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Abstract: Gypsum karst lakes are unique water ecosystems characterized by specific habitat condi-
tions for living organisms, including phytoplankton species, as primary producers and mediating
biogeochemical cycles in the water bodies. Studies of diversity and structure of phytoplankton
communities can be used to identify the specific and typical lake features and plan basin-wide moni-
toring. The aim of this research was to analyze the structural variables of algocenoses in the small
gypsum karstic Lake Klyuchik (Middle Volga basin), atypical for the subzone of mixed coniferous and
deciduous forest zone high values of water mineralization (brackish water) and low temperatures.
The lake has two water areas, connected by a shallow strait (ecotone zone) and differing from each
other in the chemical compositions and physical properties of the water. A total of 133 species of
phytoplankton with prevalence percentages of Bacillariophyta (46%), Chlorophyta (24%), and Ochro-
phyta (11%) were found; α-diversity varied from 4 to 30 specific and intraspecific taxa per sample.
According to Spearman’s correlation coefficients, the diversity indices (Shannon, Pielou, Simpson)
were mainly determined by the number of dominant species. The uniquely high (up to 130 g/m3)
biomass of phytoplankton was noted in the ecotone, on the border between the water column and
the bottom. The formation of mono- and oligo-dominant nannoplankton diatom communities with a
predominance of the rare species Cyclotella distinguenda Hustedt was demonstrated there. The roles
of flagellate algae and cyanobacteria were found to be less significant.

Keywords: phytoplankton; highly-mineralized water; gypsum karst lake; community; structural
variables; diversity indices

1. Introduction

Karst lakes are widespread types of natural lentic aquatic ecosystems in the landscape
world [1,2]. These lakes are mainly small, but relatively deep and often stratified. The
hydrochemical facies of these water bodies are typical complexes of predominating solutes,
pointing toward definite climatic and, accordingly, geochemical (weathering), soil, and
hydrogeological and hydrobiological conditions, under which lake waters acquire their
concentrations and compositions [3,4]. Gypsum karst lakes are characterized as sulphate
lakes, as they are rich in gypsum or calcium sulphate, and they have elevated conductivity
values [5]. These lakes are brackish (dissolve salts up to 2.0 g/L) and often cold water. Some
have powerful springs of underground water pressure, specific water balances, amplified
water exchanges, high transparency, and azure (ultramarine) water colors [4,6]. On the
global scale, surface outcrops of gypsiferous strata appear quite limited [7]. In this regard,
such lakes are often considered as endemic [8] or unique [4–6,9].

Therefore, these lakes are interesting model systems for the investigation of the dif-
ferent groups of microorganisms. It was found that karst lakes can even have different
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plankton community compositions and structures compared to other karst lakes of simi-
lar geneses and morphometric parameters, even within one catchment area [2,5,6,10,11]
Such lakes are interesting biotopes for the formation of special biodiversity; however, its
importance has not yet been thoroughly evaluated [5,12].

Phytoplankton is an essential part of water ecosystems, which plays a significant role
in food web dynamics, energy flow, and nutrient cycling [13]. Studying the patterns in the
species composition and abundance in phytoplankton communities helps to understand,
in detail, the complex biogeochemical phenomena in water ecosystems [14]. In addition to
environmental factors and the lake’s age, the latitude position has significant effects on the
diversity and development of the phytoplankton in lakes [15], including karstic ones.

The phytoplankton of karst lakes located in temperate zones are characterized by co-
occurrences of chrysophytes (Chrysophyceae), dinoflagellates (Dinophyceae), and diatoms
(Bacillariophyta) as the most diverse and abundant group [16], and, in some lakes, by
Cyanobacteria [17] or Chlorophyta [10]. In lakes of the “warm belt”, the dominant role
is taken over by Chlorophyta and Cyanobacteria [12,18]. In the spring, high turbulence
favors the development and maintenance of diatoms; during the summer, stratification—
dinoflagellates, and Cryptophyta, mainly in metalimnion [12,19]. Most of the planktonic
algae of karst lakes are cosmopolitan forms. Endemic species were found in the Plitvice
lakes [16,20], rare ones—in karst lakes of Greece [12], Romania [21], etc.

At present, there is little information about phytoplankton community structures
assessed by using standard biocenotic metrics [22–25]. Structural indicators of the phyto-
plankton community (e.g., species richness, diversity, evenness, dominance, size structure)
are rarely described in detail. It reduces the opportunity to determine the main connections
that are established in biological communities under certain abiotic conditions [26]. These
structural parameters may reflect the influences of a variety of stressors, including climate
change and the consequences related with it [27]. They are useful in understanding energy
transfer and may be beneficial for more holistic measurements of the health and resilience
of lake ecosystems, in general, to multiple stressors. In turn, a detailed study of structural
community indicators allows highlighting the features of typicality or the uniqueness of
water ecosystems. Such studies are also relevant from the point of view of identifying the
biodiversity of aquatic ecosystems, studying the biology and ecology of rare species, and in
planning the protection of unique landscapes or habitats [28].

The Middle Volga region in Russia is the zone of the classical manifestation of karst,
presented there by various forms [6], including the rarest gypsum karst. Lake Klyuchik
represents an example of gypsum karst lakes of sulfate water types. The unique features of
the lake are its feeding (by waters of the underground Surin River) [29] and the presence of
an ecotone, i.e., a transitional zone between two water areas of the lake where changes in
different habitat parameters have been recorded [30]. Due to its unique characteristics the
lake has been assigned as a nature sanctuary of regional value [31].

Previous studies carried out in Lake Klyuchik focused on taxonomical compositions
and the development of phytoplankton [32]. Moreover, we assessed the morphological
and ecological parameters of mass species in planktonic algocenoses, Cyclotella distinguenda
Hustedt [33]. Yet, the structural variables of phytoplankton communities, as well as their
spatial and temporal distributions, have not been sufficiently investigated.

The aim of this work was to analyze the various structural parameters of the phytoplank-
ton community, and their spatial and vertical distributions in connection with environmental
conditions in the small gypsum karst Lake Klyuchik with unique parameters.

