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Simple Summary: The rumen microbiota plays an important role in maintaining microbiota home-
ostasis and promoting milk production synthesis through utilizing amino acids and non-protein
nitrogen. Furthermore, various nitrogen sources have shown distinct effects on microbial growth
rates. The methionine dipeptide (MD) is a bioactive peptide consisting of two methionine (Met)
residues linked by a peptide bond. Although the role of MD in milk protein synthesis is established,
little is known about its role in bacterial fermentation. The present study demonstrates that the
various nitrogen sources could reshape microbiota differently, and MD could be more efficient than
free Met in the rumen to support acetate producer growth. Our study provides some new insights
into the relationship between ruminal microbiota of dairy cows and small peptides and points to
potential strategies to effectively enhance the health condition and digestion ability of dairy cows.

Abstract: It is well known that the methionine dipeptide (MD) could enhance the dairy cows milking
performance. However, there is still a knowledge gap of the effects of MD on the rumen fermentation
characteristics, microbiota composition, and digestibility. This experiment was conducted to deter-
mine the effect of different nitrogen sources with a total mixed ration on in vitro nutrient digestibility,
fermentation characteristics, and bacterial composition. The treatments included 5 mg urea (UR),
25.08 mg methionine (Met), 23.57 mg MD, and no additive (CON) in fermentation culture medium
composed of buffer solution, filtrated Holstein dairy cow rumen fluid, and substrate (1 g total mixed
ration). Nutrient digestibility was measured after 24 h and 48 h fermentation, and fermentation
parameters and microbial composition were measured after 48 h fermentation. Digestibility of dry
matter, crude protein, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the MD
group at 48 h were significantly higher than in the CON and UR groups. The total volatile fatty
acid concentration was higher in the MD group than in the other groups. In addition, 16S rRNA
microbial sequencing results showed MD significantly improved the relative abundances of Suc-
cinivibrio, Anaerotruncus, and Treponema_2, whereas there was no significant difference between Met
and UR groups. Spearman’s correlation analysis showed the relative abundance of Succinivibrio and
Anaerotruncus were positively correlated with gas production, NDF digestibility, ADF digestibility,
and acetate, propionate, butyrate, and total volatile fatty acid concentrations. Overall, our results
suggested that the microbiota in the fermentation system could be affected by additional nitrogen
supplementation and MD could effectively enhance the nutrient utilization in dairy cows.
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1. Introduction

Peptides, which are generally derived from diet, play a vital role in animal physiology
by acting as hormones, neurotransmitters, growth factors, and protein synthesis (body
protein, milk protein, etc.) [1]. Consequently, peptides are becoming more popular in
nutrition and pharmaceutical research [1,2]. Methionine dipeptide (MD) is a bioactive
peptide consisting of two methionine (Met) residues linked by a peptide bond. MD, a
crucial nutrient for milk protein gene expression, was found to be more effective than free
Met in recent in vitro experiments [3,4]. As a result of the oligopeptide transporter 1 in
the jejunum and ileum of dairy cows, MD has been proposed as a feed additive with the
potential to enhance milk protein synthesis [5].

Ruminants utilize a wide range of dietary substrates that are indigestible for monogas-
tric animals via rumen microbial fermentation. As a result, the rumen microbial fermenta-
tion is crucial for the growth and production of ruminants [6–8], and evaluating the effects
of MD on rumen fermentation is essential for its application. Some studies have shown that
small peptide is initially hydrolyzed into a free amino acid in the gastrointestinal tract [9,10],
while other studies found that small peptides could be absorbed in intact peptide [11,12].
Hence, MD may provide microorganisms with Met and MD together. For dairy cows,
Met is the most limiting amino acid [2]. Met supplementation in a rumen-protected form
can improve milk fat [13], milk protein [14], and milk production in dairy cows [15]. In a
recent study, soybean oil-induced milk fat depression was associated with significant alter-
ations in the ruminal microbiota, which could be mitigated by rumen-protected Met [13].
Furthermore, Met expanded the proportion of cellulolytic bacteria (Ruminococcus albus)
and increased microbial protein, and volatile fatty acid synthesis in an in vivo study [16].
Hence, Met could interact with bacteria and ultimately support better fermentation in the
rumen [13,16].

