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Abstract

In the last years, great advances have been made in the effort to understand how nutritional influences can affect
long-term renal health. Evidence has accumulated that maternal nutrition before and during pregnancy and
lactation as well as early postnatal nutrition is of special significance. In this review, we summarize epidemiologic
and experimental data on the renal effects of perinatal exposure to energy restriction, low-protein diet, high-fat
diet, high-fructose diet, and high- and low-salt diet as well as micronutrient deficiencies. Interestingly, different
modifications during early-life diet may end up with similar sequelae for the offspring. On the other hand,
molecular pathways can be influenced in opposite directions by different dietary interventions during early life.
Importantly, postnatal nutrition significantly modifies the phenotype induced by maternal diet. Sequelae of altered
macro- or micronutrient intakes include altered nephron count, blood pressure dysregulation, altered sodium
handling, endothelial dysfunction, inflammation, mitochondrial dysfunction, and oxidative stress. In addition, renal
prostaglandin metabolism as well as renal AMPK, mTOR, and PPAR signaling can be affected and the renin-
angiotensin-aldosterone system may be dysregulated. Lately, the influence of early-life diet on gut microbiota
leading to altered short chain fatty acid profiles has been discussed in the etiology of arterial hypertension. Against
this background, the preventive and therapeutic potential of perinatal nutritional interventions regarding kidney
disease is an emerging field of research. Especially individuals at risk (e.g., newborns from mothers who suffered
from malnutrition during gestation) could disproportionately benefit from well-targeted dietary interventions.
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Malnutrition, Renal programming, Kidney disease

Introduction
Animal studies on the influence of maternal nutrition on off-
spring kidney development can be found as early as in the
1960s [1]. First epidemiologic studies discussing the influence
of early-life nutrition on risk of disease in adult life were pub-
lished in the 1970s [2, 3]. Since then, great advances have
been made in the effort to understand how nutritional influ-
ences during specific windows of development can affect
long-term renal health. In this review, we summarize current
knowledge of how energy intake and dietary composition of
macronutrients and micronutrients during perinatal develop-
ment act upon renal health (for an overview see Fig. 1).

Energy restriction
Experimental studies on the effect of energy restriction
are challenging to interpret since total energy restriction
necessarily goes along with restriction of a varying
amount and combination of macronutrients in most set-
tings. In epidemiological studies, it is not even possible
to define the exact composition of the diet. Despite these
limitations, some interesting studies are hinting at pos-
sible effects of total energy restriction during early life
on long-term renal health. Thus, individuals exposed to
the Dutch Famine 1944/1945 during midgestation had
an elevated risk of suffering from microalbuminuria dur-
ing their fifth and sixth decade [4]. In Chinese women,
exposure to the Chinese Famine 1959–1961 during fetal
or early life was associated with an increased risk of pro-
teinuria three decades later [5].
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Rat offspring exposed to 50% maternal nutrient re-
striction throughout pregnancy compared to control ad
libitum intake clinically developed reduced renal func-
tion, arterial hypertension, and increased proteinuria.
Mechanistically, this was linked to reduced nephron
count, endothelial dysfunction, oxidative stress, and
RAAS dysregulation in adulthood [6, 7]. During kidney
development, there was evidence for impaired ureteric
bud branching and downregulation of proliferative path-
ways (ERK, p38 MAPK, Akt, PI3K, mTOR) in utero [8]
and dysregulation of genes involved in PPAR signaling
and glutathione metabolism during early life [9].
In sheep, periconceptional undernutrition, twin preg-

nancy, and maternal nutrient restriction to 50% of re-
quirements during specific periods of kidney
development were associated with altered gene expres-
sion of receptors regulating kidney growth in the off-
spring [10, 11]. Interestingly, animals exposed to 50%
maternal nutrient restriction showed less pronounced
renal inflammation when they were challenged by a
high-fat diet postnatally [12].
In baboons, maternal nutrient restriction to 70% of

controls during early to midgestation was associated

with impaired tubule development, alterations in fetal
renal mTOR signaling, and altered mitochondrial gene
expression [13–15].