2. Materials and Methods
2.1. Study Area and Sampling

Karstic Lake Klyuchik (middle Volga basin) is located in an active karst area of Central
Russia, Pavlovsky district, Nizhny Novgorod region (56◦58′ N, 43◦20′ E). Klyuchik is a
small lake with a surface area of 11 ha, a maximum depth of 13.5 m, and a mean depth of
3.8 m [34]. The lake is stretched from west to east in an oval shape, with a weakly sinuous
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coastline and moderately steep coastal slopes. The relief of the lake bottom is uneven, with
pits, represented by a sandy-silty substrate [35]. The lake has two water areas, connected
by a shallow strait (ecotone zone). Western and eastern parts of the lake differ from each
other in the chemical compositions and physical properties of water (transparency, water
temperature, oxygen concentration) [30].

The source of the lake feeding, the underground spring (the river Surin), is located
in its western part and is unloaded in the voklina at a depth of 15 m [29]. The western
part of the lake is cold water (temperature varies from 6–10 ◦C during year) and has
low oxygen content (40% saturation) in the surface horizon. The eastern part of Lake
Klyuchik is warmer (up to 22–25 ◦C in summer) and has a high oxygen concentration (more
than 115%) [30]. Maximum changes in these parameters are observed in the transitional
ecotone zone.

The western part of the lake is characterized by a uniform vertical distribution of
temperature (unstratified), oxygen, and pH throughout the year [30]; it does not freeze
in the winter. In the eastern part of the lake, the vertical distributions of environmental
parameters are more pronounced, especially during the summer season. The upper warm
layer of the epilimnion and the stretched metalimnion were found here. The hypolimnion
layer with stable temperature, oxygen, and other parameters were not observed in the
lake [30].

The lake is a brackish-water (salinity, ~2 g/dm3, electrical conductivity, 1515–1640 µS/cm) [30].
The water color index gradually increases from 40 degree (Platinum-Cobalt scale) in the
western part (bluish) of the lake to 62 and 80 degree in the central and eastern (greenish)
parts, respectively (Figure 1). The content of phosphates in the water was at the level
of permissible values and varied slightly over the lake (0.01–0.05 mg/L). Nitrogen was
contained in the water in two forms: nitrate ions 5.2 (mg/L) and ammonium nitrogen (less
than 0.01 mg/L) [29]. The sulfate content was high (90–160 mg/L) and could exceed the
maximum permissible values up to 7 times.

Figure 1. Map scheme of Lake Klyuchik. St. 1–St. 5—sampling stations; 2, 4, 6, 8, 10 are depths (me-
ters) (according to www.lakemaps.org/ru, accessed on 20 November 2021, with some modifications).

www.lakemaps.org/ru
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Lake Klyuchik has an interesting regional importance because of the numerous recre-
ational activities that take place there.

Water samples of phytoplankton (a total of 76 samples) were collected with a Rut-
tner bathometer and preserved with an iodine–formalin solution in June–August 2017 at
five stations (Figure 1), which were chosen by taking into account the limnological and
hydrochemical characteristics of the lake. Stations 1 and 2 were set in the deepest western
part of the lake, where water has a bluish color. Stations 4 and 5 were located in the
central and eastern parts, respectively, which have a greenish water color; station 3 – in the
transitional zone. Integrated samples were taken at all stations. Additionally. in July and
August, we collected the samples at stations 1, 3, and 5 in increments of 1 m from the surface
to the bottom. The water temperature, and pH were measured in situ using a portable
Testo sensor, model 206_pH1 (Company Testo SE & Co. KGaA, Lenzkirch, Germany).
Transparency (m) was estimated with a Secchi disk (Papanin Institute for Biology of Inland
Waters Russian Academy of Sciences, Borok, Russia).

2.2. Data Analysis

In the laboratory the samples were concentrated to 5 mL by combining the settling
method and direct filtration [36], and examined under a light microscope (MEIJI Techno,
Saitama, Japan) at 1000 magnification. Phytoplankton was analyzed using a 0.01 mL Najott
chamber. We estimated the phytoplankton biovolume (mm3/L) using geometric shapes
closest to the cell shape, taking as a result the mean values of the measurements of 20
to 30 individuals [37,38]. The biomass of each species was calculated by multiplying the
number of cells and its biovolume (g/m3), total biomass—by summarizing each species
biomass [39].

Identification of diatoms was possible due to preparation of permanent slides using
Naphrax resin (Brunel Microscopes Ltd., Chippenham Wiltshire, United Kingdom) [40].
Centric diatoms were analyzed with the help of a JSM-25S scanning electron microscope
(JEOL Ltd., Tokyo, Japan) [33]. Phytoplankton species were identified based on morphology.
Nowadays, the optical method of phytoplankton analysis continues to be the principal
approach in the ecological monitoring of the water quality, despite some limitations [28,41].
The list guides used for species identification were performed in previous studies [42].
The current names of taxa were also checked using the AlgaeBase website (https://www.
algaebase.org/, accessed on 29 July 2021) [43].

The authors analyzed such parameters of the phytoplankton community (=coenocytic
parameters) as follows: abundance (N), 106 cells/L, biomass (B), g/m3, species richness (α
diversity, Sp—number of species in one sample). Phytoplankton alpha diversity indices
were evaluated using the Shannon–Weaver diversity index for abundance (HN, bit/Ex),
and biomass (HB, bit/g) [44,45].

H = −
S

∑
i=1

Pi · log2 Pi (1)

Pielou evenness index (EN and EB)

E =
H

Hmax
, (2)

where Pi is the relative abundance or biomass of the i-th species, S is the total number of
species in the sample, Hmax is the maximum Shannon–Weaver index for a given number of
a species.

Simpson dominance index (DN and DB)

D =
ni(n− 1)
N(N − 1)

(3)

https://www.algaebase.org/
https://www.algaebase.org/
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where ni is the abundance or biomass of the i-th species; N is the total abundance or biomass
of phytoplankton in the sample

Water saprobity was evaluated by Pantle–Buck indices, which were calculated accord-
ing to abundance (SN) and biomass (SB) [46].

S =
ΣS · h

Σh
(4)

where S is the indicator significance of the saprobic species-indicator, h is the abundance or
biomass indicator.

Size structures of phytoplankton communities were estimated two ways—as arith-
metic (by geometric shapes) volume (Vam) of the algae cell in a sample and a coenocytic
volume estimated as B/N (Vc, µm3). Moreover, we considered the share of a small cell
fraction (<20 µm, nannoplankton, according to: [47]) in the total phytoplankton abundance
(%N) and biomass (%B). In addition, the dynamics of flagellar forms of phytoplankton
were analyzed. They were evaluated by the share of the monad forms in total abundance
(%Nflagel) and biomass (%Bflagel) of algae.

