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Abstract

The tropics are naturally vulnerable to watershed erosion. This region is rapidly growing

(projected to be 50% of the global population by 2050) which exacerbates erosional issues

by the subsequent land use change. The issue is particularly of interest on the many

(~45,000) small tropical (<5,000 km2) islands, and their >115M residents, where ecotourism

and sediment intolerant ecosystems such as coral reefs are the main driver of their econo-

mies. However, vulnerability to erosion and deposition is poorly quantified in these regions

due to the misclassification or exclusion of small islands in coarse global analyses. We use

the only vulnerability assessment method that connects watershed erosion and coastal

deposition to compare locally sourced, high-resolution datasets (5 x 5 m) to satellite-col-

lected, remotely sensed low-resolution datasets (463 x 463 m). We find that on the island

scale (~52 km2) the difference in vulnerability calculated by the two methods is minor. On

the watershed scale however, low-resolution datasets fail to accurately demonstrate water-

shed and coastal deposition vulnerability when compared to high-resolution analysis. Spe-

cifically, we find that anthropogenic development (roads and buildings) is poorly constrained

at a global scale. Structures and roads are difficult to identify in heavily forested regions

using satellite algorithms and the rapid, ongoing rate of development aggravates the issue.

We recommend that end-users of this method obtain locally sourced anthropogenic devel-

opment datasets for the best results while using low resolution datasets for the other vari-

ables. Fortunately, anthropogenic development data can be easily collected using

community-based research or identified using satellite imagery by any level of user. Using

high-resolution results, we identify a development trend across St. John and regions that

are both high risk and possible targets for future development. Previously published mod-

eled and measured sedimentation rates demonstrate the method is accurate when using

low-resolution or high-resolution data but, anthropogenic development, watershed slope,

and earthquake probability datasets should be of the highest resolution depending on the

region specified.
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Introduction

The tropics (±23.5˚ latitude) are prone to high erosion rates due to their consistently warm cli-

mate and prevalent rainfall both seasonally (higher latitudes) and year-round (near the equa-

tor) [1]. Many tropical areas are also on active tectonic settings that are steep and

mountainous (e.g., Caribbean, Southeast Asia) contributing to high erosion rates [2,3]. Water-

sheds in these areas, especially on small islands, can have short sediment transport pathways to

the coast [4] and brief watershed soil residence times, expediting delivery of watershed sedi-

ments to the coastal zone, as a result of consistent rainfall [5,6]. In addition, extreme events,

such as monsoons, hurricanes, and earthquake-induced landslides, are common in the tropics

and enhance erosion and infrastructure destruction [7]. With climate change expected to

increase rainfall variability and extreme events such as hurricanes [8,9], higher erosion rates

are expected. High population growth and the associated projected cropland expansion is fur-

ther expected to exacerbate and increase terrestrial erosion rates [10].

There are ~45,000 islands >0.5 km2 within the tropics; most are small (only 78 are>1,000

km2) and, as such, are misclassified or ignored by global datasets and analyses [11,12]. The low

resolution of global datasets, which is often on the kilometer scale or greater, means the vast

majority of small (<1,000 km2) and medium-sized islands (1,000–5,000 km2) would be made

up of less than a 1,000 grid cells or in some cases far less leading to misclassification of the

overall data. Specifically, characteristics such as land cover, slope, and anthropogenic develop-

ment (roads, structures) change rapidly on islands due to their small land area leading to mis-

classification or exclusion altogether. Tropical islands of this size contain a significant

proportion of the global population, ~115.5M people or roughly 1/3rd the current population

of the United States [13].

Importantly, land-derived soil erosion is not a localized problem, but has cascading effects

downstream on water quality, ecosystems, and coastal zones. The economies of small tropical

islands (<1,000 km2) are commonly based on tourism driven by the natural ecosystems and

landscapes. However, economically critical aquatic ecosystems [14–16] are at high risk to sedi-

mentation (human and naturally induced) and the associated negative effects (mortality) that

accompany it [17–19]. These include those that render important ecosystem services such as,

calcareous algae (reef builders) [20], seagrasses (fish breeding grounds) [21], and coral reef

communities (buffer the coast from waves/storms and increase biodiversity) [16,22]. Addition-

ally, coastal seagrass communities are an important carbon capture and storage vehicle (~2x

more efficient than tropical rainforests [23]). In freshwater ecosystems, sediment delivery and

deposition degrades the quality of benthic habitats, and disrupts structural functions of fresh-

water ecosystems [24,25]. Fine-grained sediment and contaminants can cause microbial out-

breaks and degrade water quality [26], alter water chemistry [27], and increase turbidity and

suspended solid concentrations [28].

In response to rapid population growth (currently ~40%, projected 50% of the global popu-

lation by 2040) and economic development, land use change is occurring regularly in the trop-

ics, especially in the least developed countries (over 95% of which are in the tropics) [1,10,29].

Land use change is a main driver of enhanced erosion, primarily the conversion of forest to

agriculture [10], which commonly occurs as a population and its food demand grows. In many

cases, topsoil in agricultural and developed areas is anthropogenically replenished in a persis-

tent cycle, which increases sediment loads to streams and coasts, halting bedrock weathering.