Macronutrients
Protein
Low-protein nutrition during gestation is probably the most
widely used experimental setup to study the influence of
early nutrition on adult renal health. Starting in the 1990s, it
could first be shown in rats that low-protein diet throughout
gestation results in reduced nephron count and arterial
hypertension [16–19], pronounced deterioration of renal
function with increasing age [20, 21], and increased suscepti-
bility towards second hits [17, 22]. A multitude of molecular
alterations mutually affecting each other has been identified
in low-protein studies performed in rats in the meantime.
Thus, quantitative and qualitative alterations of the renin-
angiotensin-aldosterone system [18, 23–30], altered tubular
salt handling [29, 31–35], and salt sensitivity of blood pres-
sure [32, 36], as well as dysbalanced glucocorticoid metabol-
ism [37], are important endocrine sequelae. Furthermore,
there is evidence for enhanced inflammation [30] and oxida-
tive stress [29, 30, 38] as well as altered prostaglandin

Fig. 1 Schematic overview on the interplay between macro- and micronutrients and important developmental patterns/mechanisms involved in
renal disease. RAAS, renin-angiotensin-aldosterone system. The figure was created using BioRender (www.biorender.com)
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metabolism [39] and endothelial [21] and mitochondrial dys-
function [40]. Dysregulation of AMPK, PPAR, and mTOR
pathways may predispose towards obesity-associated kidney
damage [41].
Importantly, it has been shown that postnatal nutrition

significantly modifies the phenotype induced by mater-
nal low-protein diet [42]. Thus, fostering low-protein
pups to dams fed a control diet with normal protein
content partially mitigates renal sequelae [43]. Con-
versely, healthy control pups raised in litters of 6–8 indi-
viduals by foster dams receiving low-protein diet
developed arterial hypertension [44]. In another study,
rat dams were protein-restricted during lactation only
and litters were reduced to six males. Their offspring de-
veloped reduced nephron count, hyperfiltration, protein-
uria, and altered salt handling associated with a
dysregulation of angiotensin II signaling at 60 days of
age [32]. In addition, both the phenotype and the mo-
lecular alterations are sex-dependent [37]. In some stud-
ies, it was shown that effects might even be transferred
to subsequent generations [45].
Although most studies were performed in rats, similar

results were published in mice [46, 47] and sheep [43,
48, 49]. Interestingly, maternal high-protein diet during
gestation had no effect on renal morphology or function
in the offspring [50].

Lipids
Dietary lipids play a role in chronic kidney disease [51].
During kidney development, most studies have focused on
the effect of excess dietary lipids. Conflicting results from
these studies may rely on the finding that the fatty acid
composition of dietary lipids has a major impact [52–54].
In addition, postnatal nutrition modifies the phenotype
[55] and the dietary content of fructose should be taken
into account since high-fat diet and Western-style diet
have differential effects. Thus, studies influencing the ef-
fect of a “high-fat” diet are difficult to compare since the
specific dietary interventions used to vary a lot.
In rats, maternal high-fat diet during gestation and lac-

tation was associated with persisting upregulation of the
renin-angiotensin system in adipose and renal tissue, in-
creased oxidative stress markers, dysregulation of so-
dium transporters and circadian clock markers, and the
development of arterial hypertension in adult life [56–
58]. Perinatally, high-fat offspring presented with in-
creased glomerular number which was no longer
retraceable at 9 months of age [59]. Exposure to a modi-
fied high-fat diet rich in lipids containing saturated,
mono-unsaturated, and n-6 polyunsaturated fatty acids
in utero and until weaning resulted in vascular dysfunc-
tion, reduced renal Na+,K+-ATPase and reduced renin
activity at 6 to 12months of age. Renal stereology was
not affected [60]. Exposure to both maternal and post-

weaning high-fat diet (HF/HF) resulted in differentially
composed gut microbiota and altered fetal concentra-
tions of short chain fatty acids, which are known to
affect blood pressure levels [61]. Treatment of HF/HF
animals with the antioxidant resveratrol during young
adult life prevented the development of arterial hyper-
tension [62]. In another HF/HF study, tubular injury,
impaired renal function, and increased expression of in-
flammatory markers were observed. These sequelae
could be mitigated by n-3 fatty acid supplementation in
the HF/HF group [54].
In mice, our group performed proteomic analyses of

fetal kidneys shortly before birth. Proteins differentially
expressed by maternal high-fat diet could be linked to
eicosanoid metabolism, H2S-synthesis, transcription/
translation, mitochondrial processes, and membrane re-
modeling [63]. In another mouse study, high-fat diet
during gestation and lactation was associated with in-
creased renal leptin signaling and decreased renal Akt/
AMPK signaling at 3 weeks of age. Interestingly, at 10
weeks of age, leptin signaling was decreased in these ani-
mals [64]. Maternal high-fat diet restricted to the lacta-
tion period only had similar metabolic alterations in the
offspring at 3 weeks of age but no effects at 10 weeks
[64]. A study that combined maternal and post-weaning
high-fat diet (HF/HF) resulted in albuminuria and in-
creased renal triglyceride accumulation of the offspring
going along with upregulation of markers indicative of
inflammation, fibrosis, and oxidative stress. Experimen-
tally induced overexpression of Sirtuin 1 partially miti-
gated these effects [65].
Remarkably, not only maternal but also paternal high-