Peptides have been found to improve microbial protein yield and rumen fermen-
tation ability [17–19]. Rather than amino acids or ammonia, rumen bacteria can utilize
nitrogen from peptides [20–22]. Fu et al. [18] demonstrated 1.8 mM peptide maximized
microbial efficiency when ammonia nitrogen was not limiting. Meanwhile, non-structural
carbohydrate-fermenting bacteria required 67% of their nitrogen from peptides or amino
acids, and the efficiency of microbial uptake of peptide-nitrogen was 80%, according to
Russel et al. [23,24]. In addition, Brooks et al. [25] reported that rumen degradable pep-
tide supply improved microbial efficiency. Although these studies have indicated the
significance of peptides, investigations using the 16S rRNA sequencing technique on mi-
crobiota composition are limited. Unlike free Met, most of the functional studies of MD
have focused on the underlying mechanisms of MD’s effects on milk protein synthesis in
bovine mammary epithelial [4,11,12], with fewer findings of the effects of MD on rumen
fermentation. Therefore, it is essential to evaluate the effects of MD on rumen fermentation
and bacterial composition, as well as to see if MD can be used as a feed additive to improve
dietary digestibility in the rumen.

In this study, we aimed to determine the effects of supplementing MD, Met, and urea,
in a total mixed ration (TMR), individually, on fermentation characteristics and bacterial
composition in vitro, and to consider the possibility of MD being a preferred additive
over Met. The incubation of substrate with rumen fluid in an In vitro automated trace gas
recording system has been frequently utilized to assess the effect of a feed additive on
rumen fermentation and digestibility [26,27]. Although in vitro simulation rumen system
results cannot completely replace or reflect those obtained from in vivo studies, they do
provide a rapid and less expensive alternative instead of in vivo feeding studies [27,28].
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We hypothesized that the effects of MD on rumen fermentation and microbiota could be
different from those of Met and that it may be helpful to dietary nutrient degradation.

2. Materials and Methods
2.1. Animals

The donor animals and experimental procedures were approved by the Institutional
Animal Care and Use Committee of China Agricultural University (approval number:
CAU2021009-2). We conducted this experiment in May. Three rumen-cannulated lactating
Holstein dairy cows (36.4 ± 2.04 kg/d milk yield, 131 ± 18 days in milk) from China
ZhongDi Dairy Holdings Company Limited (40◦11′ N 116◦88′ E, Beijing, China) were used
as the donors of rumen fluid. The cows were fed thrice daily at 07:30, 13:30, and 18:30, and
milked thrice daily at 09:00, 14:00, and 19:00. The ingredients and nutrient composition
of the TMR are listed in Table 1. After the morning feeding, approximately 3 L of rumen
fluid was collected from each cow at 09:30 h. In detail, we took ruminal content through
the cannula and put it into a steel artificial squeezer. Then, the rumen fluid was juiced
and filtered through four layers of cheesecloth, transferred to a prewarmed thermos bottle,
then combined and cultivated in the laboratory with CO2 at 39 °C for subsequent in vitro
experiment. The pH of the rumen fluid was measured right after juicing by using a portable
pH meter (S2-Meter, Mettler Toledo International Co., Ltd., Shanghai, Beijing). The pH
of the rumen fluid was 6.2 ± 0.21. It took 20 min to return to the laboratory from the
dairy farm.

Table 1. The ingredients and nutrient composition of total mixed ration fed to cows and the substrate,
% of dry matter basis.

Items Contents

Ingredients
Alfalfa 9.34

Alfalfa silage 2.12
Corn silage 25.21

Steam-flaked corn 17.82
Corn 12.73

Fatty powder 1.27
Soybean meal 15.28
Soybean hull 4.24

Corn gluten meal 2.55
Cottonseed meal 6.37

NaHCO3 0.64
Molasses 1.05

3% premix 1 1.38
Total 100

Nutrient level 2

DM, % of air-dried weight 94.55 ± 0.37
CP 16.00 ± 0.35

NDF 38.18 ±0.91
ADF 25.32 ± 0.43

1 One kg premix contained the following: VA, 130,000 IU; VE, 465 IU; Cu, 2600 mg; Mn, 6000 mg; Zn, 2600 mg; Se,
70 mg; I, 120 mg; Co, 70 mg. 2 All data were obtained from chemical analysis and shown as mean ± standard
deviation. DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; ADF, acid detergent fiber

2.2. Experimental Design and In Vitro Batch Culture

In vitro experiment was conducted, as described previously [26] by glass bottles
(volume capacity, 120 mL), combined with a rumen simulation system for gas production
recording (AGRSIII, Beijing, China). The fermentation system included 1 g of substrate,
50 mL of buffer solution, and 25 mL of rumen fluid. The substrate was the TMR fed to the
donors of rumen fluid and dried at 65 ◦C for 48 h in a forced-air oven, ground in a Wiley mill
(Thomas–Wiley model 4 Wiley mill, Norcross, Thorofare, NJ, USA) to pass a 2 mm sieve. The
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buffer solution was formulated with 15.7 mg/L CaCl2•2H2O, 11.89 mg/L MnCl2•4H2O,
1.19 mg/L CoCl2•6H2O, 9.51 mg/L FeCl2•6H2O, 8.32 g/L NaHCO3, 0.95 g/L NH4HCO3,
1.36 g/L Na2HPO4, 1.47 g/L KH2PO4, 0.14 g/L MgSO4•7H2O, 1.19 mg/L resazurin, and
0.30 g/L Na2S•9H2O (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). The
rumen fluid was a mixture of an equal volume of rumen fluid from three dairy cows. The
value of rumen degraded protein (RDP) in the substrate and RDP requirement of microbiota
were estimated based on the NRC [29]. The RDP in the substrate and RDP requirement of
microbiota was 9.90% and 10.4%.