Higher chemical bedrock weathering rates in the tropics consume a large component of global

CO2 [2]. Despite the negative impacts associated with erosion and deposition, it is important

to note that it is a natural process, which humans enhance in a positive feedback loop in multi-

ple ways. For example, precipitation drives erosion, which climate change is projected to
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increase [9]. Greater amounts of sediment are then deposited, burying and killing downslope

coastal ecosystems [17,18,30], which are carbon sinks [23]. Humans then add more sediment

to the landscape, which disrupts weathering rates further exacerbating the carbon cycle [2]. In

light of this land use change, understanding vulnerability to watershed erosion and coastal

deposition is critical on small (<1,000 km2) developing tropical island nations which rely

heavily on the resources or ecosystem services of their island (or islands) for their economy.

Assessments of vulnerability to erosion tend to focus either on the watersheds or the coastal

zone, without connecting them, and typically are at the regional or watershed scale. For exam-

ple, Coastal Vulnerability Indices have been used extensively in recent years to assess either

coastal erosion [31–33] or watershed erosion [34–37]. Some focus on modeling potential

watershed soil loss using the Revised Universal Soil Loss Equation (RUSLE) or other soil water

erosion models, primarily at the watershed scale [38–40] with few at a global scale [41,42].

Recent studies in India have focused on integrating risk indices [43,44] for a more holistic

approach by using multiple factors (physical, social, and geo-technical) to quantify risk to a

region impacted by erosion.

Coastal Vulnerability Indices have not yet reached the global scale, focus on the coastline

while ignoring watershed activities such as land use, and are generally at too large of a scale to

be applicable for most small tropical islands. In contrast, RUSLE models focus on the potential

soil loss in the watershed, but do not address sediment delivery to the coast or multiple types

of land-use change. Despite recent improvements to RUSLE models [41,45] there are still

accuracy issues in developing countries and remote small land area regions (Southeast Asia,

the Caribbean, and Pacific islands) where high resolution datasets are scarce or non-existent.

Thus, less accurate datasets are utilized to form the critical underpinning parameters of

RUSLE such as the rainfall erosivity factor [46].

A new method developed by Browning and Sawyer [47] connects watershed erosion to

coastal deposition across the tropics, termed the Erosion Vulnerability Index (EVI) and the

coupled Erosion and Deposition Vulnerability Index (EDVI). This method focuses on land

use change and open-source datasets in order to assess vulnerability to erosion and deposition

across the entirety of the tropics. The EVI can be calculated for large areas while in order to

calculate the EDVI and consider coastal deposition one must compute a watershed specific

EVI. Our objective is to evaluate if low-resolution datasets (463 x 463 m) are accurate on small

tropical islands (<1,000 km2). To do this, we use field-collected datasets [4,48,49] on St. John,

in the US Virgin Islands. St. John is an ideal test site due to its size (50 km2), wealth of data on

land [4,50] and coastal zone [48,49,51,52], and juxtaposition of heavily developed areas and

undeveloped forests [4] (Fig 1).

Geologic setting

St. John, like many other small tropical islands, is naturally susceptible to terrigenous (land-

derived) sediment erosion due to its high-relief slopes, short pathways to the sea, and heavily

weathered volcanic rocks [4,49,54,55]. In the early 1950’s the island was virtually undeveloped

except a small community near Cruz Bay in western St. John (Fig 1). In 1956, over half of

St. John was established as the Virgin Islands National Park (Fig 1). In the ensuing decades,

development has increased substantially (40% permanent population increase since 1980 [56])

in support of increased tourism and part-time inhabitants [57]. Anthropogenic impacts over

this period, primarily the construction of roads, have contributed to increased terrigenous sed-

iment input into the marine environment [49,57–59]. In 2017, two separate Category 5 Hurri-

canes passed the island in a span of 2 weeks bringing excessive rainfall and damage to the

infrastructure and ecosystems in the watershed and coastal zone [60]. Despite
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anthropogenically increased watershed erosion rates, the events deposited 100s of years sedi-

ment almost 100% of which was marine-sourced [48,60].

There are no perennial rivers or streams on St. John, only some spring-fed pools. Water-

sheds are drained by one or more gullies, locally known as “ghuts” [49,61]. Ghuts are only

active during rainfall events that precipitate�12mm of rainfall per day, when erosional runoff

is funneled down-slope to the coastal system [54]. The climate in the USVI is maritime tropi-

cal. A seasonal cycle of dry conditions in December−April is followed by a weak wet season in

May−June, drier conditions in July−August, and a strong wet season in September−November

[55]. The majority of precipitation occurs as short-duration heavy-rainfall events [55]. Precipi-

tation is orographically controlled but on average the island receives around 1,200 mm/year

and could range from ~700 mm to>2,000 mm.

Fig 1. Satellite image of St. John, US Virgin Islands. Green star indicates the location of St. John on the inset map. The watersheds of Coral Bay and Cruz Bay are

outlined in blue. The Virgin Islands National Park (green outline) encompasses the majority of St. John’s landmass while the Virgin Islands Coral Reef National

Monument (pink outline) protects offshore of Coral Bay. Note the Virgin Islands Coral Reef National Monument covers a greater offshore area than is shown on this

map. The location of the precipitation gauge used in the EVI-STJ is shown in Trunk Bay. Imagery Courtesy of [53].

https://doi.org/10.1371/journal.pone.0253080.g001
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Erosion issues on St. John have been studied with interest as development has increased

and threatened these ecosystems following the incorporation of the Virgin Islands National

Park [4,17,59,62–64].