fat diet before mating can induce renal sequelae in the
offspring. Thus, paternal high-fat diet in rats was associ-
ated with increased renal triglyceride accumulation and
signs of tubular damage in adult male offspring, al-
though in utero and postnatal conditions did not differ
between groups [66]. Similar to sequelae seen in low-
protein models, effects of high-fat diet in the offspring
are sex-dependent [58].

Fatty acids
In the Amsterdam Born Children and their Develop-
ment (ABCD) study, low maternal serum concentrations
of n-3 fatty acids (FA) and C20:3 n-6 (Dihomo-γ-lino-
lenic acid, DGLA), and high maternal serum concentra-
tions of trans fatty acids and C20:4 n-6 (arachidonic
acid, ARA) were associated with an increased risk of giv-
ing birth to small for gestational age (SGA) infants [67].
In line with this, an Indian study reported a negative
correlation of maternal ARA plasma concentrations and
a positive correlation of maternal n-3 FA plasma con-
centrations with birth weight [68]. These findings are
relevant for the kidney since epidemiological studies
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have shown that being small for gestational age is associ-
ated with an elevated risk of decreased renal function in
young adulthood [69] and adverse course of glomerulop-
athies [70].
Postnatally, docosahexaenoic acid (DHA) concentra-

tions in breast milk correlate with phospholipid FA com-
position of infant erythrocytes [71]. Dietary
supplementation of the n-3 fatty acid DHA to the
mother was shown to be an effective strategy to increase
DHA breastmilk concentrations and increase omega-3
fatty acid availability during the neonatal period [71, 72].
In a mouse model, variation of dietary n-3/n-6 FA ratios
during gestation and weaning was reflected in variation
of kidney phospholipid FA composition [73]. Thus, peri-
natal availability of FA may have long-lasting conse-
quences for the susceptibility towards kidney disease,
since glycerophospholipid composition of organ mem-
branes plays a role in a variety of pathologic conditions
including cancer [74].

Western-style diet
Perinatal and post-weaning Western-style diet (contain-
ing an increased amount of fat and fructose) in rats re-
sulted in albuminuria, glomerulosclerosis, and
tubulointerstitial fibrosis in adult life [55, 75] going
along with an increased expression of inflammatory
markers [75, 76].

Fructose
High-fructose intake during gestation and lactation was
associated with the development of arterial hypertension
and increased expression of oxidative stress markers in rat
offspring [77]. At 2 weeks of age, transcriptome analysis
from renal rat tissue hinted at alterations of peroxisome
proliferator-activated receptor (PPAR) signaling and gluta-
thione metabolism [9]. Inhibition of soluble epoxide
hydrolase in the offspring during the early postnatal
period prevented the development of arterial hyperten-
sion. Mechanistically, this might rely on a regulatory effect
of the arachidonic acid pathway leading to, e.g., an in-
crease of vasodilatory epoxyeicosatrienoic acids (EETs)
[77]. In another rat study, arterial hypertension induced
by maternal high-fructose diet was attributed to dysregu-
lation of gut microbiota as well as serum short chain fatty
acids and their receptors in the offspring [78].

Micronutrients
Human studies on the effect of micronutrients during
early life were mainly performed in populations with a
high percentage of suspected malnutrition. Thus, in a
large randomized trial in Nepal, it could be shown that
supplementation of the daily allowance of 15 minerals
and vitamins in pregnant women was associated with a
slightly lower blood pressure of their children at 2.5

years [79]. However, in a follow-up analysis studying Nep-
alese children at 6–8 years, no effect of maternal micronu-
trient supplementation on blood pressure levels could be
demonstrated. Instead, there was evidence that supple-
mentation of folic acid or a combination of folic acid, iron,
and zinc during pregnancy reduced the prevalence of
microalbuminuria in this age group [80]. In a similar study
from Bangladesh, maternal micronutrient supplementa-
tion (daily allowance of 15 micronutrients minerals and vi-
tamins) was even associated with a marginally higher
diastolic blood pressure at 4.5 years of age [81].
Looking at single supplements, data is available for