Treatments included the control (no additive, CON), 5 mg urea (UR), 25.08 mg Met,
and 23.57 mg MD. The urea addition in the UR group was determined to meet the RDP
requirement, and the Met addition and the MD addition were calculated to match the
nitrogen supplementation from urea. The urea product was purchased from KELUNDUO
Food Agricultural Co., Ltd. (Lianyungang, China) with a purity of 99%. The Met product
was purchased from Bluestar Adisseo Co., Ltd. (Nanjing, China) with a purity of 99%. MD,
with a purity of 99%, was purchased from Hebei Tianma-Muge Biotechnology Co., Ltd.
(Hengshui, China). The 48 bottles with six replicates per time (24 h, 48 h) per treatment
(UR, Met, MD, CON) were immediately sealed after introducing anaerobic N2 for 5 s, and
then connected to the recording system at 39 °C to reduce the variability [27].

After 48 h and 24 h fermentation, the solid fraction in each bottle was collected by nylon
bag (80 mm × 150 mm size, 42 µm pores), and the residual culture fluid was collected into
2.5 mL microtubes and 15 mL centrifuge tubes for microbial composition and fermentation
parameters analyses. The solid content was then dried in a nylon bag as mentioned above
and prepared for nutrient composition analyses. The pH of the filtered culture fluid was
measured after filtration.

The nutrient compositions of original TMR and residual solid fraction were determined
according to a previously described method [30] including dry matter (DM), crude protein
(CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF).

The culture fluid for volatile fatty acid (VFA) and ammonia nitrogen (NH3-N) con-
centrations were measured by gas chromatography (Agilent 6890N, Agilent Technologies,
Inc., Beijing, China) and Multiskan SkyHigh microplate reader (Thermo Fisher Scientific,
Shanghai, China) according to Kong et al. [31].

2.3. DNA Extraction and Sequencing

Bacterial DNA in the culture fluid was extracted using an Omega Stool DNA kit
(Omega Bio-Tek, Norcross, GA, USA) according to the instruction. One of the microtube
was damaged due to contraction in the liquid nitrogen, five replicates were eventually
used for the bacterial composition analysis. Both quality and quantity of DNA were eval-
uated using a NanoDrop 2000 spectrophotometer (NanaDrop Technologies, Wilmington,
DE, USA). Amplicon library preparation was performed by polymerase chain reaction
(PCR) of the V3-V4 region of the 16S rRNA gene using the universal primers 338F (5′-
ACTCCTACGGGAGGCAGCAG-3′), and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) [32].
The reaction system included 10 ng of template DNA, 4 µL of FasPfu buffer (CoWin Bio-
sciences, Inc., Cambridge, MA, USA), 2 µL of 2.5 mmol/L dNTPs, 0.8 µL of each primer, 0.4
µL of FasPfu polymerase (CoWin Biosciences, Inc., Cambridge, MA, USA), 0.2 µL of bovine
serum albumin, and double-distilled H2O to make up the volume to 20 µL. The expected
product length was about 440 bp. Amplicons were electrophoresed as the description above,
purified using an Agencourt AM Pure XP kit (Beckman Coulter Life Sciences, Indianapolis,
IN, USA), and quantified using the QuantiFluorTM-ST system (Promega, Madison, WI,
USA), and paired-end sequenced on an Illumina MiSeq platform PE250 (Illumina, Inc., San
Diego, CA, USA). The sequencing data were deposited in the NCBI Sequence Read Archive
(SRA) under accession numbers from SAMN19128494 to SAMN19128513 in PRJNA699978.

The Microbial Ecology (QIIME) program software was used to process raw data [33].
Briefly, paired-end forward and reverse reads were joined, and then primers and homopoly-
mer runs (maximum length, 8) of sequences were trimmed. Only sequences ≥ 400 bp
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in length, with average quality score ≥ 25 and with ambiguous bases ≤ 6 remained for
downstream analysis. Ne Novo chimera checking was performed using UCHIME (Tiburon,
CA, USA) [34]. After quality control, the sequences were assigned to operational taxonomic
units (OTUs) at a 97%-identity threshold using UPARSE (version 10.0.240, Tiburon, CA,
USA) [35]. Sequences were assigned against the SILVA 138 bacterial alignment database
(Bremen, Germany) using the Ribosomal database project classifier with a confidence
threshold of 70% [36].

