of all cases) started to show a decrease from 2012
(2029 cases) to 2013 (1440 cases), while 11 locally acquired
cases were detected in 2013. These locally acquired cases most
probably reflect repeated re-introduction from the high number
of migrant workers from the Indian subcontinent visiting their
home countries where malaria, especially P. vivax, is endemic.

Several molecular markers have been tested to examine
parasite population diversity [7]. Microsatellites are probably
the most informative markers to conduct an outbreak analysis
[3, 12, 22, 23]; however, this method requires sufficient
amounts of good quality DNA, and is not suitable for a
retrospective analysis restricted to samples of low quality and
quantity obtained after scraping of Giemsa-stained blood
smears. Among the other markers generally described,
genes encoding the circumsporozoite protein (csp) [17],

merozoite surface protein 1 (msp1), and merozoite surface
protein 3 (msp3) have been used extensively [15, 17, 30, 32,
35]. These genetic polymorphisms have been published from
samples collected in many endemic areas, leading to the
possibility of investigating the origin of an outbreak by
sequence comparisons. However, although a high number of
sequences of these markers are available in databases, most
of them have been collected in areas with high endemicity,
including Brazil, India, and Papua New Guinea. Little is
known about Plasmodium vivax parasites circulating in areas
with low and very low endemicity or causing outbreaks in
areas free of malaria.

This study is a retrospective analysis of DNA samples
collected in Oman from Giemsa-stained blood films obtained
from 45 patients diagnosed with malaria in 2014 and collected
during a short period of less than 50 days in a focus area of
16 km2. It is important to determine whether this malaria trans-
mission was introduced into Oman repeatedly from migrant
workers coming from malaria-endemic areas, or was locally
re-established.

Material and methods

Ethical clearance

This study did not impact the diagnosis, treatment, or
follow-up of patients since samples were obtained after the
end of the outbreak. Ethical clearance was obtained from the
Ministry of Health, Sultanate of Oman.

Malaria outbreak

Time of outbreak

The first case was registered on 22 September 2014 and the
last case on 9 November 2014.

Geography

All cases were found within a 4 · 4 km area of Mabela, in
the Seeb district of Muscat governorate, Oman. This is an area
with intensive construction of new buildings.

Breeding sites

Environmental investigation was initiated and seven open
water tanks related to building construction sites and 15 pools
used for irrigation were sampled. Three water tanks and five
pools were identified with Anopheles larvae. The malaria
vector in Oman is Anopheles culicifacies.

Malaria patients

Fifty-four cases were registered from the area, 52 men and
2 women (mean age = 32 ± 8). All patients had P. vivax circu-
lating blood stages as detected by experienced microscopists.
One patient (Omani national) had recently traveled to Pakistan
and was excluded from the study. The remaining 53 patients
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were all expatriates from India (n = 14), Pakistan (n = 6),
Bangladesh (n = 32), and Egypt (n = 1). The epidemiological
classification of cases was based on the field: it took into con-
sideration the travel history of the patients, date of onset, and
entomological data. From the travel history, one out of 54
patients had no travel history to a malaria-endemic country.
The transmission of malaria most likely occurred near that
patient.

All patients were treated with chloroquine and received a
regimen of 14 days of primaquine to kill hypnozoites.

The classification of malaria cases into 1-Imported case, 2-
Indigenous case, 3-Introduced case, and 4-Locally acquired
case, was performed according to the 2017 WHO definitions
[41].

DNA analysis

Dry blood films from 45 different patients were
obtained by scrapping off the surface of the smear with a
scalpel and re-suspending in 100 lL of phosphate-buffered
saline (PBS) [33]. Genomic DNA was extracted using a
QIAamp DNA mini kit (Qiagen) according to the manufac-
turer’s instructions.

Extracted DNA was first submitted to polymerase chain
reaction (PCR) for the plasmodium genus and Plasmodium
vivax species detection, as previously described [26]. Consider-
ing the low amount of DNA collected from these smears, it was
not possible to conduct a microsatellite analysis of parasite
populations, and genotyping using nested or semi-nested
PCR was performed for Pvcsp, Pvmsp1 (fragment 1), and
Pvmsp3 alpha block II.