The authors defined the dynamics of the number of dominant and co-dominant species,
which were extracted by abundance (SDN and SMN, respectively) and biomass (SDB, SMB).
The dominant species included species with an abundance or a biomass more than 10% of
the total value and the co-dominant species included species with an abundance (biomass)
of 5–10% [48].

2.3. Statistical Analysis

As data do not have normal distribution, the non-parametrical [49] Mann–Whitney
criterion (U-criterion) was used to compare the variables; and the Spearman correlation
(Rs) to estimate the relationship among the parameters of phytoplankton communities.
Statistical processing was conducted using the Statistica 8.0 software package (Statsoft
TIBCO, Palo Alto, CA, USA). The authors discussed reliable connections of parameters at
the significance level of p ≤ 0.05.

3. Results
3.1. Environmental Conditions

Table 1 shows the values of the environmental variables recorded at the sampling
stations. The depths of sampling stations ranged from 2 m in the transition zone (St. 3) to
10.7 m in the voklina (St. 1), in the area of the main groundwater supply, and from 7.0 (St. 4)
to 9.4 (St. 5) meters at deep-water stations in the eastern part of the lake. The transparency
of lake waters in the zone of maximum depths decreased twice from station 1 to station 5.
In the western part, the temperature varied from 7.5 to 8.0 ◦C in June to 10.5 ◦C in August.

Table 1. Limnological, physical, and chemical variables in different stations of Lake Klyuchik, mean
values with standard deviations, summer 2017.

Parameter St. 1 St. 2 St. 3 St. 4 St. 5

Depth (m) 10.7 3.0 2.0 9.4 7.0

Transparency (m) 8.0–8.5 to the
bottom

to the
bottom 3.4–5.4 3.0–4.5

Temperature (◦C) 7.5–9.5
8.8 ± 0.9

8.0–10.5
9.2 ± 0.7

8.1–13.6
10.6 ± 1.6

11.0– 15.8
13.8 ± 1.3

13.2–17.3
15.6±1.2

pH 7.0–7.1
7.1 ± 0.04

7.1–7.2
7.1 ± 0.03

7.1–7.6
7.3 ± 0.16

7.3–7.4
7.4 ± 0.02

7.4–7.6
7.5 ± 0.06
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The eastern part of the lake was warmer; the temperature changed there from 11.3 to
13.2 ◦C in June to 15.8–17.3 ◦C in August. During the study period, the pH value ranged
between 7.0 and 7.6, with an implicit tendency of increasing from June to August, and a
clearly manifested increase from the western part of the lake to the eastern one. In the same
direction, the color of the lake’s waters changed from sky-blue to greenish–blue.

3.2. Phytoplankton Community Composition

The phytoplankton community studied was composed of 133 species, including Bacil-
lariophyta 46%, Chlorophyta 24%; Ochrophyta 11%; Cyanobacteria 8%; and Charophyta,
Cryptophyta, Euglenozoa, and Myzozoa, less than 3% each. The number of phytoplankton
species per sample varied from 4 to 30 taxa (specific and intraspecific) at different stations.
We recorded 13–20 taxa in the integrated samples and 4–15 for particular depths in the
western part of the lake. In the ecotone zone (St. 3) the number of taxa increased up to
26–30 and 10–29, respectively.

3.3. The Spatial Distribution of Phytoplankton Abundance, Biomass, Diversity Indices,
Size Structure

Table 2 shows the average (M ± m) values of the structural (coenocytic) parameters of
the phytoplankton community in different stations (spatial distribution). The abundance
and biomass of phytoplankton fluctuated significantly during summer period.

Table 2. Structural variables of phytoplankton in Lake Klyuchik, mean values with standard deviation,
summer 2017.

Structural
Variables St. 1 St. 2 St. 3 St. 4 St. 5 U Criterion

St. 1 × St. 5

N 0.31 ± 0.07 3.57 ± 2.10 25.80 ± 11.40 1.90 ± 0.41 1.53 ± 0.65
B 0.94 ± 0.12 11.20 ± 6.00 55.50 ± 21.90 8.32 ± 0.48 6.82 ± 2.96 p ≤ 0.05

SN 1.59 ± 0.04 1.54 ± 0.02 1.94 ± 0.20 1.52 ± 0.01 1.64 ± 0.07
SB 1.55 ± 0.04 1.75 ± 0.13 1.87 ± 0.05 1.62 ± 0.07 1.49 ± 0.08

HN 2.25 ± 0.46 1.56 ± 0.21 1.01 ± 0.56 2.83 ± 0.02 2.22 ± 0.07
HB 2.19 ± 0.42 1.61 ± 0.23 1.31 ± 0.70 3.31 ± 0.17 2.23 ± 0.18
DN 0.37 ± 0.10 0.47 ± 0.04 0.71 ± 0.16 0.22 ± 0.01 0.34 ± 0.03
DB 0.36 ± 0.11 0.50 ± 0.08 0.64 ± 0.20 0.14 ± 0.02 0.36 ± 0.06
EN 0.58 ± 0.06 0.38 ± 0.04 0.21 ± 0.10 0.66 ± 0.01 0.51 ± 0.03
EB 0.57 ± 0.09 0.40 ± 0.06 0.27 ± 0.13 0.77 ± 0.02 0.53 ± 0.07
%N 74.00 ± 3.50 94.60 ± 1.60 91.60 ± 3.70 74.5 ± 2.60 73.40 ± 7.20 p ≤ 0.05
%B 59.80 ± 8.50 79.70 ± 9.40 82.80 ± 9.00 38.80 ± 5.10 44.60 ± 18.50 p ≤ 0.05

%Nflagel 0.60 ± 0.30 1.10 ± 0.20 0.20 ± 0.10 8.40 ± 5.90 11.30 ± 4.70 p ≤ 0.05
%Bflagel 0.40 ± 0.30 6.10 ± 3.70 1.00 ± 0.90 0.90 ± 0.70 14.30 ± 12.30 p ≤ 0.05