2.4. Statistical Analysis

The gas production data were used to calculate kinetics parameters of gas produc-
tion by NLIN procedure in SAS 9.2 (SAS Institute Inc., Cary, NC, SAS) according to an
exponential model, as follows:

GP = MaxGP× [1− e−FracGP×(time−Lag)
]

(1)

where GP (mL) is gas production, Max GP (mL) is the ideal maximum gas production, Frac
GP (h−1) is the gas production rate, and Lag (mL) is the lag phase before gas production
commences [37]. The time to reach half of the ideal maximum gas production (HT, h), and
the average gas production rate when half of the ideal maximum gas (AGPR, mL/h) were
calculated using the Max GP, Frac GP, and Lag values [38]:

HT = log
(

2
FracGP

)
+Lag (2)

AGPR =
MaxGP× FracGP

2× (log (2)+FracGP× Lag)
(3)

Fermentation kinetics parameters, nutrient digestibility, pH value, NH3-N concen-
tration, and VFA data were analyzed using the GLM procedure in the SAS v9.2 software.
Nutrient digestibility at different times was analyzed using the GLM produce to obtain p-
value of treatment, time, and the interaction effect of time and treatment using the following
model:

Yijk = µ + Pi + Tj + Tj × Pi + Bk + εijk (4)

where Yijk is the dependent variable; µ is the overall mean; Pi is the fixed effect of diet
(CON, MD, Met, UR); Tj is the fixed effect of time (24 h, 48 h); Tj × Pi is the interaction
between Tj and Pi; Bk is the random bottle effect, and εijk is the model error.

The fermentation kinetics parameters, pH value, NH3-N concentration, and VFA data
were analyzed to obtain the p-value of the treatments. Main effects and interactions were
declared significant at p < 0.05, and trends were declared at 0.05 ≤ p-values ≤ 0.10.

2.5. Sequencing Data Analysis

The OTU table and Taxonomy table were uploaded on the Microbiome Analyst plat-
form [39] (released in February 2021 and available at https://www.microbiomeanalyst.ca
(accessed on 4 May 2021)). Low count filter and low variance filter were conducted to
remove low-quality or chimeric features. The OTUs including 20% of read counts greater
than four counts were retained, and the variance of read counts was measured using the
inter-quantile range, and the lowest percentage based on the cutoff (>10%) was excluded.
All samples were rarefied to even sequencing depth based on the sample which had the
lowest sequencing depth. Differences in α diversity indices (Chao1, OTU number, Simpson,
Channon indices) were analyzed with the Kruskal–Wallis test on the Microbiome Analyst
platform [39].

Principal coordinates analysis (PCoA) combined with non-parametric multivariate
variance (PERMANOVA) was analyzed based on the Bray–Curtis distance matrices. The
heatmap clustering plot and stacked bar chart were generated at the phylum level using
the Microbiome Analyst [39]. The linear discriminant analysis (LDA) effect size (LEfSe) tool

https://www.microbiomeanalyst.ca
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was used to detect features with significant differential abundance using the non-parametric
Kruskal–Wallis sum-rank test and effect size on the Microbiome Analyst platform [39]. A
cut-off value ≥ 2 and <0.05 was used for linear discriminant analysis (LDA) score and
p-value, respectively.

Spearman’s correlation test was used to assess the correlation between fermentation
parameters and the selected microbial genera. The analysis was performed by SPSS software
(version 20.0; IBM, Armonk, NY, USA), and was plotted using GraphPad Prism 7 (GraphPad
Software, San Diego, CA, USA). The selected genera were obtained from LEfSe analysis
with enrichment in UR, Met, and MD groups.

3. Results
3.1. Nutrient Digestibility

The nutrient digestibility results are shown in Figure 1. There were no significant
differences between the UR and CON groups at 48 h (Figure 1; p > 0.10). Both DM
digestibility and CP digestibility at 24 h were higher in the Met group than in the CON
group (Figure 1A,B; p < 0.05), and no difference was observed at 48 h (Figure 1A,B; p > 0.10).
DM and CP digestibility at 48 h were higher in the MD group than in the UR and CON
groups (Figure 1A,B; p < 0.05). NDF and ADF digestibility at 24 h and 48 h were higher in
the MD and Met groups than in the UR and CON groups (Figure 1C,D; p < 0.05). There
was no interaction effect on nutrient digestibility (Figure 1; p > 0.10).
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Figure 1. Effects of urea, methionine, and methionine dipeptide on in vitro digestibility of dry matter
(A), crude protein (B), neutral detergent fiber (C), and acid detergent fiber (D) of total mixed ration
at 24 h and 48 h. CON = no additive, UR = urea addition, Met = methionine addition, and MD =
methionine dipeptide addition. Means with different letters (a–c) at a given time are significantly
different (p < 0.05). Vertical bars denote standard deviation (SD). DM, dry matter; CP, crude protein;
NDF, neutral detergent fiber; ADF, acid detergent fiber; n = 6 per treatment per time.