St. John is representative to other small tropical islands vulnerable to erosion given its size

(50 km2), mountainous topography, concentrated rainfall, and rapid development. Further-

more, the wealth of data on St. John allows for testing the performance of a global erosion vul-

nerability index [47]. The lack of perennial streams allows for a very accurate estimation of

sediment flux and deposition rates around the island. This means that erosion and terrigenous

deposition are driven by rainfall and thus the terrestrial signal is easy to identify, which aid in

validating our qualitative results. We present results for all of St. John’s land area, including

site-specific analysis of 2 watersheds using the low-resolution datasets from Browning and

Sawyer [47] and new high-resolution field collected datasets.

Methods

We assess vulnerability to erosion and deposition on St. John using locally or regionally col-

lected high-resolution datasets input into the EVI-EDVI method described in Browning and

Sawyer [47]. Step-by-step instructions on the analysis are shown in Appendix A. Importantly,

the EVI method quantifies watershed erosion on the global scale but is unable to quantify

deposition on the same scale. Thus, to quantify deposition, first an individual watershed must

be selected for a watershed specific EVI calculation, then 3 coastal deposition variables are

added to the EVI to determine a coupled erosion-deposition vulnerability index (EDVI) for

that watershed and its coastal zone [47].

EVI is calculated from seven Risk Factors [47] as

EVI ¼ ðLC2 � AGMD2 � L2 � ST2 � P2 �WS2 � EQ2Þ=7 ð1Þ

Where LC is Land Cover Type, AGMD is Agriculture, Grazing, Mining and Development, L is

Bedrock Lithology, ST is Soil Thickness, P is Mean Precipitation Deviation, WS is Mean

Watershed Slope, and EQ is Earthquake Intensity Probability. The form of Eq 1 is adapted

from the NASA Coastal Vulnerability Index [65] developed for the coastal United States. We

have modified the original term “P” in Eq 1, which was s Mean Annual Precipitation, but here

we prefer Mean Precipitation Deviation. Mean Precipitation Deviation is designed to capture

rainfall variability instead of total mean annual rainfall. We use local precipitation data from

Trunk Bay in St. John collected by a tipping bucket rain gauge from 1984–2017 (Fig 1,

Table 1). We calculate each individual year’s annual total subtracted from the 34-year average

to determine the deviation, either positive (flood year) or negative (drought year) (there were

no years without change). Drought years and flood years were averaged and quantified as mm

below, or above, the 34-year mean. The difference between these two values is the Mean Pre-

cipitation Deviation, essentially the difference between an average drought year and an average

flood year.

Several of the high-resolution datasets in the EVI-STJ were created or modified using satel-

lite imagery to enhance the accuracy of the original data or digitized from previous publica-

tions to get the most accurate, site-specific data possible (Table 1). Specifically, Lithology was

digitized from Alminas, Foord [69] representing the most recent comprehensive lithologic sur-

vey map completed on St. John (Table 1). Multiple datasets misclassified the many salt ponds

that line the coast of St. John (small ponds fed by ocean water but disconnected from the coast

by a small strip of sand). We omitted these from our watershed EVI-STJ because, as basins,

they will tend to intercept eroded watershed sediments. The individual components of the

Agriculture, Grazing, Mining, and Development (AGMD) datasets were compiled and
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modified from existing datasets created by the Coral Bay Community Council (CBCC), US

Census Data [56], and satellite imagery (Table 1). Mining and Grazing activities have either

never occurred on St. John or ceased long ago (Personal Communication, CBCC), this was

confirmed via current satellite imagery (Table 1). Only one small agricultural plot exists on the

island (Personal Communication, CBCC), which was verified using current satellite imagery

(Table 1). The Development component of AGMD is made up of houses, roads, and paved

areas. A CBCC housing shapefile was updated via satellite imagery from 2018 to reflect new

construction. Roads were delineated using data from Browning, Sawyer [4] and the TIGER/

Line 2017 shapefile for St. John from the US Census [70] (Table 1). This combination file was

verified using 2018 satellite imagery to reflect current conditions (Table 1).

After generating the watershed-specific EVI-STJ from Eq 1, three additional variables

designed to address the vulnerability to coastal deposition (Mean Coastal Marine Slope, Fluvial

Sediment Input, and Coastal Protection) are added to the EVI to generate the EDVI-STJ. The

values for the Mean Coastal Marine Slope variable in Cruz Bay come from NOAA’s 2011

bathymetry dataset [72] while values for that same variable in Coral Bay come from bathyme-

try data collected by Browning, Sawyer [48] in September of 2017 (Table 1). Due to the small

size of the island and watershed, we calculated Mean Coastal Marine Slope by using a 3 km

slope transect rather than 10 km in Browning and Sawyer [47]. We use modeled sediment

delivery rates to estimate the Fluvial Sediment Input variable. Although this is the only mod-

eled product used, maximum sediment delivery estimates established for all Coral Bay water-

sheds during 2017 (largest flood year in our 34 year dataset) would still be classified on the

Table 1. All variables used in the EVI-STJ & EDVI-STJ with their resolutions and sources.