SDN 1.70 ± 0.30 2.00 ± 0.00 1.30 ± 0.30 3.00 ± 0.60 3.00 ± 0.60
SDB 2.70 ± 0.30 2.30 ± 0.30 1.00 ± 0.00 2.70 ± 0.30 1.70 ± 0.30
SMN 3.70 ± 0.30 2.30 ± 0.30 2.00 ± 0.60 3.30 ± 0.30 3.70 ± 0.30
SMB 3.70 ± 0.30 3.70 ± 0.90 1.70 ± 0.30 6.70 ± 0.30 3.30 ± 0.70
Vam 4.60 ± 1.10 12.50 ± 4.10 7.80 ± 1.90 16.20 ± 4.90 19.90 ± 4.70
Vc 3.30 ± 0.50 3.30 ± 0.20 2.30 ± 0.50 4.80 ± 0.90 5.60 ± 1.90
Sp 18.30 ± 5.30 17.30 ± 1.80 26.00 ± 4.60 20.00 ± 1.70 21.00 ± 3.20

The lowest average abundance (0.31 million cells/L) and biomass (0.94 g/m3) of
phytoplankton was recorded at station 1 (voklina). According to the diversity indices
in this part of the lake the oligo-dominant algocenoses with medium values of species
richness, diversity, evenness, and dominance developed. The phytoplankton community
was mainly formed by a small-cell species with an insignificant proportion of flagellar
forms (%B flagel—0.4; %N flagel—0.6) among them.

The northwestern shallower water area of the lake (St. 2) was characterized by a
ten-fold increase in the degree of phytoplankton development, with an unreliably pro-
nounced tendency to increase the temperature and pH of the water. The development of
2–4 dominant algae species was accompanied by a decrease in the diversity and evenness
of communities. At the same time, the proportion of small-cell fraction and flagellar forms
increased (especially in terms of biomass %Bflagel—6.1). At this station, the arithmetic
mean volume (Vam—12.5) of algal cells increased (almost three-fold), while the coenocytic
volume (Vc) did not change. This may indicate the appearance in the phytoplankton
communities of a few large forms of algae, which did not yet occupy a dominant position.
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The development of phytoplankton in the eastern water area of the lake (Sts. 4,
5) did not significantly differ from the station 2, but it was higher, especially biomass
(the statistical comparison from the U-criterion showed significant differences (p < 0.05))
than in the zone of the main groundwater supply (St. 1). In these sites of the lake, the
distribution of the phytoplankton species, in terms of abundance and biomass, was more
even. Accordingly, the Shannon indices (especially at St. 4) and the Pielou evenness indices
were higher here, and the dominance was less pronounced. In the eastern water area of the
lake, the role of large-celled algae species became more significant, whereas the proportions
of low-sized components in phytoplankton communities decreased. In these stations, some
representatives had sizes of more than 64 microns (net plankton, according to [48]). In
addition, the composition of dominant forms became richer, and there was a clear tendency
to increase the role of flagellar algae (especially on station 5).

In the ecotone zone (St. 3), the development of phytoplankton was the most productive.
Due to the diatoms “blooming”, monodominant (DN = 0.71, DB = 0.64) communities formed
in this part of the lake (Table 2), in which the only one species of centric diatoms—Cyclotella
distinguenda—dominated. Most of this diatom species had a cell diameter of less than
20 microns, so the share of small cell algae in the abundance (91.6%) and in the biomass
(82.8%) in this area of the lake was the maximum.

3.4. The Vertical Distribution of Phytoplankton Abundance, Biomass, Dominant Species, Diversity
Indices, Size Structure

Heterogeneity in the distribution of structural parameters of the phytoplankton com-
munity was also noted along the depth (Figures 2–5).

In the deepest part of the western area of the lake (station 1), two layers with notice-
able phytoplankton richness were distinguished (0–1 and 8–9 m in July, 0–2 and 7–9 m in
August) (Figures 1 and 2). In the first one (surface layer), the highest values of species rich-
ness (32 species), Shannon indices (HN = 3.52, HB = 3.36), and evenness index (EN = 0.70,
EB = 0.67) were established in July. In this month, the phytoplankton abundance and
biomass were typical for mesotrophic lakes (0.45 million cells/L, 1.37 g/m3). Algocenoses
were formed with a predominance of Cyclotella distinguenda and Melosira varians Ag., ac-
companied by large-celled benthic diatom forms (species of the genera Pinnularia, Caloneis,
Amphora, Navicula radiosa Kütz., etc.). At the depths of 5–7 m, the development of phyto-
plankton significantly decreased, increasing again in the bottom layer. Near the bottom,
there were the phytoplankton communities with the predominance of large-cell forms
(especially in the formation of biomass) and the participation of Melosira varians, Cyclotella
distinguenda and Meridion circulare (Grev.) Ag. A few flagellar algae (genera Chrysococcus,
Dinobryon, Euglena, Vacuolaria) were found at depths from 0.5 to 4.0 m.