3.2. Fermentation Kinetics Parameters

Figure 2 shows the effects of urea, Met, and MD on fermentation kinetics parameters.
The parameters in the CON and UR groups were not different (p > 0.10). Gas production in
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the MD group was higher than in the rest (Figure 2A; p < 0.05). There was no significant
difference in Max GP, Frac GP, and AGPR between the MD and Met groups (Figure 2B,C,E;
p > 0.10). However, Max GP, Frac GP, and AGPR in the MD group were higher than in the
CON group (Figure 2B,C,E; p < 0.05).
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Figure 2. Effects of urea, methionine, and methionine dipeptide on parameters of in vitro fermenta-
tion kinetics of total mixed ration during 48 h incubation. CON = no additive, UR = urea addition,
Met = methionine addition, and MD = methionine dipeptide addition. GP (A) indicates cumulative
gas production at 48 h. Max GP (B) indicates ideal maximum gas production. Frac GP. (C) indicates
the fractional rate of gas production. HT (D) indicates time to reach half the ideal maximum gas
production. AGPR (E) indicates the average gas production rate when half of the ideal maximum
gas production was produced. Means with different letters (a, b) are significantly different (p < 0.05).
Vertical bars denote standard deviation (SD); n = 6 per treatment per time.

3.3. pH Value, NH3-N Concentration, and VFA Proportion

Figure 3 shows an overview of the effects of urea, Met, and MD on fermentation
parameters. The pH value in the MD group was lower than in the UR and CON groups
(Figure 3A; p < 0.05). The NH3-N concentration was higher in the UR group than in the
other groups (Figure 3B; p < 0.05), and was higher in the Met group than in the MD and
CON groups (Figure 3B; p < 0.05).

There was no difference between these groups in terms of molar proportion of pro-
pionate and the ratio of acetate to propionate (Figure 3D,G; p > 0.10). Total volatile fatty
acid (TVFA) in the MD group was higher than in the other groups (Figure 3E; p < 0.05), and
that in the Met and UR groups were higher than in the CON group (Figure 3E; p < 0.05).
The molar proportion of acetate was lower in the CON group than in the other groups
(Figure 3F; p < 0.05). The molar proportion of butyrate was not affected by MD treatment
(Figure 3H; p > 0.10), while it was lower in the Met and UR groups than in the CON group
(Figure 3H; p < 0.05).
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3.4. Diversity of Microbiota

After removing low-quality reads, 2,282,354 clean reads were subjected to subsequent
analysis. The rarefaction curves showed the current sequencing depth to be sufficiently
representative of the microbiota (Figure 4A). When α-diversity indices were compared, no
difference was observed in the richness of the microbiota across the CON, UR, and Met
groups (Figure 4B–D, p > 0.10), while the richness of the microbiota in the MD group was
higher than in the CON group (Figure 4B–D, p < 0.05). There was no difference in evenness
across the treatments (Figure 4E,F; p > 0.05). A dendrogram analysis (Figure 4G) and PCoA
plot (Figure 4H) based on the Bray–Curtis distances showed distinct clustering between
the CON group and others (PREMANOVA: p < 0.01); there was a close connection between
the UR, Met, and MD groups (Figure 4G,H).
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Figure 4. Rarefaction curves (A), OTU number (B), α diversity (C–F), dendrogram analysis (G),
and β diversity (H) in response to the microbiota with urea, methionine or methionine dipeptide
in vitro, after 48 h fermentation. CON = no additive, UR = urea addition, Met = methionine addition,
and MD = methionine dipeptide addition. All analyses were based on the OTU level. A principal
coordinate analysis plot based on the Bray–Curtis distances was conducted. p-value obtained using
non-parametric multivariate of variance (PERMANOVA) based on Bray–Curtis distances (H). Means
with different letters are significantly different (p < 0.05). Vertical bars denote standard deviation
(SD); n = 5 per treatment per time.

