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Background: The force-velocity-power (FVP) profile is used to describe dynamic force
production capacities, which is of great interest in training high performance athletes.
However, FVP may serve a new additional tool for cardiac rehabilitation (CR) of coronary
artery disease (CAD) patients. The aim of this study was to compare the FVP profile
between two populations: CAD patients vs. healthy participants (HP).

Methods: Twenty-four CAD patients (55.8 ± 7.1 y) and 24 HP (52.4 ± 14.8
y) performed two sprints of 8 s on a Monark cycle ergometer with a resistance
corresponding to 0.4 N/kg× body mass for men and 0.3 N/kg× body mass for women.
The theoretical maximal force (F0) and velocity (V0), the slope of the force-velocity
relationship (Sfv) and the maximal mechanical power output (Pmax) were determined.

Results: The Pmax (CAD: 6.86 ± 2.26 W.kg−1 vs. HP: 9.78 ± 4.08 W.kg−1,
p = 0.003), V0 (CAD: 5.10 ± 0.82 m.s−1 vs. HP: 5.79 ± 0.97 m.s−1, p = 0.010),
and F0 (CAD: 1.35 ± 0.38 N.kg−1 vs. HP: 1.65 ± 0.51 N.kg−1, p = 0.039) were
significantly higher in HP than in CAD. No significant difference appeared in Sfv (CAD:
−0.27 ± 0.07 N.kg−1.m.s−1 vs. HS: −0.28 ± 0.07 N.kg−1.m.s−1, p = 0.541).

Conclusion: The lower maximal power in CAD patients was related to both a lower
V0 and F0. Physical inactivity, sedentary time and high cardiovascular disease (CVD)
risk may explain this difference of force production at both high and low velocities
between the two groups.

Keywords: force-velocity-power relationship, cardiac rehabilitation, physical activity, acute coronary syndrome,
cycle sprint, exercise physiology, health
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INTRODUCTION

After an acute coronary syndrome, a cardiac rehabilitation (CR)
program is essential to restore or increase physical capacities and
reduces cardiovascular disease (CVD) risk (Pavy et al., 2012; Iliou
et al., 2015; Price et al., 2016). The objective for active subjects
is to regain their place in society and for older persons is to
maintain their independence (Pavy et al., 2012; Iliou et al., 2015).
It is necessary to adapt the content of CR sessions to optimize
aerobic and anaerobic performance along with quality of life
(Price et al., 2016).

Specifically, the improvement of maximum power output of
the neuromuscular system is one of the objectives sought in CR.
Muscle power (P), which is the product of force (F), and velocity
(V), is essential to enhance anaerobic performance (Cronin and
Sleivert, 2005; Morin and Samozino, 2016). Maximal power
capacities depend on force production abilities over the entire
spectrum of contraction velocities, which can be well described
by the force-velocity (FV) relationship (Morin and Samozino,
2016). The orientation of this FV relationship toward rather
maximal force at low velocities (i.e., force capacity) or force at
high velocities (i.e., velocity capacity) is well characterized by its
slope, which refers to the FV profile (Giroux et al., 2016).

Several studies have been carried out on the force-velocity-
power (FVP) relationship and sport performance in top athletes
(Samozino et al., 2014a,b; Giroux et al., 2016; Morin and
Samozino, 2016). This FVP profile can be evaluated on
ballistic push-offs and sprint movements (on treadmill or cycle
ergometer) (Seck et al., 1995; Morin et al., 2010). Different profiles
may be determined according to the type of physical activity and
sometimes even the athlete’s position (e.g., toward force capacity
for forward players and toward velocity for back players in rugby)
(Morin and Samozino, 2016). The analysis of the FVP profile
highlights the weaknesses in force production capacity of each
athlete. A specific training oriented in force or in velocity should
be adapted according to whether the athlete wants to maintain
his/her specificity or tip the balance of the FV profile that presents
a deleterious imbalance for his/her future performances (i.e.,
change the slope of the right of the FV profile toward an optimal
slope) (Jiménez-Reyes et al., 2016; Morin and Samozino, 2016).

