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Abstract

Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias,
alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in
preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common
chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in
cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene
products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-
induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-
deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication
fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably,
restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells.
Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation
and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed
no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication
stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of
DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome
instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the
initiation of genomic instability, linking alterations at common fragile sites to the origin of genome instability.
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Introduction

Genomic instability drives tumorigenesis by expediting the

acquisition of mutations that provide for selective clonal

expansion and escape of normal cellular restraints [1]. Expres-

sions of genome instability include chromosomal instability,

microsatellite instability, and instabilities typified by an increased

frequency of point mutations. Chromosomal instability is the

most commonly observed form of genome instability, occurs in

the majority of sporadic cancers and includes structural

chromosome aberration (translocations, inversions, deletions

and duplications) or numerical abnormality (aneuploidy, triploi-

dy, tetraploidy.) [2]. Because of its occurrence in most cancers,

the molecular events causing chromosome and genome instability

have been the subject of intense investigation. Chromosome and

genome instability terminology is used interchangeably in this

study to refer to chromosome structural and numerical abnor-

malities.

In several familial cancer syndromes, genome instability

develops due to inherited mutations in the ‘‘DNA caretaker’’

genes essential for DNA repair or the DNA damage response [3].

However, in sporadic cancers the known DNA caretaker genes are

rarely mutated before the rise of genome instability [2]. It has been

proposed that in early stages of sporadic tumorigenesis, activated

oncogenes induce replication stress through deregulation of cell

cycle progression, causing chromosomal instability, first at

common fragile sites, and later throughout the genome [4,5].

This proposal was corroborated by a report that expression of

activated oncogenes in vitro results in nucleotide pool levels

inadequate to support normal DNA replication, due to premature

S phase entry [6]. Remarkably, exogenously supplied nucleosides

suppressed oncogenesis in the model systems studied.

While oncogene activation can induce replication stress in vitro

and in mouse models, it also activates DNA damage response

checkpoints and causes cellular senescence, forming a barrier to

cancer progression [7,8]. Without inactivating mutations in DNA
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damage response genes or experimental manipulation of cell cycle

checkpoints, transformation does not occur. This suggests that

genome instability or mutational diversity in genetically un-

manipulated models occurs prior to oncogene activation. More-

over, recent studies have detected the presence of clonal somatic

mosaicism in a small fraction of healthy individuals. These

chromosomal anomalies are more prevalent in older individuals,

and precede oncogenesis [9,10], in accord with the idea that

genome instability occurs prior to oncogene activation. It has also

been argued that since cancers with microsatellite instability, but

not chromosomal instability, similarly express the activated

oncogenes proposed to induce chromosomal instability, such

oncogenes do not actually cause chromosome alterations [11].

Finally, genomic alterations are observed in human precancerous

lesions, yet there are few reports of activated oncogenes in such

lesions. Thus, oncogene-induced DNA damage contributes to the

progression of genome instability in sporadic cancers, but is

unlikely to initiate it.

Deletions at common fragile site FRA3B do occur in

preneoplasias and may be the most frequent and earliest

alterations. FRA3B overlaps the FHIT gene, and FRA3B fragility

often results in deletions of FHIT exons and loss of Fhit expression

in precancer and cancer cells [12]. Paradoxically, examination of

cells that have lost the FHIT gene product has revealed that Fhit

protein has functional roles in response to DNA damage [13]: 1)

kidney epithelial cells established from Fhit2/2 mice exhibited .2-

fold increased chromosome breaks at fragile sites vs corresponding

Fhit+/+ kidney cells [14]; 2) the frequency of mutations following

replicative or oxidative stress in Fhit-deficient transformed and

cancer cells was 2 to 5-fold greater than in Fhit-expressing cells

[15,16]. Despite these findings and strong evidence that Fhit exerts

tumor suppressor activity [17,18], it has been argued that deletions

within the FHIT locus in transformed cells are passenger

alterations rather than cancer-driving mutations [19]. In this

study we have further examined the role of Fhit loss in

development of DNA damage and observed that absence of Fhit

causes genome instability without activating the DNA damage

response and senescence barrier. Our findings support a model for

the initiation of genome instability in early stages of neoplasia

through FHIT/FRA3B alterations and subsequent loss of Fhit

function.