3.5. Microbial Composition and Its Comparison in Response to Urea, Methionine, and
Methionine Dipeptide

The phylum compositions and comparisons are shown in Figure 5. Among the phyla,
Firmicutes (49.56%), Bacteroidetes (36.78%), Proteobacteria (10.44%), and Actinobacteria
(1.00%) were predominant; the remaining minor phyla (relative abundance < 1%) are
presented in Figure 5A. To identify the specific bacterial phyla associated with Met and
MD, we conducted the LEfSe analysis (Figure 5B). Firmicutes was enriched in the CON
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group (p = 0.02, LDA score = 5.71), Actinobacteria and Cyanobacteria were enriched in
the UR group (Actinobacteria: p = 0.03, LDA score = 4.55; Cyanobacteria: p = 0.01, LDA
score = 3.66), and Spirochaetae was enriched in the Met group (p = 0.01, LDA score = 4.19)
(Figure 5B).
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Figure 5. Phylum composition (A) of the microbiota and linear discriminant analysis effect size
(LEfSe) (B) identifying differential phyla of microbiota in response to urea, methionine, or methionine
dipeptide supplementation. CON = no additive, UR = urea addition, Met = methionine addition,
and MD = methionine dipeptide addition. A cut-off value ≥ 2 was used for the linear discriminant
analysis (LDA) score. n = 5 per treatment per time.

LEfSe analysis was used to select the significantly different genera. Overall, 29 of the
top 45 genera were significantly enriched in the CON group (Figure 6; p < 0.05) and only 3
and 6 genera were enriched in the MD and Met groups, respectively (Figure 6).
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Figure 6. Linear discriminant analysis effect size approach identifying most differential genera
in microbiota in response to urea, methionine, and methionine dipeptide supplementation. CON
= no additive, UR = urea addition, Met = methionine addition, and MD = methionine dipeptide
addition. A cut-off value ≥ 2 was used for the linear discriminant analysis (LDA) score. Only the top
45 significantly different genera are shown; n = 5 per treatment per time.

Subsequently, we summarized the relative abundance of the genera in detail, con-
sidering those that were enriched in the UR, Met, and MD groups (Figure 7). Relative
abundances of Succinivibrio, Sutterella, and Auaerotruncus were higher in the MD group
than in the CON group (Figure 7A–C; p < 0.05). There was no difference in the Relative
abundance of Treponema_2 among the UR, Met, and MD groups (Figure 7D; p > 0.10), while
Treponema_2 was enriched in the Met group and higher than in the CON group (Figure 7D;
p < 0.05). No significant differences in the relative abundance of Prevotella_1, Prevotella_7,
Megasphaera, Olsenella, Dialister, and Phocaeicola were found among UR, Met, and MD
groups (Figure 7E–J; p > 0.10), whereas these were higher in the UR group than in the CON
group (Figure 7E–J; p < 0.05).
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Figure 7. The significantly different genera response to methionine dipeptide (A–C), methionine (D),
and urea (E–J) supplementation. CON = no additive, UR = urea addition, Met = methionine addition,
and MD = methionine dipeptide addition. These genera were tested by linear discriminant analysis
effect size and the relative abundance analyzed in detail by the Kruskal–Wallis test. Means with
different letters (a, b) are significantly different (p < 0.05). Vertical bars denote standard deviation
(SD); n = 5 per treatment per time.

3.6. Correlation Analysis between Microbial Features and Nutrient Digestibility, Gas Production
Parameters, and Fermentation Parameters

The correlation between the relative abundance of features and phenotypic indices is
shown in Figure 8. The relative abundance of Succinivibrio, Anaerotruncus, and Sutterella was
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positively correlated with gas production, NDF, and ADF digestibility, acetate, propionate,
butyrate, and TVFA concentration (p < 0.05). Furthermore, the molar proportion of acetate
was positively correlated with Succinivibrio, Anaerotruncus, and Dialister (p < 0.05). The
concentrations of acetate, propionate and TVFA were positively correlated with the relative
abundance of Megasphaera, Dialister, and Treponema_2 (p < 0.05).

Biology 2022, 11, x  13 of 18 
 

 

propionate, butyrate, and TVFA concentration (p < 0.05). Furthermore, the molar propor-
tion of acetate was positively correlated with Succinivibrio, Anaerotruncus, and Dialister (p 
< 0.05). The concentrations of acetate, propionate and TVFA were positively correlated 
with the relative abundance of Megasphaera, Dialister, and Treponema_2 (p < 0.05). 

 
Figure 8. Spearman’s correlation between the relative abundance of genera and phenotypic indices. 
Genus were obtained using linear discriminant analysis effect size and found to be enriched in UR, 
Met, and MD groups. CON = no additive, UR = urea addition, Met = methionine addition, and MD 
= methionine dipeptide addition. Colors represent the correlation coefficient. Red represents a pos-
itive correlation, and blue represents a negative correlation. A dark color represents a stronger cor-
relation, whereas a light color represents a weaker correlation. *, 0.01 < p < 0.05; **, 0.001 < p < 0.01; 
***, p ≤ 0.001; GP, gas production; DM, dry matter; CP, crude protein; NDF, neutral detergent fiber; 
ADF, acid detergent fiber; TVFA, total volatile fatty acid; MP, molar proportion; A:P, acetate con-
centration: propionate concentration. 