Optimizing the exercise training program is constantly sought
in rehabilitation among patients always younger with coronary
artery disease (CAD) (Price et al., 2016). Indeed, the CAD
prevalence rose from an estimated 290 cases per 100,000 for those
40–44 years of age to 11,203 cases per 100,000 at 1990–2015
(Roth et al., 2017). Therefore, it might be interesting to talk about
performance even in patients and to use the FVP relationship
to more precisely identify this loss of muscle force production
capacity in patients suffering from cardiovascular impairment
as well a loss of functional capacities of their neuromuscular
system. Usual rehabilitation sessions are based on the results of
functional explorations performed in aerobic (cardiorespiratory
exercise test) and resistance (static and dynamic quadriceps test)
at the beginning of the rehabilitation cycle. Instead of using the
results of a muscle test, we could rely on the results of the initial
FVP. So far, the measurement of muscle strength production
capacities has been determined by isometric and dynamic leg

extension test. The FVP profile would allow, through a simple
and rapid assessment, to target the weakest qualities in patients
in order to individualize the training for each person.

The aim of the present study was to analyze and compare
the force production capacities through the mechanical variables
of the FVP relationship obtained during pedaling between CAD
patients and healthy participants (HP). We hypothesized that
CAD patients present lower maximal power than HP, with
notably a lower maximal force production at low velocity; but
without previous studies, we had no evidence to suggest the
impact of FV profile (i.e., whether one would be more affected
than the other).

MATERIALS AND METHODS

Participants
Coronary artery disease patients volunteered to participate in
this study at the beginning of the CR. The inclusion criteria
were the following: (a) over 18 years of age; (b) received medical
treatment and percutaneous coronary intervention (angioplasty
with stent implantation) or surgical revascularisation (coronary
artery bypass grafting); and (c) maximal aerobic power superior
to 60 W for women and 80 W for men (Borjesson et al., 2011).
They received a measurement of their maximal oxygen uptake
(V̇O2max) during an ergocycle stress test before and after a CR
program. The study protocol conformed to the ethical guidelines
of the 1975 Declaration of Helsinki and was approved by the
institution’s human research committee. The study was registered
in the National Institutes of Health ClinicalTrials.gov database.

HP were 18 years old as patients, they were free from
any kind of CVD, performing regular physical exercise
and were volunteers to participate. The ethics committee
(IRBN372016/CHUSTE) and the national commission for
informatics and liberties (CNIL165853) approved the cohort
study for pedaling testing.

History of sport was assessed by only two questions: (1) did
you do sports (CAD patients) or (2) do you practice sports (HP)?
If yes, which sport? Sport was quantified in weekly metabolic
equivalent of task (MET) and expressed in h/week (i.e., intensity
in MET × duration × frequency), using the compendium of
sports, and ranged from 6 (vigorous intensity = sport) to 18 MET
(running at 17 km/h) (Ainsworth et al., 2000).

Experimental Protocol
At the beginning of each experiment, saddle height was adjusted
and toe clips were well fastened to avoid losing the pedals.
After a 5-min warm-up, participants performed two maximal 8-s
duration sprints, separated by a 2-min rest period, against friction
loads of 0.4 and 0.3 N.kg−1 body mass for men and women,
respectively (Figure 1). We performed pre-tests to determine
these appropriate loads. They had to remain seated during the
test. For each trial, the participants had to pedal as fast as
possible during all the sprint. For this, the experimenter (MF)
encouraged vigorously each participant throughout the sprint.
We retained the data of the best sprint (i.e., the one with the
highest maximal power).
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FIGURE 1 | Protocol diagram.

FIGURE 2 | Friction loaded Monark cycle ergometer. A, Strain gauge; B, Belt;
C, Optical encoder; D, flywheel.