Dataset Name Data Type Measured by Acquired

Year

Dataset

Type

Resolution

(meters)

Data Originator

Land Cover Type Land Cover Type Imagery and Algorithm 2012 Raster Grid 1 [66]

Mean Watershed

Slope

Digital Terrain Model LiDAR 2013 Raster Grid 5 [67]

Soil Thickness Estimated Topsoil

Thicknesses

Interpolated from Field

Samples

2019 Raster Grid 1 [68]

Lithology Lithology Local Field Surveys N/A Vector

Polygons

N/A Browning, T.N. Digitized [69]

Mean Precipitation

Deviation

Precipitation Tipping Bucket Rain

Gauge

1986–2017 Vector

Points

N/A Rafe Boulon

Agriculture Land Cover Type &

Satellite Imagery

Imagery and Algorithm Present Raster Grid 1 Assessed by Browning, T.N. using images from

Google, Digital Globe and [66]

Grazing N/A Satellite Imagery Present N/A N/A Assessed by Browning, T.N. and CBCC using

images from Google, Digital Globe

Mining N/A Satellite Imagery Present N/A N/A Assessed by Browning, T.N. and CBCC using

images from Google, Digital Globe

Development User Created Satellite Imagery &

Census Data

2018–2019 Vector

Points

N/A Assessed by Browning, T.N. using images from

Google, Digital Globe and data from CBCC

and [56,70]

Earthquake Intensity

Probability

Peak Ground

Acceleration

Measured and Modeled

Data

2003–2053 Raster Grid 1500 [71]

Mean Marine

Coastal Slope

Digital Elevation

Model

LiDAR and Bathymetry

Measurements

2011 &

2017

Raster Grid 3 [48,72]

Fluvial Sediment

Input

Sediment Delivery

Estimates

Field Measurements

and Modeling

2017 Vector

Polygons

N/A [48,73]

Coastal Protection Aerial Photos Satellite 2015–2018 TIFF Image N/A Assessed by Browning, T.N. using images from

Google, Digital Globe

https://doi.org/10.1371/journal.pone.0253080.t001
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lowest end of the Very Low Risk Factor [48] (Table 1). Coastal Protection is identified using

satellite imagery. EDVI Vulnerability Classes are then established using Table 2 [47].

After compiling the high-resolution datasets for the EVI-STJ and EDVI-STJ, we compare

this to the results of the low-resolution [47] EVI & EDVI to quantify the extent that low-reso-

lution datasets misclassify risk on small tropical islands (Table 3). We demonstrate the differ-

ences on the island scale as well as the watershed scale in two different developed basins on

St. John.

Results

Classified variables (Risk Factors) for the high-resolution EVI-STJ

Here we present each Risk Factor over the entirety of St. John using new high-resolution data

(5 meter x 5 meter grid cells, Figs 2 and 3). The resolution of 5 m x 5 m grid cells was dictated

by the underlying resolution of the datasets used. Agriculture, Grazing, Mining, and Develop-

ment (AGMD) is a binary variable and thus is only displayed as Very Low or Very High Risk

Factor. Very High Risk Factor grid cells for AGMD are concentrated near the two towns, one

on the west coast of the island (Cruz Bay) and the other in the eastern coast region (Coral Bay,

Figs 1 and 4). Most of St. John is forested (part of the Virgin Islands National Park, Fig 1) and

thus primarily Very Low Risk Factor values for Land Cover Type (Fig 3 Part A). Very High

and Medium Risk Factors for Land Cover Type align with deforested areas near the coast or in

developed areas similar to AGMD (Figs 3 and 4). The eastern half of the island’s lithology is

Table 2. Risk Factor (RF) distribution in Risk Categories for the tropical Erosion Vulnerability Index (EVI) and Vulnerability Classes for watershed EVI and Ero-

sion and Deposition Index (EDVI). These categories are also used for the EVI-STJ and EDVI-STJ. Table modified from Browning and Sawyer, 2021 [47].

Risk Factors

AGMD 2 3 3 3 5

Bedrock Lithology 2 2 3 3 5

Land Cover Type 1 1 3 4 5

Mean Annual Precipitation 2 1 2 4 5

Mean Watershed Slope 1 3 2 4 5

Earthquake Intensity Probability 2 2 2 4 5

Soil Thickness 1 2 3 2 5

Risk Categories Very Low

(1)

Low (2) Medium (3) High (4) Very High (5)

Risk Category Ranges 0.14–36.57 36.57–

740.57

740.57–

59,986.29

59,986.29–

3,033,380.57

3,033,380.57–

871,930,803.57

Vulnerability Classes Very Low Low Medium High Very High

Upper Break Risk Category Distribution (percentage of grid

cells)

51% 2

49% 1

51% 3

49% 2

50% 4

30% 3

20% 2

75% 4

15% 5

10% 3

100% 5

Vulnerability Class Range 100–151 151–251 251–330 330–405 405–500

https://doi.org/10.1371/journal.pone.0253080.t002

Table 3. Summary results and comparison of applying the high-resolution EVI/EDVI approach described in this study relative to the global EVI/EDVI approach

(Browning and Sawyer, 2021 [47]). Erosion Vulnerability Index (EVI). Erosion and Development Vulnerability Index (EDVI).