4. Discussion 
Rumen fermentation is important for dairy cows to utilize the nutrition from other-

wise-indigestible plant polymers and compounds [40]. Several studies have indicated that 
the rumen-protected amino acids and peptides could enhance rumen fermentation ability 
and alter the rumen microbiota profile [13,20–22,41]. The present study aimed to explore 
the effects of MD on rumen fermentation and bacterial composition, and further investi-
gated the potential of MD in performance improvement. In vitro fermentation technique 

Figure 8. Spearman’s correlation between the relative abundance of genera and phenotypic indices.
Genus were obtained using linear discriminant analysis effect size and found to be enriched in
UR, Met, and MD groups. CON = no additive, UR = urea addition, Met = methionine addition,
and MD = methionine dipeptide addition. Colors represent the correlation coefficient. Red rep-
resents a positive correlation, and blue represents a negative correlation. A dark color represents
a stronger correlation, whereas a light color represents a weaker correlation. *, 0.01 < p < 0.05; **,
0.001 < p < 0.01; ***, p ≤ 0.001; GP, gas production; DM, dry matter; CP, crude protein; NDF, neutral
detergent fiber; ADF, acid detergent fiber; TVFA, total volatile fatty acid; MP, molar proportion; A:P,
acetate concentration: propionate concentration.

4. Discussion

Rumen fermentation is important for dairy cows to utilize the nutrition from otherwise-
indigestible plant polymers and compounds [40]. Several studies have indicated that the
rumen-protected amino acids and peptides could enhance rumen fermentation ability and
alter the rumen microbiota profile [13,20–22,41]. The present study aimed to explore the
effects of MD on rumen fermentation and bacterial composition, and further investigated
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the potential of MD in performance improvement. In vitro fermentation technique was
used in this study and it allows for the setting of experimental conditions more diverse
and precise than in vivo experiments. However, the limiting of in vitro fermentation and
in vivo studies are needed to consider and further investigate.

One of the important findings of the current study was the different responses in
dry matter digestibility and gas production to different nitrogen-containing compounds.
The TMR ruminal degradation rate was enhanced by the supplement with Met and MD,
especially MD had the best positive effects on TMR decomposition in the rumen. However,
urea had no promoting effects on TMR degradation. Distinct nitrogen forms have different
functions during the rumen fermentation process [42]. An in vitro study indicated that
adding urea higher than 50 mg/L can increase microbial protein yield under nitrogen-
limiting conditions [43]. Further analysis found that amino acid mixtures and peptides
stimulated microbial growth, and resulted in higher microbial growth than urea [20].
Several studies focused on evaluating the effects of rumen-protected Met on nutrient
digestibility and found NDF digestibility [16], and DM digestibility [44] of TMR, and
organic matter digestibility of feed ingredients [45] were enhanced. The Met results are
consistent with those of our study. In contrast, few studies have tested the effects of MD
on rumen fermentation and dairy nutrition. Our in vitro results indicate that MD is more
effective in enhancing fiber digestion and nitrogen digestion and hence may have the
potential to improve milk production. Therefore, in vivo feeding experiments are needed to
further test the apparent digestibility of nutrients. Note that the effects of MD on different
stages of dairy cows may be different from our study as the rumen fluid used in our study
was obtained from mid-lactating dairy cows.

The high fermentability of fiber produces a large amount of VFA to reduce the pH
value, which is consistent with our results of nutrient digestibility and gas production. An
inconsistent result was obtained from NH3-N concentration. Abbasi et al. [16] found that CP
digestibility, microbial protein concentration, and NH3-N concentration increased with both
low and high Met supplementation. However, Baghbanzadeh-Nobari et al. [45] showed
that Met supplementation decreased NH3-N concentration and increased CP digestibility.
These results may due to the different conversion rates of NH3-N to microbial protein based
on different Met-dose or basic diets. Dietary protein, urea, and other nitrogen-containing
compounds are degraded to peptides and amino acids and eventually deaminated into
NH3-N or incorporated into microbial proteins [42]. Hence, the NH3-N concentration
depends on the balance between the consumption of microbial proteins and the yield from
nitrogen-containing compounds. In this regard, we speculate that the MD supplementation
may facilitate microbial protein synthesis from degraded protein, which is the precursor of
body protein and milk protein [7].