In August, at station 1, the vertical distribution of structural parameters of phyto-
plankton was the same (Figure 2). In the surface water layer, the development of algae was
insignificant (the abundance reached 0.1–0.2 million cells/L, the biomass—0.1–0.26 g/m3).
Near the bottom (7–9 m), the abundant increased 1.5 times, and the biomass—6 times.
In the intermediate layer (3.0–6.0 m), the decrease in species richness (up to 4–6 species
in one sample) and diversity indices were found. In comparison with surface layers, the
participation of the small-celled fraction of plankton in the formation of its abundance be-
came more noticeable (by 1.5–2.2 times), and its contribution to the phytoplankton biomass
was maximal (up to 79%). From a depth of 6 m to the bottom, the proportion of large-cell
phytoplankton species increased because of the benthic species of the diatoms presence
in the sample (species from genera Nitzschia, Navicula, Cymbella, Gomphonema, Pinnularia)
(Figures 3 and 4). Thus, in the zone of the greatest depths of the western part of the lake,
two maxima of phytoplankton development were formed at the surface, and near the
bottom in July and at the bottom in August.
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Figure 2. Vertical distribution of diversity indices and structural variables (α-diversity, abundance,
biomass, saprobity, size structure) of phytoplankton in Lake Klyuchik in 2017 (July). A—Indicators
for the abundance; B—indicators for biomass; C—the number of species and size structures,
I—Station 1, II—Station 3, III—Station 5. N, 106 cells/L—abundance; B, g/m3—biomass; SN–
Pantle–Buck index, calculated to abundance; SB—Pantle–Buck index, calculated to biomass; HN
bit/Ex—Shannon–Weaver diversity index for abundance; HB, bit/g—Shannon–Weaver diversity
index for biomass; DN—Simpson dominance index for abundance; DB—Simpson dominance index
for biomass; EN—Pielou evenness index for abundance; EB—Pielou evenness index for biomass;
α-diversity—number of species per sample; Vam—arithmetic volume; Vc, µm3—coenocytic volume.
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Figure 3. Vertical distribution of diversity indices and structural variables (α-diversity, abundance,
biomass, saprobity, size structure) of phytoplankton in Lake Klyuchik in 2017 (August). A—Indicators
for the abundance; B—indicators for biomass; C—the number of species and size structures, I—Station
1, II—Station 3, III—Station 5. N, 106 cells/L—abundance; B, g/m3—biomass; SN—Pantle–Buck
index, calculated to abundance; SB—Pantle–Buck index, calculated to biomass; HN bit/Ex—Shannon–
Weaver diversity index for abundance; HB, bit/g—Shannon–Weaver diversity index for biomass;
DN—Simpson dominance index for abundance; DB—Simpson dominance index for biomass; EN—
Pielou evenness index for abundance; EB—Pielou evenness index for biomass; α-diversity—number
of species per sample; Vam—arithmetic volume; Vc, µm3—coenocytic volume.
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Figure 4. Vertical distribution of relative structural variables of phytoplankton in Lake Klyuchik
in 2017 (July). A—Share of small-celled fraction and flagellar species proportion counted for the
abundance, B—share of small-celled fraction and flagellar species proportion counted for the biomass;
I—Station 1, II—Station 3, III—Station 5. %N—a share of a small cell fraction (<20 µm) in the total
phytoplankton abundance; %B—a share of a small cell fraction (<20 µm) in the total phytoplankton
biomass; %Nflagel—a share of the monad forms in total abundance of algae; %Bflagel—a share of the
monad forms in total biomass of algae.
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Figure 5. Vertical distribution of relative structural variables of phytoplankton in Lake Klyuchik in
2017 (August). A—Share of small-celled fraction and flagellar species proportion counted for the
abundance, B—share of small-celled fraction and flagellar species proportion counted for the biomass;
I—Station 1, II—Station 3, III—Station 5. %N – a share of a small cell fraction (<20 µm) in the total
phytoplankton abundance; %B—a share of a small cell fraction (<20 µm) in the total phytoplankton
biomass; %Nflagel—a share of the monad forms in total abundance of algae; %Bflagel—a share of the
monad forms in total biomass of algae.
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At station 5 (in the eastern part of the lake), the maximum phytoplankton develop-
ment was clearly manifested near the bottom (Figure 2) with predominant large benthic
species of diatoms (genera Pinnularia, Amphora, Nitzschia, Cymbella). In July, their relative
biomass and abundance were more than 60% and 10%, respectively. In contrast to benthic
communities, communities on the surface of this station were formed by small-cell species
of phytoplankton, such as Cyclotella distinguenda, Hadmannia comta (Ehr.) Kociolek and
Khursevich, Monoraphidium minutum (Nägeli) Komárk.-Legn., and Dictyosphaerium subsoli-
tarium V. Goor with a significant relative abundance. The phytoplankton of this part of the
lake was enriched with flagellate algae, which were found in each layer (22.5 ± 3.2% and
75.9 ± 8.8% of the total abundance and biomass, respectively, for the entire water column).
Their relative biomass was the highest at the surface and gradually decreased at the bottom.
Among the monad fraction, both a few large-celled species (Peridinium cinctum Pénard.
and Ceratium hirundinella (O. Müll.) Dujard.) and numerous small-celled ones (Komma
caudata (Geitler) D.R.A. Hill., Kephyrion gen. spp.) were distinguished. Dominant species
Peridinium cinctum developed in a hole water column (from the surface to the bottom),
forming for 61–89% of the phytoplankton biomass in the surface and intermediate layers;
near the bottom—only 14%. Algocenoses that formed in the bottom layer (depth 7 m)
were characterized by high Shannon indices (HN = 3.43; HB = 3.25) and Pielou evenness
indices (EN = 0.72; EB = 0.68) of species and weak dominance in abundance (DN = 0.15)
and biomass (DB = 0.16) of phytoplankton (Figures 2 and 4).

In August, the vertical distribution of phytoplankton structural parameters at this
station was similar to that of July. In the surface layer, the biomass and abundance of phy-
toplankton corresponded to the oligotrophic state, in a depth of 6–7 m—to the mesotrophic
level (9.2 million cells/L – 4.53 g/m3) (Figure 3). Increasing the depth, there was a tendency
in enlarging of α-diversity, although the number of dominant species in abundance in the
bottom layers turned were lower than in the rest of the water column. The phytoplank-
ton community was mainly formed by small-celled species. Their proportion in the total
abundance was maximal between layers of 5 to 7 m, while the contribution in the biomass
sharply decreased near the bottom (Figure 5). At the deepest layer upon contact with the
bottom surface, the benthic species of algae (mainly large-cell pennate diatoms—Navicula
radiosa, Amphora ovalis (Kütz.), Pinnularia sp.)—enriched the plankton communities and
contributed the increase of the arithmetic volume of cells (Vam = 16640) (Figure 3). The
relative abundance of flagellate algae increased more than twice in comparison with July,
but their proportion in the total biomass remained the same. Dominant in abundance
were Komma caudata, species of the genera Cryptomonas, Chrysococcus, Dinobryon, and other
unidentified small-cell chrysomonads. These species vegetated (up to 8.92 million cells/L)
at a depth of 4–5 m to the bottom forming more than 90% of the total abundance on the
6-m layer. Most notable in the creation of biomass were large-celled Ceratium hirundinella
(up to 1.78 g/m3) and Peridinium cinctum (up to 2.0 g/m3), they prevailed in the bottom
layer of water, and Vacuolaria virescens Cienk. (up to 0.7 g/m3) at a depth of 4.0 m.