All amplification reactions were carried out in a total vol-
ume of 20 lL and the presence of 250 nM of each oligonu-
cleotide primer for Pvcsp and Pvmsp1 or 0.1 lM of each
oligonucleotide primer for Pvmsp3 alpha and 2.0 lL of Light-
Cycler FastStart DNA Master SYBR Green 1 reaction mix.

Primary amplification reactions were initiated with 5.0 lL
of the template genomic DNA prepared from Giemsa-stained
thin blood smears and 1.0 lL of the product of these reactions
was used to initiate the secondary amplification reactions. The
cycling parameters for PCR were as follows: an initial denatu-
ration step at 95 �C for 10 min preceded the cycles of anneal-
ing at a temperature defined for each primer pair for 2 min for
Pvmsp1 and Pvcsp PCRs or 30 s for Pvmsp3 alpha PCR,
extension step at 72 �C for 2 min for Pvmsp1 and Pvcsp or
at 68 �C for 2.5 min for Pvmsp3 alpha PCR, and a denatura-
tion step at 95 �C for 1 min for Pvmsp1 and Pvcsp PCRs or
30 s for Pvmsp3 alpha PCR.

After a final annealing step followed by 5 min of extension
only for Pvmsp1 and Pvcsp PCRs, reaction mixtures from each
capillary were collected and stored at 4 �C until secondary
PCR or sequencing analysis.

The sequences were determined directly from the PCR-
purified templates using a Qiagen DNA purification kit,
according to the manufacturer’s instructions. Direct sequencing
of the full length of Pvcsp and Pvmsp3 alpha was performed in
both directions using 3730 XL DNA analyzer (Applied
Biosystems).

Sequences analysis

To carry out the study of the potential origin of the samples
collected in Oman, nucleotide sequences with the same gene
fragment were extracted from GenBank. These reference
strains were selected either because they were from eight coun-
tries known to be the origin of frequent imported cases in
Oman (India, Bangladesh, Pakistan, North Korea, Iran, Mauri-
tania, Brazil, and El Salvador), or because they had the three
genes available for the same strain. The accession codes and
exact positions of the selected parts of the genes are reported
in Table 1.

Each Omani and reference sequences were trimmed to con-
serve only the highest quality sequence part, using BioEdit
sequence alignment editor, version 7.2.5. The alignments were
done through Muscle [9] for Pvmsp1 and Pvmsp3 alpha, and
had to be done manually for csp due to its repetitive-patterns
nature. To calculate the nucleotide diversity of the genes
among the Omani sequences compared to the potential diver-
sity of the genes, Oman samples and the reference strains were
analyzed using DnaSP, version 5.10.01.

These sequences have been deposited in GenBank under
Submission Numbers KY629006–KY6290023 for pvcsp,
KY629024–KY629045 for pvmsp1, and KY629046–
KY629070 for pvmsp3.

Phylogenetic inferences from concatenated amino acid
sequences of Omani samples and reference strains were rooted
on P. cynomolgi using the maximum likelihood method based
on the Tamura-Nei model [36]. P. cynomolgi is the closest
known relative of P. vivax. Initial trees for the heuristic search
were obtained automatically by applying neighbor-joining and
BioNJ algorithms to a matrix of pairwise distances estimated
using the maximum composite likelihood (MCL) approach,
and then selecting the topology with the superior log likelihood
value [21].

Results

Fifty-four patients were infected during the outbreak per-
iod. The stained slides of nine patients had not been kept. Sam-
ples were collected from 45 Giemsa-stained blood smears and
tested for plasmodium DNA. Three of these slides were dis-
carded because of identification failure, DNA from five slides
was degraded, and we failed to obtain DNA from two slides.
Finally, DNA was obtained from 35 slides and submitted to
PCR to confirm the presence of Plasmodium vivax DNA.
These 35 samples were submitted to PCR for the Pvcsp, Pvm-
sp1, and Pvmsp3 alpha genes, and amplicons were double-
stranded sequenced. After manual cleaning of INDEL or
sequencing errors, sequences from 18, 22, and 25 samples
were selected for Pvcsp, Pvmsp1, and Pvmsp3 alpha, respec-
tively (Figure 1).