Material
A friction-loaded cycle ergometer (Monark, Vansbro, Sweden)
was used (Figure 2). All features of the ergometer were detailed
in previous studies (Arsac et al., 1996; Morin and Belli, 2004).
The apparatus was instrumented with a strain gauge (FGP
Instrumentation, FN 3030 type, Les Cloyes Sous Bois, France)
to measure the friction force applied by the tension of the belt
and an optical encoder (Hengstler type RI 32.0, 100 pts/turn,
Aldingen, Germany) to measure the flywheel displacement. The
inertia was determined from the linear relationship obtained by
free deceleration of the flywheel. Data were sampled at 200 Hz
and recorded in LabVIEW software. Data were filtered with a 4th
order low pass Butterworth filter at 30 Hz. Angular velocity and
pedaling frequency were calculated from filtered displacement.

F-V Relationship
The power output (P in watts) produced at each instant during
the sprint was computed as follows (Morin and Belli, 2004):

P = (Ffrict + Finert) × V, (1)

where Ffrict was the friction force, Finert the inertial force
(computed from the flywheel inertia and acceleration) and
V the flywheel linear velocity. Instantaneous flywheel linear
velocity was calculated from the flywheel displacement. The
force (F = Ffrict + Finert), power (P) and velocity (V)
variables corresponded to mechanical outputs at the flywheel
(Jiménez-Reyes et al., 2016).

The F, V, and P values were averaged for each pedal
downstroke, which were defined between two successive minimal

FIGURE 3 | Graphical representation of power-force-velocity relationship.

values of instantaneous power (Samozino et al., 2007). The
lower limb force production capacities can be described by
the negative linear relationship (F-V) and the second order
polynomial relationship (P-V). From these two relationships,
a few parameters, which reflected the mechanical limits of the
neuromuscular system, can be determined (Figure 3; Driss et al.,
2002; Morin and Samozino, 2016): the theoretical maximum
force (F0) which could be developed at zero velocity (intercept
value on the y-axis); the theoretical maximum velocity (V0)
until which force could be produced (intercept value on the
x-axis); and the maximum power output (Pmax), corresponding
to the maximum power that an individual is able to develop
and the slope of F-V relationship (Sfv) which can be computed
as follows:

Pmax = (F0 × V0)/4, (2)

Sfv = − F0/V0, (3)

Statistical Analysis
All data were expressed as mean ± standard deviation (SD).
After checking distribution of normality with the Shapiro–Wilk
test, Student’s t-tests for independent groups were used to detect
differences in F0, V0, Sfv, and Pmax between the two populations.
For all analyses, statistical significance was defined as p < 0.05.
Cohen’s d was also computed to indicate the effect size, which
corresponded to the difference between two means divided by the
pooled SD. We interpreted the data obtained in this way: <0.2
was trivial, 0.2–0.5 a weak effect, 0.5–0.8 a medium effect, and
>0.8 a strong effect (Parker and Hagan-Burke, 2007).

RESULTS

Twenty-four CAD patients and 24 HP aged 55.8 (± 7.1) y and
52.4 (± 14.8) y, respectively, participated in this investigation.
Overweight (mean BMI > 25 kg/m2) concerned 54% of the
CAD patients and they had significantly higher BMI than HP
(27.5 ± 5.4 vs. 24.4 ± 3.4 kg/m2, p < 0.05). In addition, these
patients were physically inactive (5.3 ± 6.8 vs. 39.7 ± 42.0 MET-
h/week, p < 0.001). Descriptive characteristics of participants are
presented in Table 1.
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TABLE 1 | Morphological characteristics of participants.

Variable CAD Patients n = 24 (7 Females/17 Males) Healthy Participants n = 24 (8 Females/16 Males) p-value

Age (y) 55.8 ± 7.1 52.4 ± 14.8 0.319

Body mass (kg) 81.5 ± 17.1* 71.9 ± 13.6 0.036

Height (cm) 172 ± 9 171 ± 10 0.864

BMI (kg/m2) 27.5 ± 5.4* 24.4 ± 3.4 0.020

PA (MET-h/week) 5.3 ± 6.8*** 39.7 ± 42.0 0.000

BMI, body mass index; PA, physical activity; CAD, coronary artery disease; MET, metabolic equivalent of task. Values presented as means ± SD. Statistical difference
between two groups *(p < 0.05), ***(p < 0.001).