Results

Fhit-deficient cells exhibit spontaneous DNA breaks
To define the role of Fhit in promoting genome stability, we

began by assessing spontaneous DNA damage in HEK293

embryonic kidney cells transfected with siRNAs targeting FHIT

(Figure S1A). DNA damage was measured by neutral comet assay,

or single cell gel electrophoresis assay, a method routinely used to

detect DNA double-strand breaks (DSBs). The assay is based on

the principle that fragmented DNA migrates faster than un-

fragmented DNA through agarose gel in an electric field.

Undamaged DNA remains in the nucleoid and is seen as the

‘‘comet head’’, while damaged DNA migrates through the gel and

forms the ‘‘comet tail’’ (Figure 1A). We used the tail moment, the

product of tail length and % of total DNA in the tail, to score DSB

levels in individual cells. Two days following Fhit knockdown, we

observed a significant increase in the mean tail moment in Fhit-

deficient cells vs si-control cells, indicating that decreased Fhit

expression resulted in spontaneous DSBs. Co-transfection with

FHIT siRNAs and a FHIT expression plasmid suppressed DSB

formation, confirming that Fhit-depletion caused the DSBs

(Figure 1B). As independent confirmation of DSBs following Fhit

knockdown, we assessed numbers of nuclear cH2AX and 53BP1

foci, markers of DNA breaks, by indirect immunofluorescence

(Figure 1C). HEK293 cells transfected with FHIT siRNAs

exhibited a ,3-fold increase in the fraction of cells with cH2AX

and 53BP1 foci (Figure 1D and 1E), confirming that loss of Fhit

expression causes DSBs. To determine if Fhit prevents DSBs in

normal cells, we compared tail moments in primary cells

established from Fhit2/2 mouse kidney vs cells from wild-type

Fhit+/+ kidney. The mean tail moment of Fhit2/2 cells was ,2-fold

greater than that of Fhit+/+ cells and exogenous Fhit expression in

the Fhit2/2 cells decreased the mean tail moment (Figure 1F). To

determine if Fhit suppresses formation of DSBs in cancer cells, we

used endogenous Fhit-negative H1299 lung adenocarcinoma cells

carrying either an inducible FHIT cDNA expression plasmid (D1

clone) or the empty vector control (E1 clone) (Figure S1B). After

induction of Fhit expression in D1 cells, the mean tail moment was

significantly reduced (Figure 1G). Collectively, these results

demonstrate the critical role for Fhit in suppressing spontaneous

DSBs in transformed cells and cells derived from normal and

cancerous tissue.