Site EVI EDVI Dominant EVI Risk Category Dominant EDVI Risk Category

Cruz Bay (Browning and Sawyer, 2021) [47] Low Medium Low (59%) Medium (36%)

Cruz Bay (This Study) High High Medium (54%) Medium (44%)

Coral Bay (Browning and Sawyer, 2021) [47] Medium Medium Medium (89%) Medium (45%)

Coral Bay (This Study) High Very High Medium (74%) Very High (71%)

https://doi.org/10.1371/journal.pone.0253080.t003
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igneous leading to a Low Risk Factor classification while the western half is sedimentary result-

ing in High Risk Factors (Fig 2 Part A). Isolated areas of Very High Risk Factors are associated

with Holocene-aged alluvium in lowland areas near the coast (Fig 2 Part A).

Mean Watershed Slope on St. John is very steep (> 45˚ in many areas) leading to Very

High Risk Factors over most of island (Fig 2 Part C). Lower Risk Factors exist near the

coast as the slope decreases in lowland areas. Soil thicknesses on the majority of the island

are thin leading to dominant coverage of Very Low Risk Factors of Mean Soil Thickness

Fig 2. Comparison of Risk Factors for Lithology (A), Mean Soil Thickness (B), Mean Watershed Slope (C), AGMD (D), and the EVI-STJ (E). Very High Risk Factors for

Lithology and Mean Soil Thickness Correlate with Low Risk Factors for Mean Watershed Slope. Low-lying areas or basins collect alluvium and greater soil thicknesses.

Due to this, these areas have higher Risk Categories for the EVI-STJ. Much of the AGMD is concentrated in these areas. Lower slope areas are easier to build on and

thicker soil mantles allow for easier construction. Thus, these circled regions (if currently lacking AGMD) could be regions that are targeted for development in the

future.

https://doi.org/10.1371/journal.pone.0253080.g002
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(Fig 2 Part B). The few Very High Risk Factors for Mean Soil Thickness are concentrated in

lowland areas that are able to trap more sediments leading to higher soil thicknesses (Fig 2

Part B). On an annual scale, Mean Precipitation Deviation variable is unlikely to change

significantly over this small an area (~15 km x 8 km). Thus, at 445 mm it is shown as High

Risk Factor for the entire island due to the strong flood and drought seasons they have

cyclically (Fig 3 Part B). Earthquake Intensity Probability has a Very High Risk Factor due

to the large amount of faults and the generally active tectonic zone that surrounds the

Greater Antilles (Fig 3 Part C) [71].

Fig 3. Land Cover Type (A), Mean Precipitation Deviation (B), and Earthquake Intensity Probability (C) used in the EVI-STJ on St. John, USVI. Land Cover Type is

similar to AGMD (Fig 4) but misses many of the roads in the southern portion of the island. Most of the island is forested due to the Virgin Islands National Park.

https://doi.org/10.1371/journal.pone.0253080.g003
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Island-wide high-resolution EVI-STJ

The EVI-STJ is composed of predominantly Medium Risk Factor grid cells (79%) focused on

the central portion of the island (Fig 5). The remaining cells are composed of High and Very

High Risk Factors (15% and 6% respectively) concentrated near the two settlements (Cruz Bay

and Coral Bay) and along the coast (Fig 5). There are no Very Low Risk Factors cells and

<0.01% Low Risk Category cells.

Cruz Bay: High-resolution EVI-STJ and EDVI-STJ

The watershed EVI for Cruz Bay is predominately composed of Medium Risk Factor grid cells

(54%) with even amounts of High and Very High Risk Factor cells (25% and 21% respectively)

(Fig 5 and Table 3). Very High Risk Factor grid cells are concentrated near the greatest amount

of development close to the coast (Figs 1 and 5). There are no Very Low Risk Factor grid cells

and few (<0.1%) Low Risk Factor cells. Overall, the Cruz Bay watershed profiles in the High

Risk Category (Table 3). Accounting for coastal deposition, the EDVI-STJ for Cruz Bay does

not change the watershed EVI-STJ also profiling in the High Vulnerability Class (Table 3).

This is due to the variability in 3 EDVI Risk Factors from Very Low (Fluvial Sediment Input),

Medium (Coastal Protection), to Very High (Mean Coastal Marine Slope).

Coral Bay: High resolution EVI-STJ and EDVI-STJ

The watershed EVI-STJ for Coral Bay is primarily made up of Medium Risk Factor grid cells

(74%) with some High (18%) and Very High Risk Factor (8%) cells (Table 3). Similar to Cruz

Bay the High and Very High Risk Factor cells are concentrated near anthropogenic develop-

ment and in low slope areas where construction of roads and structures is easier. There are no

Very Low Risk Factor grid cells and few Low Risk Factor cells (<0.1%). Overall, the watershed

EVI-STJ in Coral Bay was classified in the High Risk Category (Table 3). When including

coastal deposition in the EDVI-STJ the vulnerability increases up to the Very High Vulnerabil-

ity Class (Table 3). This is driven by Very High Risk Factors for Mean Coastal Slope and

Coastal Protection, despite a Very Low Risk Factor for Fluvial Sediment Input (Table 3).