In the shallowest, station 3, in the ecotone zone during the summer, the highest inte-
grated abundance and biomass (97.8 g/m3) of phytoplankton were observed in August.
The vertical stratifications of phytoplankton abundance and biomass were the most pro-
nounced there. Phytoplankton was sharply concentrated in the bottom layer of water
(the abundance of this group of living organisms was 32 and 49 times higher than in the
surface in July and August, respectively, and the biomass was 21 and 36 times higher; the
maximum value of biomass was 130 g/m3) (Figures 2 and 4). In this part of the lake, oligo-
and even monodominant phytoplankton communities, poor in species, were formed with
an absolute prevalence of Cyclotella distinguenda near the bottom. Alfa-diversity indices
(especially in terms of the abundance of species) had higher values in the surface layers
and reached a minimum (Shannon indices: HN = 0.11; HB = 0.34 and Pielou evenness
indices: EN = 0.04; EB = 0.11) at the bottom during the period of diatoms “blooming”. In
the vertical distribution, there was a reduction of the proportion of flagellar algae from the
surface (25.2–37.9% of abundance, 73.9–87.1% of the biomass) to the bottom (0.11 and 0



Microorganisms 2022, 10, 386 13 of 20

accordingly), and opposite, gradually increasing the share of small-celled plankton from
the surface to the bottom (by 2–5 times in terms of biomass), from the beginning of the
summer period to its end (Figures 3 and 5).

3.5. Statistical Analysis

Phytoplankton abundance and biomass in Lake Klyuchik were positive correlated
with each other (Rs = 0.89). The abundance tended to increase in more saprobic and trophic
waters (the correlation coefficients between N and SB was 0.63). At the same time, no
significant relations with the structural variables of phytoplankton communities were
revealed, except for the abundance and its evenness index (EN), which had a negative
relation (Rs = −0.54). The abundance of phytoplankton positively correlated (Rs = 0.52)
with the proportion of the small-cell species (%N) in its formation and negatively correlated
with the proportion of the dominant species, in terms of biomass (Rs = −0.59 and −0.69,
the relationship of this parameter with the abundance and biomass, respectively).

The correlation analysis showed that the Shannon–Weaver indices (HN, HB) positively
correlated with the Pielou evenness indices, and they had a significant negative correlation
with the Simpson dominant indices (Table 3).

Table 3. Spearman correlation matrix of the diversity indices of phytoplankton in Lake Klyuchik
(p ≤ 0.05).

HB HN DB DN EB EN

HB 1.00 0.88 −0.99 −0.89 0.86 0.88
HN 0.88 1.00 −0.87 −0.96 0.74 0.95
DB −0.99 −0.87 1.00 0.87 −0.88 −0.85
DN −0.89 −0.96 0.87 1.00 −0.73 −0.91
EB 0.86 0.74 −0.88 −0.73 1.00 0.78
EN 0.85 0.95 −0.85 −0.91 0.78 1.00

The Shannon indices had a negative relation with the proportion of the small-celled
species in the abundance and biomass, saprobity, and a weakly positive correlation, with
a relative abundance of flagellar forms and a diversity of dominant and mass species
(Table 4). A similar tendency was recorded with Pielou, which had a positive correlation
with a majority of structural variables. The Simpson dominant indices had the opposite
trend (Table 4).

Table 4. The correlation coefficients found by correlation analysis of α-diversity indices and some
structural variables of phytoplankton communities in Lake Klyuchik (p ≤ 0.05).

HB HN DB DN EB EN

N p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 −0.54
SB p ≥ 0.05 −0.52 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 −0.55

%N −0.62 −0.76 0.59 0.76 −0.66 −0.82
%B −0.71 −0.85 0.73 0.74 −0.67 −0.81

%Nflagel 0.57 0.64 −0.54 −0.77 p ≥ 0.05 0.61
SDN 0.70 0.64 −0.65 −0.78 0.56 0.57
SMN 0.56 0.77 p ≥ 0.05 −0.75 p ≥ 0.05 0.74
SDB p≥0.05 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 p ≥ 0.05 0.53
SMB 0.74 0.67 −0.77 −0.74 0.68 0.76

No significant relationship was found between species richness and other structural
variables of phytoplankton communities. The number of dominant species by biomass was
negatively related to the abundance (Rs =−0.69) and biomass (Rs =−0.59) of phytoplankton
and positively to the coenocytic volume (Rs = −0.57). The number of dominant and
subdominant species in abundance had negative correlations with the share of the small-
cell species in the abundance (Rs = −0.51 and −0.85 respectively) and biomass (Rs = −0.51
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and −0.53) of phytoplankton, i.e., with its increase, the composition of coenose-forming
components with a size of less than 20 microns became poorer. Positive correlations were
also noted with the share of flagellates, in abundance (Rs = 0.53–0.86).

The number of dominant species was not determined by the species richness (p ≥ 0.05).
Usually, it was not notable (2–4 species in a sample, rarely more – up to 7, station 4), as well
the total number of species (average for the lake 15 ± 1, maximum 32–35).

There was a positive correlation (Rs = 0.65) between the arithmetic volume of algal
cells (Vam) and coenocytic volume (Vc) in phytoplankton communities of Lake Klyuchik;
the connection between these parameters and the abundance and biomass was negative,
but unreliable (p≥ 0.05). The low positive correlation of the small-cell species proportion in
abundance with the biomass of phytoplankton (Rs = 0.52) and the significant contribution in
those parameters (over 40–70%) (Table 4) reflected the predominance of the nannoplankton
component in phytoplankton communities.

Flagellate algae were poorly represented in the phytoplankton communities of the
lake. Their share on average for all stations was 4.3–4.5% of the abundance or biomass; at
some stations (St. 5) it increased to 11–14% (Table 2). The presence of monadic algae to a
certain depth was also unclear. At St. 1, they concentrated at a depth of 3 m (August) and
were the only group in that layer, or their noticeable development (up to 87% of the total
biomass) was noted in the surface layer (St. 3—ecotone zone); sometimes they created a
maximum (4.53 g/m3—up to 97% of the total biomass) in the bottom layer (St. 5) (Figure 5).
The proportion of flagellate algae in the abundance showed a positive correlation with
the arithmetic volume of the algal cell (Rs = 0.71), since the large-sized representatives
(Ceratium, Peridinium, Gonyostomum, Vacuolaria) or colonial (Dinobryon) species of algae
were mainly observed there.