vitamin A, iron, and zinc. Thus, there was a positive cor-
relation between maternal serum retinol concentrations
and newborn kidney size at birth in a small cohort study
from Egypt [82]. This would be in line with a study from
rats, in which reduced vitamin A availability in utero in-
duced low nephron count [83]. Similarly, iron restriction
in rats caused a reduction of glomerular number in adult
offspring [84]. In other studies, it could be shown that
exposure to iron deficiency during gestation postponed
nephrogenesis [85] and predisposed towards high-salt-
induced arterial hypertension and mitochondrial dys-
function [86]. Deficiency during gestation was clinically
associated with the development of arterial hypertension
and decreased renal function of the offspring in experi-
mental models. Histological and molecular analyses pro-
vided evidence for reduced nephron count and increased
oxidative stress [87, 88].

Salt
Studies on “high salt” and “low salt” diet during gesta-
tion and early postnatal development are highly variable
regarding the exact amount of salt given.
In rats, both high- (3.0%) and low (0.07%)-salt diets

during gestation and lactation were associated with ar-
terial hypertension in adult male offspring at 5 months
of age. Mechanistically, this was linked to low nephron
count [89]. Similarly, a maternal diet containing 4%
NaCl during gestation and lactation was associated with
elevated blood pressure in male offspring in young
adulthood. Interestingly, both male and female offspring
were hypernatremic at this age despite being fed regular
chow which was attributed to chronically increased cor-
ticosterone levels and altered gastrointestinal sodium
handling [90]. A diet containing extremely high (8.0%)
NaCl content during gestation (compared to 1.3% in
controls) was shown to induce lower basal plasma renin
activity, lower serum aldosterone, and reduced renal
renin gene expression in male offspring at 12 weeks of
age while blood pressure was elevated after high-salt
challenge only [91]. Another study using the same salt
exposure (8.0%) reported increased renal AT1:AT2-re-
ceptor and increased ACE:ACE2 expression ratios in the
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offspring [92]. In a study that supplemented salt not via
food but via drinking water (1% NaCl) during pregnancy
and lactation, male offspring showed alterations in the ex-
pression and activity of renal sodium transporters, in-
creased infiltration with macrophages, increased
deposition of collagen, and decreased AT2-receptor ex-
pression [93]. In the same setting (1% NaCl via drinking
water), the development of arterial hypertension could be
shown and next-generation RNA sequencing was per-
formed to identify candidate genes for renal programming.
In total, 272 genes were differentially expressed in high-
salt offspring compared to controls, including genes be-
longing to clusters of cell adhesion molecules and comple-
ment and coagulation cascades [9].. Sheep offspring from
mothers either exposed to a high-salt diet (14% compared
to 2% NaCl) or fed saltbush (compared to dry pasture)
during gestation had lower basal renin activity than their
controls. In saltbush offspring, lower renin activity even
persisted during post-weaning salt overload [94, 95].

Molecular mechanisms
Interestingly, different modifications during early-life diet
may end up with similar sequelae for the offspring. On the
other hand, molecular pathways can be influenced in op-
posite directions by different dietary interventions during
early life. In Table 1, we present an overview of early-life
dietary modifications, known molecular effects on kidney
development, and renal outcome.

Secondary prevention and therapeutic potential of
nutritional interventions
In recent years, there is growing interest in the thera-
peutic potential of nutritional interventions. Especially
individuals at risk could disproportionately benefit from

well-targeted dietary interventions. However, the num-
ber of dietary interventions to prevent renal disease is
still limited.
In a human study from rural Nepal, supplementation of

folic acid or a combination of folic acid, iron, and zinc
during pregnancy reduced the risk of microalbuminuria in
childhood [80]. Similarly, supplementation of selenium,
folate, vitamin C, and vitamin E during 50% food restric-
tion in rats prevented the development of arterial hyper-
tension and endothelial dysfunction in the offspring.
However, it did not protect against reduced glomerular
number and impaired renal function in adulthood [6]. In
rats exposed to low-protein diet during gestation, mater-
nal supplementation of glycine prevented the development
of arterial hypertension [96] and a single dose of vitamin
A during midgestation prevented low nephron count [97].
However, in preterm but otherwise healthy baboons, early
postnatal administration of vitamin A was not able to
stimulate nephrogenesis [98]. Regulation of maternal gut
microbiota by either probiotic or prebiotic strategies dur-
ing maternal high-fructose diet prevented the develop-
ment of arterial hypertension in the offspring. This effect
was attributed to a regulation of gut microbiota as well as
normalization of short chain fatty acids and their recep-
tors in the offspring [70].
Taken together, these studies encourage further re-

search on the preventive potential of dietary interven-
tions. The better we learn to understand why an
individual is at risk to develop kidney disease, the better
we will be able to develop targeted nutritional interven-
tions. So far, a couple of risk factors have been identi-
fied. In addition to adverse intrauterine conditions [99],
ethnic background has been shown to influence renal
function [100] and blood pressure [101] in childhood