Fhit prevents endogenous replication stress and
replication fork stalling

Since endogenous DSBs typically form due to DNA replication

defects [20], we asked if Fhit-deficient cells exhibit increased

replication stress. We co-immunostained Fhit-silenced HEK293

cells with antisera against cH2AX and Cyclin A, an S/G2 phase

marker. Fhit-deficient cells exhibited a dramatic increase in

cH2AX immunofluorescence staining in Cyclin A-positive cells

(Figure 2A and 2B), suggesting that DNA breaks were caused by

aberrant DNA replication. Similar results were obtained using

H1299 cells, as induction of Fhit expression in D1 cells led to

reduced numbers of cH2AX foci in Cyclin A-positive cells (Figure

S2A and S2B). To determine if DNA damage occurred specifically

at sites of replication, we immunostained for phospho-ATR

(Ser428), a kinase that localizes to stalled replication forks and

initiates the S phase checkpoint [21]. Fhit knockdown resulted in a

,3-fold increase in the fraction of cells with phospho-ATR

Author Summary

Normal cells have robust mechanisms to maintain the
proper sequence of their DNA; in cancer cells these
mechanisms are compromised, resulting in complex
changes in the DNA of tumors. How this genome
instability begins has not been defined, except in cases
of familial cancers, which often have mutations in genes
called ‘‘caretaker’’ genes, necessary to preserve DNA
stability. We have defined a mechanism for genome
instability in non-familial tumors that occur sporadically
in the population. Certain fragile regions of our DNA are
more difficult to duplicate during cell division and are
prone to breakage. A fragile region, FRA3B, lies within the
FHIT gene, and deletions within FRA3B are common in
precancer cells, causing loss of Fhit protein expression. We
find that loss of Fhit protein causes defective DNA
replication, leading to further DNA breaks. Cells that
continue DNA replication in the absence of Fhit develop
numerous chromosomal aberrations. Importantly, cells
established from tissues of mice that are missing Fhit
undergo selection for increasing DNA alterations that can
promote immortality, a cancer cell hallmark. Thus, loss of
Fhit expression in precancer cells is the first step in the
initiation of genomic instability and facilitates cancer
development.

Fhit Loss Initiates Genome Instability
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Figure 1. Fhit-deficient cells exhibit spontaneous DNA breaks. (A) Neutral comet assays of HEK293 cells 2 days after transfections with siRNAs
and pRcCMV-FHIT-flag or pRcCMV-empty-flag plasmids. Representative nuclei are shown; bars, 20 mm. (B) Box plots of Tail moments include data
(siCtrl, n = 183; siFHIT, n = 142; siFHIT+CMV-ev, n = 135; siFHIT+CMV-Fhit, n = 132) from 3 separate experiments. Statistical significance was determined
using the Kruskal-Wallis rank sum test. (C) Indirect immunofluorescence of cH2AX and 53BP1, 2 days after Fhit knockdown. Representative nuclei are

Fhit Loss Initiates Genome Instability
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(Ser428) nuclear foci vs HEK293 cells treated with control siRNAs

(Figure 2C and 2D). To verify that replication forks were more

frequently damaged in Fhit-deficient cells, we pulse-labeled H1299

E1 and D1 cell replication forks with BrdU, and immunostained

for cH2AX and BrdU. In these cells, induction of Fhit expression

in D1 cells led to reduced cH2AX localization to BrdU-labeled

replication foci (Figure S2C and S2D). We conclude that Fhit

functions to decrease DNA damage arising from endogenous

replication stress, a conclusion supported by the observation that

inhibition of S phase by roscovitine treatment, a Cdk inhibitor,

suppressed cH2AX staining in Fhit-deficient H1299 E1 cells

(Figure S2E and S2F).

We reasoned that Fhit may either function upstream to prevent

and minimize DNA replication stress or, alternatively may

contribute to downstream replication fork maintenance and

thereby prevent fork collapse and DSB formation. To distinguish

between a role of Fhit upstream or downstream of replication

stress, we treated cells with hydroxyurea for 4 h and measured

comet tail moments. Hydroxyurea causes replication fork stalling

through depletion of dNTPs by inhibition of ribonucleotide

reductase; thus cells treated with hydroxyurea for more than 2 h

accumulate inactivated replication forks and DSBs [22,23]. If Fhit

functions to support replication fork stability after replication

stress, then hydroxyurea challenge should induce more DSBs in

Fhit-deficient cells. However, hydroxyurea treated Fhit-silenced

HEK293 cells and treated control cells exhibited similar levels of

comet tail moments (Figure 2E). Similar results were obtained in

H1299 D1 and E1 cells (Figure 2F). Overall, hydroxyurea

treatment resulted in equivalent tail moments in Fhit-expressing

and Fhit-deficient cells, suggesting that Fhit does not function

downstream of replication stress.