TABLE 2 | Mechanical performance sprint variables.

Variable CAD Patients (n = 24) Healthy Participants (n = 24) p-value Cohen’s d

F0 (N) 106.84 ± 27.78 117.14 ± 43.43 0.333 0.283

F0 (N.kg−1) 1.35 ± 0.38* 1.63 ± 0.51 0.039 0.642

V0 (m.s−1) 5.10 ± 0.82* 5.79 ± 0.97 0.010 0.722

V0 (rad.s−1) 19.6 ± 3.16* 22.3 ± 3.73 0.010 0.726

Sfv (N.kg−1.m.s−1) −0.27 ± 0.07 −0.28 ± 0.07 0.541 0.142

Pmax (W) 543.47 ± 170.36* 709.88 ± 328.14 0.032 0.612

Pmax (W.kg−1) 6.86 ± 2.26** 9.78 ± 4.08 0.003 0.816

F0, theoretical maximum force; V0, theoretical maximum velocity; Sfv, Slope of linear force-velocity relationship; Pmax, maximal power output; CAD, coronary artery
disease. Values presented as means ± SD. Statistical difference between two groups *(p < 0.05), **(p < 0.01).

The average of mechanical parameters of the FVP for each
group are reported in Table 2. We noted a significant difference
for Pmax, V0, and F0. A smaller in Pmax (−29.8%, p = 0.003), V0
(−11.9%, p = 0.010), and F0 (−18.2%, p = 0.039) were observed in
CAD patients compared to HP. However, no statistical difference
was observed between the two populations for Sfv (p = 0.557) of
FVP (Figure 4).

DISCUSSION

This study was the first to examine the mechanical parameters of
FVP in CAD patients. The main findings of this research were
that (i) Pmax, V0, and F0 were significantly lower in CAD patients
than in HP, while (ii) Sfv was similar for these two populations.

Decrease in Pmax, F0 and V0 on CAD
Patients
Considering power output as the product of force and velocity
(eq.1), the decline of maximum power was induced by a
reduction of both force production capacities at high (V0) and
low (F0) velocities. The values presented in the literature are
mostly based on high performance athletes, which leads to higher
results than those reported in our study (Vandewalle et al.,
1987; Dorel et al., 2005). Dorel et al. (2005) and Vandewalle
et al. (1987) measured peak power (Pmax) of elite cyclists who
performed short maximal sprints (about 5–6 s) on a Monark cycle
ergometer. The findings of these two studies were, respectively
19.3 ± 1.3 and 16.8 ± 1.23 W.kg−1, i.e., it was almost two and
three times the maximum power developed, respectively, by HP
and CAD patients.

FIGURE 4 | Mean force-velocity profile of healthy subjects and coronary
patients.

This difference in force and velocity between the two groups
can be explained by different factors. First, CAD patients were
significantly fatter than HP and therefore had a higher BMI. In
addition, we have no significant difference between the BMI in
CAD patients before and after CR (Before CR: 27.6 ± 5.5 kg/m2

and after CR: 26.6 ± 5.0 kg/m2, p = 0.44). Secondly, prior to
their acute coronary syndrome, patients were physically inactive.
They spent on average 5 MET-h/week, which was very low
knowing that 1 MET represented the metabolism at rest (3.5 ml
O2/kg/min) (Jetté et al., 1990). Besides, it was recommended
to walk on average 10,000 steps/d and to practice at least
150 min of physical activity weekly (Le Masurier et al., 2003)
which represents an average dose of 7.5 MET-h/week (Hupin
et al., 2015). We noted a significant difference on V̇O2max
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in CAD patients before and at the end of CR (before CR:
22.70 ± 5.20 ml/min/kg and after CR: 25.82 ± 5.78 ml/min/kg,
p = 0.0018). Thanks to CR, CAD patients improved their
V̇O2max by 15%. Compared to the reference values for people
of the same age [i.e., 38.4 ml/min/kg (Wilmore et al., 2008)]
this confirms that CAD patients are deconditioned before
the CR program. Thirdly, patients often had more sedentary
behavior before cardiovascular event. These risk behavioral
factors, combined with CVD risk factors such as smoking and
poor diet, significantly increase cardiovascular morbidity and
mortality (Gbd 2013 Risk Factors Collaborators, 2015). We can
suppose that high CVD risk and an excess fat mass prevented
them from contracting at high velocities.