Microorganisms in the rumen are intermediaries between the dietary treatment and
the substrate. Hence, pH, NH3-N, and VFA changes can be attributed to the variation in
microbiota. Our data showed Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria,
to be prevalent regardless of the treatment. These results were consistent with previous
results [31]. Our β-diversity, dendrogram analysis, and phylum composition visualized
by heatmap plot further showed the UR, MD, and Met groups were clustered together,
separated from the CON group. The significant effect of different nitrogen sources on
bacterial composition has also been reported. The addition of extra nitrogen sources to the
fermenter or the diet, such as urea [43,46,47], Met [48], and lysine [41] stimulate microbial
growth and change microbiota. Our valuable finding was obtained from α-diversity, which
suggests that extra nitrogen sources possibly stimulate a portion of bacteria instead of all
the bacteria cumulatively. Metagenomic analysis observed that urea addition in sheep diet
significantly increased the relative abundance of genera involved in nitrogen metabolism
especially. The bacterial composition was also altered by lysine supplementation to support
energy metabolism, in which the microbial diversity was unchanged [41]. Therefore, we
speculate that the supplementation of urea, Met, and MD may facilitate the growth of
specific bacteria (microbial richness) in different ways.
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In the current study, higher TVFA concentrations after different addition were ob-
served. Li et al. [46] used urea to formulate different levels of CP in the diets of Hu sheep
and showed the genera, Prevotella and Megasphaera, to be enriched, whereas Ruminococ-
cus and Butyrivibrio were enriched in the no-urea group, which were consistent with our
findings. The predominant genus, Prevotella in the rumen utilizes a wide range of sub-
strates, such as starch, hemicellulose, proteins, peptides, and amino acids [49,50]. Notably,
Prevotella is an important microbial member involved in the degradation of peptides into
amino acids, which is regarded as the limiting process in proteolysis [50,51] and maybe
attributed to increased CP digestibility in our study.

Other genera, Megasphaera and Olsenella with high relative abundance, showed a 3-
to 7-fold change after urea, Met, and MD supplementation. Interestingly, lactate is the
dominant product from Olsenella, through the action of β-glucosidase [52]. A classic isolate
of the genus, Megasphaera, can convert lactate to butyrate [53]. Theoretically, butyrate con-
centration should be increased after MD and Met addition. However, the genus Butyrivibrio
was enriched in the CON group and can grow on a range of carbohydrates with butyrate
production, such as starch and hemicelluloses [54]. The different butyrate-producing bacte-
ria may lead to the invariable butyrate proportion among four groups and another possible
reason is that butyrate accounts for a relatively smaller proportion of TVFA, and may be
masked by the modification of acetate and propionate. Furthermore, Pitta et al. found that
the relative abundance of Megasphaera was decreased by Met analog supplementation after
28 days in dairy cows when exposed to diets with risk for milk fat depression. We speculate
that the relatively shorter time (48 h) used in our study was limited and further long term
should consider further.

Interestingly, the relative abundance of Ruminococcaceae_NKA214_group, Ruminococ-
caceae_UCG_013, Ruminococcaceae_1, Ruminococcaceae_2, and Ruminococcaceae_010 in the
UR group were the lowest among all groups. The ruminal bacteria, Ruminococcus spp.,
are capable of degrading cellulose [55,56], hence suggesting that the relative abundance of
Ruminococcus may be associated with NDF and ADF digestibility. In our study, the NDF
and ADF digestibility by urea treatment were decreased than Met and MD treatment. Li
et al. [46] observed a decrease in the relative abundance of Ruminococcus in the microbiota
of a non-urea group. Although some of the genera Ruminococcaceae were enriched in CON
group, the lowest out number in the CON group indicates the actual amount of bacteria,
including Ruminococcus, may be far from that in the other groups. Hence, we speculate that
Ruminococcus may not be sensitive to urea addition.

Higher relative abundance of Anaerotruncus and Treponema, two potential cellulolytic
bacteria [57–59], were observed in the MD group. In addition to the above genera, the
relative abundance of Succinivibrio in the rumen has been reported to be positively as-
sociated with feed efficiency in beef cattle [60], and with milk production [61] and milk
protein yield [62] in dairy cows due to its ability of produce succinate, the precursor of
glucose. Although our results showed that MD contributed to a higher relative abundance
of Succinivibrio in in vitro study, further animal studies are required to confirm whether
MD plays a role in milk production or feed efficiency.

5. Conclusions

In conclusion, the present study used 16S rRNA gene analysis and a gas recording
system to examine the microbial composition and fermentation characteristics under a TMR
with different nitrogen-containing sources. A comparison of nutrient digestibility showed
that MD, followed by Met, was most effective in enhancing TMR utilization, especially
in respect of dry matter digestibility. The stimulatory effect of MD on bacterial growth
efficiency was emphasized by the high richness. Our results showed that extra nitrogen
supplementation increased the relative abundance of Prevotella, Megasphaera, and Olsenella,
whereas MD enriched Succinivibrio and Anaerotruncus. The results highlight the possible
role of MD in improving nutrient utilization in the rumen and provide a basis of MD on
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dairy performance. Multiple factors (e.g., dose, lactation period) taken into consideration
are essential to the use of MD.
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