Next we investigated the possibility that Fhit supports normal

DNA replication, such that silencing Fhit causes replication stress,

through analysis of DNA replication dynamics at the single-

molecule level by DNA combing [24]. DNA fibers from HEK293

cells pulsed sequentially 30 min each with the nucleotide analogs,

5-chlorodeoxyuridine (CldU) and 5-iododeoxyuridine (IdU), were

spread on glass slides. Replicating DNA incorporates CldU and

then IdU during the sequential pulses, and is detected by

immunofluorescence (Figure 3A). Labeled DNA fibers were

consistently shorter in cells transfected with FHIT siRNAs vs

control siRNAs. Using a conversion factor of 1 mm = 2.59 kilobase

pairs (kbp) [24], average fork velocities of 1.05 kbp/min were

estimated for control and 0.61 kbp/min for Fhit-silenced cells

(Figure 3B). The results illustrate the role of Fhit in sustaining

normal DNA replication. We also assessed the symmetry of sister

replication forks proceeding outward from common replication

origins that fired during the CldU pulse (Figure 3C). Because DNA

synthesis is coupled at sister replication forks, asymmetrical DNA

synthesis is thought to represent stalling or collapse of one of the

forks [25]. Control cells exhibited mostly symmetrical sister forks,

with length of IdU-labeled tracts on either side of the replication

origin nearly equal. In contrast, Fhit knockdown increased the

frequency of asymmetrical sister forks proceeding outward from a

common origin (Figure 3C–3E), suggesting that Fhit loss results in

increased fork stalling and collapse. We also assessed replication

dynamics in mouse kidney cells and H1299 cancer cells;

replication defects were also observed in Fhit2/2 mouse kidney

cells and Fhit-deficient H1299 cells (Figure 3F and 3G). Overall,

the results suggest that Fhit does not participate in the response to

fork stress, but rather, in unperturbed conditions Fhit promotes

normal DNA replication progression.

Fhit modulates the supply of dTTP
To explore mechanisms involved in Fhit support of DNA

replication progression, we considered the observation that

depletion of dNTP pools by hydroxyurea exposure equalized

DNA damage in Fhit-positive and deficient cells (Figure 2E and

2F). It is known that imbalance in dNTPs is mutagenic and

produces chromosomal abnormalities [26], and in certain models,

reduced dNTP pools aid transformation [6]. To determine if such

imbalances occur spontaneously following knockdown of Fhit

expression, we measured dNTP pools using the enzymatic assay

developed by Sherman and Fyfe [27]. Within 72 h, Fhit

knockdown in HEK293 cells caused ,30% reduction in the

dTTP level compared to control cells, with other dNTPs

unaffected (Figure 4A). In these experiments Fhit knockdown

relative to control cells ranged from 35–75%; to account for

differences in knockdown efficiency, we plotted the relative Fhit

expression vs the relative dTTP levels, revealing that cells with

greater knockdown of Fhit expression had lower levels of dTTP,

up to 50% lower than control cells (Figure 4B). To determine if the

effect on dTTP pools was a transient response to Fhit knockdown,

we used A549 lung carcinoma cells that were engineered for stable

silencing of Fhit expression. dNTPs were extracted from these cells

after 7–9 weeks of stable Fhit-knockdown, and the dTTP pool was

still significantly reduced relative to control cells (Figure 4C).

While a 25–50% reduction in dTTP levels seems a modest change,

it may suffice to hinder replication fork movement and cause DNA

breaks, especially at loci sensitive to mild replication stress such as

fragile sites. For example, low doses of hydroxyurea (0.1 mM)

moderately reduce dNTP levels (by 20–40%) yet fully block DNA

replication [28]. Moreover, treatment with 0.05 mM hydroxyurea

significantly decreased replication fork movement and caused an

increase in DNA breaks (Figure S3A–S3C). To determine if

imbalance in the dTTP pool caused the DNA breaks in Fhit-

deficient HEK293 cells, we supplemented Fhit-silenced cells with

thymidine for 48 h, providing fresh thymidine every 24 h.