A review of relations of phytoplankton structural parameters with environmental
parameters demonstrated a significant role of the depth. The depth of the lake had a positive
correlation with the number of dominant species (Rs = 0.62–0.66), diversity Shannon–
Weaver indices (Rs = 0.76 for HN and Rs = 0.61 for HB), and Pielou evenness (Rs = 0.82
for EN and Rs = 0.61 for EB), and negative with Simpson dominant indices (Rs = −0.68 for
DN and Rs = −0.61 for DB). A significant negative correlation was also noted between the
depth and water saprobity index by biomass s (Rs = −0.61).

The value of water transparency had a negative correlation with the abundance
(Rs = −0.97) and biomass (Rs = −0.90) of phytoplankton, the water saprobity index by
biomass (Rs = −0.77), and the proportion of small-celled algae that played a role in the
formation biomass (Rs = −0.80). Transparency correlated positively with diversity index
based on abundance (Rs = 0.62), evenness (Rs = 0.59), and the number of dominant species
(Rs = 0.73). The temperature factor had positive correlations with the volume of algae
cells (Rs = 0.53) and the proportion of the flagellar species in the forming of abundance
(Rs = 0.51) only. The value of pH showed a positive relationship only with the proportion
of flagellate algae, in terms of abundance (Rs = 0.57).

4. Discussion

Lake Klyuchik is a small gypsum karst lake with calcium sulphate water. Like most
gypsum reservoirs [4–6], it has brackish water (dissolved salts up to 2.0 g/L), high trans-
parency, and an azure (ultramarine) water color. The lake also has some specific charac-
teristics. Firstly, it has an ecotone zone that connects two parts of the lake differing from
each other in the chemical composition and physical properties of the water. Secondly, in
the western water area of the lake, there is an underground spring, the flow rate of which
varies from 1.79 m3/s to 4.21 m3/s [34]. According to the flow-based classification [50], it
belongs to the second-magnitude group of springs; from this point of view, lake Klyuchik
can be considered a unique hydrological object. The presence of an underground spring
ensures a constant low temperature in the western part of the lake (it does not freeze during
the winter) throughout the year, and a lack of temperature and oxygen stratification [30].
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With this combination of factors, Lake Klyuchik turned out to be similar to Lake Goluboe
(Samara Region, Russia) [17] and Lake Ochiul Beiului (Romania) [2].

The water transparency in Lake Klyuchik was in the range of 3 to 8 m and was peculiar
to oligotrophic–mesotrophic types of water bodies [51]. The values of transparency were
less in the ecotone zone due to the slight depth at this part of the lake (up to 2 m). The
coefficient of relative transparency, estimated as the ratio of the average transparency to
the average depth, was 1.1. It is typical to the class of optically deep water bodies, in
which the water transparency is 1–2 times greater than the average depth [51], favoring the
development of phytoplankton at considerable depths. Lake Klyuchik can be classified as
neutral or oligo-alkaline, according to the pH value [51].

We regard this lake as a model of an aquatic system, where the effect of the envi-
ronment ”severity” is clearly expressed. According to Bigon et al. [52], the environment
”severity” means the predominance among environmental conditions of one or few limiting
factors (acidification, pollution, thermification, etc.), which are responsible for influencing
the structural variables of the biotic communities and suppressing the effects of other
factors. In Lake Klyuchik, two main factors (temperature and mineralization, which have
great influence on the structure of algocenoses) are combined in an unusual way, not
typical for the lakes of the temperate forest zone. Although the amount of solar energy
supplied per unit of the lake surface area is typical for the forest zone, the thermal regime
of the lake is more similar for the northern lakes of the coniferous–deciduous forests. Lake
Klyuchik, consistent with the thermal regime, is similar to water bodies of the tundra and
forest–tundra, for example, the subarctic lakes of Fennoscandia [53]. On the other hand, the
values of mineralization are more typical for southern lakes of the steppe zone [6,10,17].

The continual inflow of underground cold, blue-colored waters, increases the albedo of
the lake in its western part. It contributes to a significant reflection of light energy from the
surface, weak water heating (average summer water temperature was 8.8 ± 0.5 ◦C, seasonal
temperature variations were 2.5–3.0 ◦C), and the formation of stable low-temperature
conditions in the summer season. The eastern part of the lake is more productive because
its waters are warmer in the summer (average temperature was 14.7 ± 0.9 ◦C, seasonal
temperature variations were 4.1–4.5 ◦C). The transparency of the waters is about two
times lower than in the western part, the waters are greenish–blue in color because of the
development of autotrophic plankton. With the same amount of incoming sun energy, its
absorption and, accordingly, water heating, are more efficient in the western part of the
lake. It contributes to the compensation of the low temperature background and stimulates
the development of thermophilic algae species.

The floristic list of algae in Lake Klyuchik was formed by nine taxonomical groups
where diatoms significantly prevailed in terms of the number of species (more than 40%).
The proportions of green algae and cyanoprokaryotes were lower, while in the majority
of water bodies in the temperate zone, they usually predominated [10,54,55]. The same
proportion of large taxa (divisions) of algae were recorded in Lake Goluboe, Russia [17],
and in Lake Ochiul Beiului, Romania [2], with similar habitat conditions. The species
composition of phytoplankton of Lake Klyuchik was represented mainly by benthic, littoral,
and truly planktonic forms with dominance of the cosmopolitan species (87.1%) and a low
proportion of boreal ones (12.9%) [32]. In this regard, this water bodies are similar to most
of the lakes [15].

Species richness is one of the most important parameters of the phytoplankton com-
munity [52,56,57]. The specific combination of environmental factors in Lake Klyuchik
was weakly beneficial for the formation of species-rich phytoplankton communities there.
The alpha diversity of phytoplankton (18–20 species per sample in summer season) was
significantly lower than in other waters bodies (e.g., in the lakes of the Pustynsky Reserve—
up to 40–50 species per sample) of the same karst zone of the Volga basin [54]. Similarly,
low values of α-diversity were noted for highly-humified and acidic water bodies [58–60];
in this term, it can be considered a common answer, in regard to biota communities and
stress conditions.
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Analysis of the spatial and vertical distribution of the main parameters of the phyto-
plankton structure of Lake Klyuchik and their correlations revealed some patterns. The
distributions of the taxonomic composition, quantitative development, and diversity in-
dices of phytoplankton were characterized by spatial heterogeneity. The abundance and
the biomass varied significantly during the summer period and generally characterized
Lake Klyuchik as a eutrophic lake [51] with the average biomass being more than 5.0 g/m3,
except for the area of voklina (St. 1). At this station, the phytoplankton abundance and
biomass were not high, peculiar to oligotrophic or the weakly mesotrophic state. In terms
of temporary changes, the maximum biomass values at stations 2 and 5 were recorded in
July, and at stations 3 and 4—in mid-August. At the deepest, station 1, biomass values were
similar during the summer. Successions of the dominant species are presented in previous
studies in more detail [32].