Discussion

Low-resolution EVI variables misclassify risk compared to high-resolution

EVI-STJ analysis

Overall, the low-resolution datasets used in a global EVI analysis [47] lead to misclassified risk

on St. John with the difference more stark at the watershed scale. The misclassification is

driven by the low resolution of the AGMD and Mean Watershed Slope datasets and the inac-

curacy of the Earthquake Intensity Probability dataset [74] when compared to higher-resolu-

tion datasets (Table 3). The increased resolution used in the new EVI-STJ data (~5 m) over the

global EVI resolution (463 m) is demonstrated by Fig 5.

Minor change in vulnerability at the island scale. Although the difference in resolution

between the global EVI and the EVI-STJ is large, the difference in island-wide risk distribution

is fairly subtle. Overall, the low-resolution global EVI on St. John consisted primarily of

Medium Risk Factor cells (67%) with some Low and High Risk Factor cells (17% and 16%

respectively), few Very High Risk Factor cells (<1%) and no Very Low Risk Factor cells (Fig

5). The high-resolution EVI-STJ increased the percentage of Medium Risk Factor cells (79%)

and Very High Risk Factor cells (6%) while Low Risk Factor Cells decreased (< 1%) and High

Risk Factor cells remained similar (15%) (Fig 5). Overall, the difference in risk was driven by

the scarcity of Very Low and Low Risk Factors in the EVI-STJ.
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Fig 4. Agriculture, Grazing, Mining, and Development (AGMD) comparison between the global EVI (A) and EVI-STJ (B). The resolution differs drastically, when using

higher resolution data the overall Risk Factors decrease and invert the pattern shown in Browning and Sawyer [47] EVI.

https://doi.org/10.1371/journal.pone.0253080.g004
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Fig 5. Improved resolution between the global EVI (A) and the EVI-STJ (B). Stark differences in vulnerability are revealed, concentrated in the two major communities

of Cruz Bay and Coral bay.

https://doi.org/10.1371/journal.pone.0253080.g005
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Major difference in vulnerability at the watershed scale. While the changes in the over-

all EVI on St. John were minor, changes within some watersheds were much more evident.

We examined this difference further in 2 of the most developed watersheds on St. John: Cruz

Bay and Coral Bay (Fig 1). Cruz Bay watershed was originally classified in the Low Risk Cate-

gory in the global EVI while the high-resolution EVI-STJ classified it two Risk Categories

higher, in the High Risk Category (Table 3). In Cruz Bay, the original EVI yielded predomi-

nately Low (59%) and Medium Risk Factor grid cells (39%) with little High Risk Factor cells

(1%) and no Very Low or Very High Risk Factor cells (Fig 5). Almost all Low Risk Factor grid

cells are gone (<0.01%) replaced by High and Very High Risk Factor cells (25% and 21%

respectively) (Fig 5, Table 3). This change is primarily driven by the severe misclassification of

the AGMD variable, which we describe in detail in the Discussion Section under Recommen-

dations (Fig 4).

The difference between the global EVI and the EVI-STJ was less drastic in Coral Bay. Coral

Bay is naturally more vulnerable than Cruz Bay due to High and Very High Risk Factors for

Lithology and Mean Soil Thickness, which Cruz Bay lacks (Fig 2). In the global EVI, Coral Bay

was composed dominantly of Medium Risk Factor grid cells (89%) and small amounts of Low

and High Risk Factor Cells (8% and 3% respectively) (Table 3). The increase in risk shown in

the EVI-STJ in Coral Bay was driven by a large increase in High and Very High Risk Factor

cells (18% and 8% respectively) (Table 3). Low Risk Factor cells in the EVI-STJ in Coral Bay

disappeared (<0.1%) while Medium Risk Factor cells decreased (74%). These changes are very

similar to what occurred in Cruz Bay driven primarily by AGMD misclassification.

Importantly, EVI analysis can identify watersheds more, or less, vulnerable to sediment ero-

sion but does not inform what may happen in the downstream coastal system. It is important

to evaluate this as some coastal settings may be more, or less, suitable to handle an increase in

sediment load. After calculating the watershed-specific EVI, the Risk Factors for each of the

three coastal deposition variables (Table 1) are added to yield the EDVI (Table 1). In Cruz Bay,

the coastal Risk Factors for these EDVI variables were classified as Very High Risk Factor for

Mean Coastal Marine Slope, Very Low Risk Factor for Fluvial Sediment Input, and Medium

Risk Factor for Coastal Protection. In Coral Bay, the coastal variables were classified as Very

Low Mean Coastal Marine Slope, Very Low Risk Factor for Fluvial Sediment Input, and Very

High Risk Factor for Coastal Protection.

For Cruz Bay, the Low Risk Category in the watershed EVI moved up to the Medium Vul-

nerability Class in the EDVI (Table 3). This was driven by a Very High Risk Factor for Mean

Coastal Marine Slope (Table 3). In the high-resolution analysis, the risk in Cruz Bay did not

increase. Since the watershed EVI-STJ was classified in the High Risk Category, the incorpo-

ration of more Medium and Very Low Risk Factors (for Coastal Protection and Fluvial Sedi-

ment Input) slightly decreased the risk of the EDVI-STJ (from a Risk Category value of 367 to

a Vulnerability Class value of 333, Table 2) though did not change its ranking, remaining in

the High Vulnerability Class for the EDVI-STJ (Table 3).