Table 1 Overview of early-life dietary modifications and known molecular effects

Morphological/molecular effect Early-life dietary modification

Reduced nephron count Energy restriction [6, 7], low-protein diet [16, 17, 19], high- or low-salt diet [89], maternal deficien-
cies in vitamin A [83], iron [84], or zinc [87]

Dysregulation of the renin-angiotensin-
aldosterone system (RAAS)

Energy restriction [7], low-protein diet [18, 23–27, 30], high-fat diet [56], and high-salt diet [91–93,
95]

Altered expression and/or activity of renal sodium
transporters

Low-protein diet [29, 31–35], high-fat diet [58, 60], and high-salt diet [93]

Oxidative stress Energy restriction [6, 7], low-protein diet [29, 30, 38], high-fat diet [56, 58, 62, 65], and high-
fructose diet [77]

Inflammation Low-protein diet [30], high-fat diet [54, 65, 75, 76], Western-style diet (high fat/high fructose) [75,
76], and high-salt diet [93]

Dysregulated metabolic signaling, (e.g., AMPK,
mTOR, or PPAR signaling)

Energy restriction [8, 9, 13–15], low-protein diet [41], and high-fat diet [64]

Mitochondrial dysfunction Energy restriction [13–15], low-protein diet [40], and high-fat diet [63]

Endothelial dysfunction Energy restriction [6, 7], low-protein diet [21], and high-fructose diet [77]

Altered short chain fatty acid profile/dysregulated
gut microbiota

High-fat diet [61] and high-fructose diet [78]

Prostaglandin metabolism Low-protein diet [39]
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already. In part, this might be related to genetic factors.
Thus, MYH9 polymorphisms [102] and APOL1 gene
variants [103] have been identified as important factors
contributing to the elevated risk of end stage renal dis-
ease in Americans of African ancestry compared to
European ancestry. Interestingly, there is evidence from
animal models that high-fat diet might upregulate
MYH9 expression [104]. In a European population, vari-
ants at the UMOD locus were associated with advanced
chronic kidney disease [105]. Thinking in terms of tar-
geted nutritional interventions, this is relevant, since
UMOD variants have also been linked to salt-sensitive
hypertension [106]. Another aspect that needs to be con-
sidered in future studies on the preventive potential of
dietary interventions is that optimal intake has not been
defined for all nutrients for all age groups. For example,
recent discussions about new regulatory standards on in-
fant and follow-on formula for the European Union
[107] demonstrate that there is still a need for studies
defining optimal intakes of, e.g., n-3 and n-6 polyunsat-
urated fatty acids in infants.

Conclusions
This review presents an overview of how maternal nutri-
tion before and during pregnancy and lactation as well as
early postnatal nutrition impact upon kidney development
and long-term renal health. Adverse long-term effects
have been documented for perinatal exposure to energy
restriction, low-protein diet, high-fat diet, high-fructose
diet, and high- and low-salt diet as well as micronutrient
deficiencies. The exact renal phenotype significantly de-
pends upon the timing of exposure. Important renal se-
quelae of altered macro- or micronutrient intakes include
altered nephron count, blood pressure dysregulation, al-
tered sodium handling, endothelial dysfunction, inflamma-
tion, mitochondrial dysfunction, and oxidative stress. In
addition, renal prostaglandin metabolism as well as renal
AMPK, mTOR, and PPAR signaling can be affected and
the renin-angiotensin-aldosterone system may be dysregu-
lated. Lately, the influence of early-life diet on gut micro-
biota leading to altered short chain fatty acid profiles has
been discussed in the etiology of arterial hypertension. Im-
portantly, it has been shown that postnatal nutrition sig-
nificantly modifies the phenotype induced by maternal
diet. Against this background, the preventive and thera-
peutic potential of perinatal nutritional interventions re-
garding kidney disease is an emerging field of research.
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