The dominant groups of phytoplankton were similar to those noted for other karst
lakes of temperate zones, including gypsum ones [2,10,16,21]. The phytoplankton of Lake
Klyuchik is characterized by co-occurrences of chrysophytes (Chrysophyceae—up to 20%
of the total abundance), dinoflagellates (Dinophyceae—up to 40% of the total biomass),
and diatoms (Bacillariophyta) in the warm water part of the lake, and practically complete
(50–100%) dominance of diatoms in the cold water part, where they often develop near
the bottom. In high transparency conditions (up to 8.5 m), and a lack of light limitation,
photosynthesis was possible throughout the entire water column, including the area near
the benthal zone. This area became available for the normal functioning of planktonic or
benthic algae, including representatives of the "shadow" flora, mainly from the diatoms.
Avoidance by diatoms of well-lit surface layers of highly transparent water bodies (both
marine and fresh) is a well-known fact in the ecology of phytoplankton and diatoms [47]
(the phenomenon of a deepened maximum of photosynthesis).

The proportion of dominance groups and individual development values of dominant
species were rather specific. In this regard, the ecotone zone of the lake is of particular
interest, where the most noticeable phytoplankton development was noted on the bor-
der between the water column and bottom sediments. The phytoplankton biomass was
uniquely high there (up to 130 g/m3) and was typical for hypertrophic water bodies [51].
Such development of phytoplankton sharply distinguished Lake Klyuchik from other water
bodies, the Middle Volga basin, including the highly eutrophic Cheboksary reservoir [61],
the Oka rivers [36], and others.

Despite the higher alpha diversity (26 taxa) in the ecotone zone, compared to the other
stations, monodominant phytoplankton communities were formed here, in which only
one species of centric diatoms—Cyclotella distinguenda—had prevailed. A small part of the
population of this diatom had a cell diameter of more than 20 microns [33]. It affected the
proportion of large and small cell components in the algocenoses. The share of small cell
algae in the biomass in this area of the lake was maximum.

Cyclotella-species ”blooming” are often phenomena in the karstic lake, in both the
temperate zone [16,20] and in the lakes of the warm belt [12,18,19], especially during spring
and autumn turbulence.

Cyclotella distinguenda is a rare species for the algoflora of the Volga basin, as well
as for river systems in Hungary [62]. This species of centric diatoms, according to its
ecological preferences, prefers mesotrophic conditions, and is sensitive to stratification [63].
In accordance with the literature data [16], similarly high values of biomass and abundance
of this species were not observed in other lakes. We suppose that the unique combination
and dynamics of the environmental factors of the lake (high mineralization, favorable
light conditions, low temperature background, and lack of thermal stratification) were
optimal for the mass development of this species and allowed it to regulate the structure
and productivity of algocenoses in weak competition conditions.

Such combinations of factors were likely not beneficial for the other groups of phyto-
plankton. Cyanobacteria are frequent components of phytoplankton communities in highly
mineralized water bodies of the steppe and semi-desert zones [64–66], and in the sub-
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tropical zone [18,19], especially in the midsummer stratification period. In Lake Klyuchik,
despite the high values of mineralization, the development and "blooming" of cyanobacteria
were limited by low temperatures and by an absence in the western part of the reservoir, or
weakly expressed stratification (in the eastern part). The cyanobacteria found in plankton
were represented by small coccoid and filamentous forms (Aphanocapsa spp., Pseudanabaena
spp.), but their abundance was not significant.

A similar trend can be noted for coccoid green algae, the diversity, growth rate, and
productivity of which are stimulated by elevated temperatures [66,67].

The role of phytoflagellates (species from different taxonomic groups), frequent inhab-
itants of lentic water bodies [12,16,68], turned out to be less significant than other groups.
Flagellar algae are weakly dependent on light conditions due to their greater tendencies to
mixotrophic feeding and heterotrophic carbon assimilation [60,69,70], but they are sensitive
to turbulence [19]. Since there was no pronounced stratification in the lake, accumulations
of mobile monad algae at different stations of the lake could be formed in any part of
the water column and their preference for a certain depth was not clearly manifested.
However, the proportion of flagellate algae was statistically higher in the warm eastern
part of the lake.

Among structural parameters, species richness did not show significant relations with
other structural variables, whereas the number of dominant and subdominant species
turned out to be more indicative and showed correlations. It means that the alpha diversity
of phytoplankton (Shannon diversity index, Pielou evenness index and Simpson dominance
index) were mainly determined by the number of the dominant species (not by the species
richness of phytoplankton) and their ecological preferences (the ability to vegetate at low
summer temperatures in mesohaline conditions).

The size structure of the phytoplankton community, as an important indicator of water
ecosystem eutrophication [47], reflected the predominance of nannoplankton components
in phytoplankton communities of Lake Klyuchik. The proportion of small-celled organ-
isms increased in communities with more pronounced dominance and decreased with an
increase in species diversity and evenness.

The saprobity of water bodies within the limnosaprobic levels of their pollution with
organic matter changes, in parallel with the levels of trophicity, can be considered as struc-
tural indicators of communities [46]. The variations in the average values of the saprobity
indices in Lake Klyuchik was within the framework of oligo-β-mesosaprobic water pol-
lution, with higher values in the ecotone zone of the lake. As the saprobity enhanced,
we observed a tendency of simplification of phytoplankton communities (a decrease in
diversity and evenness) and an increase in the role of the small-cell fraction.

5. Conclusions

The investigation of the gypsum karstic lake with the unique abiotic environmental
factors made it possible to identify the most important features of the structure and dynam-
ics of phytoplankton communities developing in such conditions. These patterns expand
our understanding about the diversity of phytoplankton communities, in general, and
provide clarifications about their organizations under certain environmental scenarios. The
ideas will be useful for studying the biodiversity of phytoplankton communities for lakes
with unusual—as well as typical—parameters, to assist in the planning (i.e., in the protec-
tion of unique landscapes or habitats) and in the assessments of the ecological statuses of
these lakes.
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