For Coral Bay, the risk does not change from the watershed specific EVI classification

(Medium Risk Category) in the EDVI (also Medium Vulnerability Class) (Table 3). However,

in the high-resolution analysis the risk increases from the High Risk Category in the watershed

EVI-STJ to Very High Vulnerability Class in the EDVI-STJ (Table 3). This is driven by Very

High Risk Factors for Mean Coastal Slope and Coastal Protection. These Risk Factors are the

same in the Browning and Sawyer [47] analysis except Mean Marine Coastal Slope which

changes drastically between the two analyses.

The disparities caused by the inaccuracy of the AGMD are especially apparent in Cruz Bay

where the EVI analysis between the studies differs by two Risk Categories (Table 3). Satellite

imagery and classification schemes used to determine Land Cover Type and AGMD in the
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global EVI [47] such as LandSAT and MODIS struggle to penetrate dense vegetation and thus

can miss roads and houses, which is the primary type of AGMD on St. John. Using census data

combined with many different years of satellite imagery and GPS surveys [4] the EVI-STJ is

better informed. These new data invert the trend shown in [47] with Very High Risk Factors

near the coast and towns (Cruz Bay and Coral Bay) leading to the drastic differences in risk

classification between these two studies (Fig 4, Table 3).

Identification of an anthropogenic development pattern

Development appears to be concentrated in areas with favorable building conditions (low

slope, thick soils), which align with Very High and High Risk Factor EVI grid cells for multiple

variables (Fig 2). Due to extremely steep slopes on St. John [4], little alluvium (Very High Risk

Factor for Lithology) or thick soils (Very High Risk Factor for Mean Soil Thickness) exist on

most of the island (Fig 2). However, in low slope areas alluvium and soil mantles can accumu-

late (Fig 2). These regions seem to have been targeted for development and generally feature

clusters of homes and accompanying Very High Risk Factors for AGMD (Figs 1 & 2). Loose

alluvium has higher vulnerability to erosion than bedrock and generally collects in basins or

lower slope areas and thus thicker soils are found in these regions (Fig 2, Table 1). These areas

with low slope (Low Risk Factor) but thick soil (Very High Risk Factor) are also good areas to

build and establish infrastructure. Construction on steep slopes is more challenging than on

flat ground, and thin soil thicknesses associated with those areas means that builders will have

to drill through bedrock to establish solid foundations (Fig 2).

The clearing of land for infrastructure removes vegetation from the landscape, which desta-

bilizes the soils that are unpaved, leading to enhanced erosion and higher peak watershed

flows [58]. Paved areas, especially roads, preclude infiltration of water into the ground leading

to increased peak flows, which lead to higher erosion and sediment delivery rates to the coast

[58]. Fig 2 highlights this, where most of the circled zones have Very High or High Risk Factors

for Lithology, Mean Watershed Slope, or Mean Soil Thickness. Many of the circled areas have

Very High Risk Factors for AGMD meaning they have already been developed. Circled regions

that have Very Low AGMD could be new potential areas of development, but risky options

given the Very High Risk Factors for Mean Soil Thickness and Lithology.

Validating vulnerability assessments of erosion and deposition in Coral

Bay

The global EVI and EDVI analysis underestimated Coral Bay’s vulnerability by a Vulnerability

Class but was more accurately assessed in the EVI-STJ & EDVI-STJ when validated against

modeled watershed sediment yield estimates and calculated deposition rates [48,73]. The max-

imum sediment flux estimate for Coral Bay is 0.0004 Tg/year, which would be a Very Low Risk

Factor for Fluvial Sediment Input [48]. The dataset used in the Browning and Sawyer [47] EVI

[75] showed the entire St. John region as less than 1 Tg/year which is reasonable (or possibly

even too high) considering one of the largest watersheds on the island delivers 0.0004 Tg/year

[48].

Even though there is low fluvial input, Coral Bay is classified in the Very High Vulnerability

Class in the EDVI-STJ due to Very High Risk Factors for two EDVI-STJ variables. This assess-

ment is validated by the work done by Brooks, Larson [49] that demonstrate an increase in

mass accumulation rates in coastal bay sediments following significant land use activity in the

watershed. The anthropogenically altered mass accumulation rate of 0.15 g/cm2/yr in Coral

Bay is not as large as may occur in other regions (thus the Very Low Risk Factor for Fluvial

Sediment Input). However, this rate represents a vulnerability to this specific system due to
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Very High Risk Factors for Mean Marine Coastal Slope and Coastal Protection. The scientific

community has documented this change and negative implications for decades, which is rep-

resented by the Very High Vulnerability Class EDVI-STJ ranking [17,62,64,76]. This is one

instance where the EVI & EDVI method is validated by both modeled watershed data and

measured sedimentation rates in the coastal zone. Due to consistent terrestrial input, resuspen-

sion, recirculation, and general mixing of coastal sediments, calculating coastal sedimentation

rates can be very difficult. The system on St. John lacking perennial streams provides a more

easily distinguishable sedimentological record in the coastal zone making it simpler to more

accurately isolate than in most coastal sedimentation rates.