The nucleotide diversity (p) and the average number of
nucleotide differences (k) of Pvcsp, Pvmsp1, and Pvmsp3
alpha were p = 0.00065, 0.00000, and 0.00100 and
k = 0.333, 0.00000, and 0.920, respectively. In comparison,
those of the reference strains were p = 0.04016, 0.143, and
0.02967 and k = 9.800, 39.6, and 27.619, respectively.
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The circumsporozoite protein gene of P. vivax, located on
chromosome 8, comprises a central repetitive domain flanked
by two conserved domains [17]. The repetitive domain is com-
posed of a 27 bp element repeated a variable number of times.
The VK 210 type (type I: GDRADGQPA) and the VK 247
type (type II: ANGAGNQPG) are the most useful markers
for pvcsp genotyping. We obtained correct pvcsp sequencing
for 18 samples among the 35. All these 18 samples displayed
the VK210 type with a single haplotype (six repeats of
GDRADGQPA and nine repeats of GDRAAGQPA).

The merozoite surface protein 1 gene of P. vivax, located
on chromosome 7, encodes a protein of 190 kDa with 7 inter-
allele conserved blocks and 6 variable blocks. Three segments

(F1, F2, F3) have been described for P. vivax genotyping [31].
The F1 fragment, located at variable block 2, was sequenced
here. Twenty-two samples provided good quality sequences
and were further analyzed. Only one haplotype could be
detected using five short tandem repeats (tripeptides)
(Table 2), compared to the different haplotypes of the reference
sequences from seven different areas of transmission.

The merozoite surface protein 3 alpha of P. vivax is a
member of the msp3 family (a, b, c), located on chromosome
10, which encodes a protein with a predominant central
alanine-rich domain [18]. This gene has been extensively used
because of its high genetic diversity. Two blocks displayed in
Pvmsp3 alpha have been studied, block I (residues 104–396)

54 suspected cases

18 csp sequences 22 msp1 sequences  25 msp3 sequences 

9 samples lacking

45 stained blood
slides 

35 DNA extracted

10 slides excluded

35 P. vivax PCR
confirmed  

Figure 1. Study flow chart. Ten samples were excluded from the analysis due to lack of identification, DNA degradation, or absence of DNA
extracted from scrapping. DNA sequences obtained after PCR for the Pvcsp, Pvmsp1, and Pvmsp3 alpha genes were cured to limit nucleotide
errors, to keep sequences of the highest quality.

Table 1. GenBank accession numbers and selected sequence position of reference strains.

Brazil I India VII Mauritania I North Korea El Salvador I Iran Bangladesh Pakistan

PvCSP KQ234816 KQ234274 RC KQ235043 KQ235379 NC_009913 KT588207
507011–507850 433184–433925 1478–2193 59919–60852 1537833–1538631

PvMSP1 KQ234802 KQ234252 KQ235032 KQ235335 NC_009912 AF435620
55322–55757 355050–355458 261679–262102 1203–1667 1158314–1158763

PvMSP3A RC KQ234824 RC KQ234312 RC KQ235063 RC KQ235189 RC NC_009915 AF491951 AY266090
1212661–1213729 169568–170643 1214086–1215161 256728–257810 1218991–1220078
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and block II (434–687), which is known to be relatively well
conserved. Its main non-random polymorphisms appear in
motif I from amino acid positions 533 to 538 and in motif II
from 580 to 587 [13, 27, 29]. Our analysis, focused on residues
378–688, enabled us to analyze the block II motifs. The strains
from Oman, Pakistan, and El Salvador displayed the motif
association MSELEK/TANVVKD, those from North Korea,
Mauritania, and India displayed MSELEK/KEATAAKL, the
strain from Brazil displayed LSKLEE/TAANVVKD, and the

strain from Bangladesh displayed LSKLEE/KEATAAKL.
While the Omani samples all displayed the same motifs, two
of them had an error-like non-sense mutation. Short tandem
repeats were detected in all the sequences, but the haplotypes
were similar in all the Omani samples and in the reference
sequences, and no information could be obtained from these
sequence analyses.