This difference of V0 might be due to a remodeling of the
motor units toward a slower typology (Power et al., 2014). Other
physiological factors could be involved, such as an increase
internal resistance produced by connective tissue (Valour et al.,
2003) an increase in percentage of type I fibres (Thom et al., 2007)
and selective atrophy of type II fibers (Häkkinen et al., 1996). This
last assumption was in accordance with (Hautier et al., 1998), who
showed an important relationship between maximal power and
the relative area of fast twitch fibers. Indeed, most HP practiced
explosive sports such as football and tennis, which requested fast
twitch fibers and anaerobic metabolism.

The variation in F0 might be caused by sarcopenia, the
loss of muscle mass in patients (Häkkinen et al., 1996). In
addition, most of the patients had sedentary behavior (i.e.,
overweight and physically inactive), which led to higher a
percentage of fat tissue compared to HP. Thirdly, they might
also have a neuromuscular activation deficit or the decrease
in the effectiveness of the transmission of the voluntary
command to the muscle could explain the decrease in force
(Morse et al., 2004).

In addition, all CAD patients (except one) were receiving
beta-blocker medical treatment (none among HP). These
medications have the effect of decreasing heart rate and blood
pressure (Goldberger et al., 2015). Beta-blockers would change
neuromuscular recruitment strategy, which would explain the
impaired maximal sprint performance (Hunter et al., 2002; Fisher
et al., 2010). Moreover, statin therapy demonstrated a benefit
in CAD patients to reduce CVD risk (Shepherd et al., 1995);
however, they had deleterious effects on skeletal muscle, ranging
from muscle complaints (which explained the withdrawal of
statin in 2 CAD patients) to myositis (Mikus et al., 2013).
Finally, the treatment of CAD patients (statin, beta-blockers),
the disease and low physical activity had negative effects on
muscle function.

Similar Values of Slope
No significant difference was observed for the Sfv variable
between the two groups. The Pmax impacted both force
production at high and low velocities. The current results differed
with previous studies which indicate higher F0 values (Driss et al.,
1998; Giroux et al., 2016). Indeed, Driss et al. (1998) assessed
mechanical properties of FVP in male volleyball players during
short maximal sprint (about 6 s) on a Monark cycle ergometer
and they reported a F0 value almost two times higher than ours.

Limitation
As physical activity was evaluated solely through a few questions,
which is an approximate measure of the quantity of physical
exercise, the main limitation of this study regards the objectivity
of physical activity assessment. For future studies, more precise
tools such as actimeters should be used.

Perspectives
This study could be continued by a randomized study with a
larger number of participants to assess the impact of training
in force or velocity production force capacities according to the
initial FVP of the patients. Indeed, evidence may be emerging
that high-intensity strength training is more effective to increase
acutely myofibrillar protein synthesis, cause neural adaptations
and, in the long term, increase muscle strength, when compared
to low-intensity strength training (Hansen et al., 2019). Also,
studies report that cardiovascular demand is lower in high-
intensity than low-intensity resistance exercises, thus potentially
pointing toward sufficient medical safety of a simple sprint
on cycle ergometer for the cardiovascular system (Bjarnason-
Wehrens, 2019). The F-V (deficit in force or velocity) imbalance
initially observed from an evaluation of the FVP (sprint on
cycle ergometer) would be optimized thanks to an adapted
training program. We hypothesize that F-V profile could be
used in CR in CAD patients, as an additional and novel tool,
to induce a F-V balance adapted through personalized sessions
(Supplementary Material).

CONCLUSION

The lower maximal power in CAD patients was related to both
a lower V0 and F0. Physical inactivity, sedentary time and high
CVD risk may explain this difference of force production at both
high and low velocities between the two groups.
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