Recommendations and future directions

By utilizing higher-resolution datasets the values of the Browning and Sawyer [47] EVI &

EDVI were shown to change on the watershed scale in some cases demonstrating that the

accuracy of the analysis will increase by using some high-resolution data. In both the Browning

and Sawyer [47] EVI & EDVI and the EVI-STJ & EDVI-STJ analysis of Cruz Bay and Coral

Bay the EDVI variables remain unchanged despite using higher resolution datasets. This

implies that the resolution of these variables is not as critical as others in this region. The

Coastal Protection variable remains unchanged because satellite imagery is used to obtain that

Risk Factor in both the high- and low-resolution analyses. Fluvial Sediment Input does not

change due to the island having no perennial rivers and thus no consistent sediment input

[54,61]. Increasing the resolution of the bathymetry increases the accuracy of Mean Coastal

Slope Risk Factor. In Cruz Bay and most other bays around St. John, this had little effect and

did not change the assessed Risk Factor between studies. However, the unique geometry of

Coral Bay caused issues with the dataset used to calculate Mean Marine Coastal Slope [77] in

the Browning and Sawyer [47] analysis. Further analysis of the surrounding region using the

[77] datasets confirms that this is an overlooked data anomaly due to the high terrestrial slopes

completely surrounding a large coastal zone like Coral Bay and is likely to be rare throughout

the tropics (Fig 1). Consulting a local nautical chart is suggested in order to confirm the slope

given by the [77].

Unlike the EDVI variables, some watershed EVI variables should be higher resolution while

others can remain at a lower resolution. Datasets like Mean Precipitation Deviation, Lithology,

and Soil Thickness will improve the analysis but since they are slow to change and unlikely to

vary over distances of ~500 meters, they are not critical for an accurate vulnerability assess-

ment. Land Cover Type, though likely to change over ~500 meters, did not differ drastically

enough between the Browning and Sawyer [47] analysis and the EVI-STJ to justify a more spe-

cific dataset.

We believe that high-resolution data for the Agriculture, Grazing, Mining, and Develop-

ment (AGMD) variable are of most importance followed by Mean Watershed Slope and Earth-

quake Intensity Probability in certain situations. The difference between the Earthquake

Intensity Probability dataset used in the global EVI and the EVI-STJ was significant (resulting

in Low Risk Factor in the EVI and Very High Risk Factor in the EVI-STJ across the entire

island). The analysis used for the EVI-STJ was done specifically for the Puerto Rico and the

Virgin Islands and brings in regional data [71,78] used in the original. Mean Watershed Slope

changes too drastically on St. John to rely on such a coarse dataset to inform the EVI. Thus,

Earthquake Intensity Probability and Mean Watershed Slope should be of higher resolution if

the region of interest is tectonically active or steeply sloped.

In general, the global EVI and EDVI underestimated the vulnerability of Cruz Bay and

Coral Bay when compared to EVI & EDVI-STJ due to misclassification of the AGMD variable.
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The EVI overestimated the amount of Low Risk Factor cells in Coral Bay because it was unable

to accurately identify important land use change activities such as roads and structures (Fig 4).

Human development and land use change (AGMD variable) is difficult to quantify via satellite

on a smaller scale in a dense tropical forest setting such as St. John. Unfortunately, this is a

major issue because of the large impact that roads have on watershed erosion and sediment

delivery to the coast [58]. We suggest, above all else, it is critical to identify roads, structures,

agriculture, and mines in the landscape which can greatly alter the vulnerability to erosion of a

watershed. This is further demonstrated on St. John by the construction of Centerline Road in

upper portion of the Coral Bay watershed, which was directly accompanied by an increase in

terrigenous sedimentation rates in the coast [49].

Fortunately, the AGMD variable is in most cases relatively easy to through public records,

satellite imagery, and/or a community-based research effort. The original vector shapefiles

used in the AGMD dataset for the high-resolution EVI-STJ were started by a local watershed

action group the Coral Bay Community Council (CBCC). After receiving those files, we were

able to fill in data gaps via manual identification using satellite imagery, communication with

locals about what existed where, and simple, directed GPS surveys using a handheld GPS unit.

It should be noted that this method does not take into account coastal vegetation such as

mangroves that trap some sediments before reaching the bay [79]. Future methods will attempt

to incorporate coastal vegetation as a critical component of this analysis allowing us to under-

stand how it impacts coastal deposition and potential alterations to critical coastal

environments.

Conclusions

Vulnerability to land-based erosion in small (5,000 km2) islands of the tropics is important to

consider for land use management but a challenge using large-scale global datasets. We

develop a methodology to overcome these limitations using higher-resolution island-specific

data tested on St. John in the U.S. Virgin Islands, that yields a more accurate and clearer vul-

nerability assessment. Some island-specific data are particularly important to have including

anthropogenic development (roads and buildings), watershed slope, and earthquake probabil-

ity. Roads and buildings are particularly important to locally constrain because they are diffi-

cult to identify in heavily forested regions using satellite algorithms and the rapid, ongoing

rate of development can quickly lead to outdated and underestimations.
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