Phylogenetic inference showed that Omani samples did not
share a node with most of the reference strains (Figures 2–4).

Table 2. Comparison of peptide repeat motifs (PRM) from seven countries to those of samples from Oman for csp, msp1, and msp3 alpha.
Numbers highlighted in bold are samples with genotyping of three markers.

Sample ID csp msp1 msp3 alpha

VK210 VK210 SSE SSG SSV GSS GTG KKAE KKAK
A B

Brazil 6 4 1 0 0 2 1 1 1
El Salvador 10 6 1 0 0 3 1 1 1
Mauritania 4 3 1 1 2 1 1 1 1
Iran 7 8 – – – – – – –
India 4 4 0 0 0 0 0 1 1
Bangladesh – – 1 0 0 1 1 1 1
North Korea 3 4 1 0 0 1 1 1 1
2 6 10 1 1 2 1 1 1 1
3 1 1
4 1 1 2 1 1
6 1 1
7 1 1 2 1 1
8 1 1 2 1 1 1 1
9 1 1 2 1 1
12 6 10 1 1
13 1 1
17 1 1
19 1 1 2 1 1 1 1
21 6 10 1 1
22 1 1 2 1 1 1 1
23 1 1 2 1 1 1 1
24 6 10 1 1 2 1 1 1 1
25 1 1 2 1 1 1 1
26 6 10 1 1 2 1 1 1 1
27 1 1 2 1 1
28 1 1 2 1 1
31 1 1 2 1 1
32 1 1 2 1 1 1 1
33 1 1 2 1 1
34 1 1 2 1 1
35 1 1
36 1 1 2 1 1 1 1
37 6 10 1 1
38 6 10
39 6 10 1 1 2 1 1
40 6 10
41 1 1
42 6 10 1 1 2 1 1 1 1
43 6 10 1 1
45 6 10 1 1
46 6 10 1 1
47 6 10 1 1
48 6 10 1 1 2 1 1
51 6 10
52 6 10 1 1
53 6 10 1 1 2 1 1
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Surprisingly, samples from Oman were not closely related to
samples from India, Bangladesh, or Pakistan, while most of
the patients included came from these countries. Using Pvcsp,
the reference sequence from Iran showed the lowest divergence
with the Omani samples (Figure 2). Unfortunately, no Pvmsp1
and Pvmsp3 alpha sequences from Iran were available from
GenBank to confirm this relationship (Figures 3 and 4).

Discussion

Oman has managed to control local transmission of
malaria, and for the first time no local transmission of malaria
was reported in 2004. This is of the utmost importance for
Oman, since potential re-introduction of the parasite would
have social, economic, and tourism consequences. The Omani
population is divided into Omani nationals (approx. 54% of the
population) and migrant workers (approx. 46% of the
population). One of the major concerns for the Omani Health
Authorities is that migrants mainly originate from countries in
Southeast Asia with endemic P. vivax malaria. These immi-
grants work for several months on building construction sites

and in agriculture, live in close proximity to water tanks, and
are thus subject to mosquito bites.

An outbreak of malaria cases was detected by staff at the
Department of Malaria, Ministry of Health, Oman, and stained
blood smears were obtained from finger pricks and used for the
diagnosis. Venous blood samples were not collected at the time
of diagnosis and patients were not followed up. Thus, the only
DNA material available to investigate the outbreak was the
stained thick blood smears. The low quality and quantity of this
material preclude a deep genetic analysis and it was not
possible to use microsatellite analysis or whole-genome
sequencing. DNA was obtained from 35 slides, and PCR
sequencing made it possible to obtain 18, 22, and 29 sequences
of the conventional markers Pvcsp, Pvmsp1, and Pvmsp3
alpha, respectively.

The measures of genetic polymorphism using nucleotide
diversity (p) and average number of nucleotide differences
(k) showed that all 35 samples were very closely related and
thus most probably originated from a single index case. This
is in agreement with the hypothesis of a series of secondary
locally acquired cases contracted from a gametocyte carrier
infected outside Oman. These carriers may have been in the

Figure 2. Molecular phylogenetic analysis by maximum likelihood method for the 18 sequences of Pvcsp protein from Oman and six
reference strains. The evolutionary history was inferred by using the maximum likelihood method based on the Tamura-Nei model [36]. The
tree with the highest log likelihood (�587.1315) is shown. The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. The analysis involved 25 nucleotide sequences. All positions containing gaps and missing data were eliminated. There
were a total of 220 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [21]. The tree was rooted on Plasmodium
cynomolgi csp. Bootstrap test results are shown next to the branches.
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pre-patency or patency period if recently infected, or in a long-
term patency period if infected with a temperate parasite
genotype.

To identify the genotype of this P. vivax parasite population
in Oman, genotyping was done using the Pvcsp gene. All the
isolates showed the VK210 pure genotype, demonstrating a
temperate genotype leading to the possibility of long latency
between infection and reviviscence. Thus, it could be
hypothesized that the cases diagnosed during this outbreak
were the primary attacks of P. vivax malaria transmitted from
a limited number or single case of symptomatic or asymp-
tomatic carriers previously infected in a country where
temperate genotypes are circulating. It should be noted that
the VK210 genotype is also predominant in countries from
which many Omani migrants originated, including Pakistan,
Afghanistan [42, 43], and India [19]. These results may also
indicate that among the species of Anopheline vectors
susceptible to transmit VK210 parasites, A. culicifacies,
detected in water tanks around the cases, is most probably
the vector [35].

The nearly identical Pvmsp3 alpha genotype of the Omani
parasites demonstrates a common origin of the cases. In fact,
other studies analyzing isolates from different regions of a

country displayed more polymorphism in this gene than in
the collection of Omani parasites [7, 13, 37]. Motifs I and II
were the same for all the Omani parasites. Two reference
strains from Pakistan and El Salvador also showed this combi-
nation, but the North Korean strain which showed the highest
global phylogenetic proximity to Oman parasites had a differ-
ent motif.

None of the markers used allowed us to definitively estab-
lish the origin of the outbreak. Considering that the highest
diversity will be observed in an area with high transmission,
it could be considered that the divergence of the parasites
involved in this outbreak compared to the reference sequences
from Asian countries could lead us to suspect a different origin
of the parasites introduced in Oman.

The proximity of Pvcsp sequences observed in Oman with
a sequence from Iran deposited in GenBank (2016) does not
lead to the definitive conclusion that the Omani cases were
imported from Iran. The lack of available sequences of Pvmsp1
and Pvmsp3 alpha from Iran precludes more detailed analysis.
Migrant workers from Iran are numerous in Oman, but most of
them are not exposed to the poor environmental conditions
that the freelance construction workers from the Indian
subcontinent are subjected to. There were no Iranian migrant

Figure 3. Molecular phylogenetic analysis by maximum likelihood method for the 22 sequences of Pvmsp1 protein from Oman and six
reference strains. The evolutionary history was inferred by using the maximum likelihood method based on the Tamura-Nei model [36]. The
tree with the highest log likelihood (�880.6611) is shown. The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. The analysis involved 29 nucleotide sequences. All positions containing gaps and missing data were eliminated. There
were a total of 243 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [21]. The tree was rooted on Plasmodium
cynomolgi msp1. Bootstrap test results are shown next to the branches.
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workers in the area where the malaria outbreak occurred.
Samples collected from Iran should be compared to Omani
sequences to confirm this hypothesis.

Alternatively, the hypothesis of an Omani P. vivax circulat-
ing in the country and causing small outbreaks like this one is
highly unlikely, given that no new cases have been seen since
the outbreak ended.
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