Thymidine supplementation for 48 h resulted in an increase in

dTTP pools in both control and Fhit-silenced HEK293 cells; thus,

supplementation is sufficient to restore dTTP pools in Fhit-

deficient cells (Figure S4). Measurement of comet tail moments

showed that thymidine supplementation fully prevented the DNA

breaks caused by Fhit knockdown (Figure 4D). Thymidine

supplementation also corrected the DNA replication defects in

Fhit-deficient cells, restoring fork velocity and improving sister fork

symmetry (Figure 4E and 4F). We conclude that the supply of

dTTP in the Fhit-deficient condition was inadequate to support

efficient DNA replication.

dTTP is synthesized by 2 pathways, the de novo pathway via

Thymidylate synthase, TYMS; and the scavenger pathway via

shown; bars, 10 mm. (D and E) Quantification of cH2AX-positive cells (D) and 53BP1-positive cells (E). Bar graphs indicate the means, and error bars
represent the standard deviations. Data were collected from 3 independent experiments. Statistical significance was assessed using a 2-sided
Student’s T-test. (F) Neutral comet assays of Fhit+/+ or Fhit2/2 mouse kidney cells 48 h after transfection with pRcCMV-FHIT-flag or pRcCMV-empty-
flag plasmids. Box plots of Tail moments are shown. Statistical significance was determined using the Mann-Whitney rank sum test. (G) Neutral comet
assays of Fhit-deficient H1299 lung carcinomas cells, with or without induction of Fhit expression. Comet assays were performed 48 h after
ponasterone A-induction of Fhit expression. Box plots of Tail moments are shown. Statistical significance was determined using the Mann-Whitney
rank sum test.
doi:10.1371/journal.pgen.1003077.g001
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Figure 2. Loss of Fhit causes replication stress. (A) Cyclin A and cH2AX indirect immunofluorescence after Fhit knockdown. Representative
images are shown; bars, 10 mm. (B) Data obtained in (A) were quantified from 3 independent experiments, and statistical significance was determined
using a 2-sided T-test. Bar graphs represent the means, and error bars mark the standard deviations. (C) pATR immunofluorescence 2 days after Fhit
knockdown in HEK293 cells. Representative images are shown; bars, 5 mm. (D) Quantification of cells positive for more than 5 pATR foci/cell from 3

Fhit Loss Initiates Genome Instability
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Thymidine kinase 1, TK1 [29]. Because of the observed effect on

dTTP pools, we evaluated expression of TK1 and TYMS enzymes

following Fhit knockdown. Expression of TYMS was unaffected by

Fhit-silencing; in contrast, TK1 expression was severely depleted

in HEK293 cells transfected with FHIT siRNAs (Figure 5A).

Exogenous overexpression of Fhit in Fhit-deficient cells restored

TK1 expression to normal levels (Figure 5B). Fhit2/2 mouse

kidney cells also expressed trace levels of TK1 compared to Fhit+/+

cells (Figure 5C), and stable Fhit knockdown in A549 lung cancer

cells caused TK1 down-modulation for at least 9 weeks

(Figure 5D). Thus, Fhit modulation of TK1 expression is a

general phenomenon, necessary for producing sufficient dTTP for

DNA synthesis.

The genome instability induced by Fhit-deficiency does
not activate the S/G2 checkpoint

DSBs are the most deleterious DNA lesions as they are difficult

to repair correctly and often lead to complex genomic alterations,

including large deletions, duplications, and translocations [20].

Non-random mutation clusters can also arise during repair of

DSBs [30,31]. Cells minimize replication stress-induced DSB

formation by activating the S phase replication checkpoint to block

cell cycle progression and coordinate replication fork stabilization

and restart [21]. Central to the S phase checkpoint are the kinases

ATR and Chk1. ATR localizes to stalled forks and phosphorylates

multiple targets, including Chk1. Phosphorylated Chk1 is then

activated to phosphorylate its targets, setting off a cascade of

events to enforce the S phase checkpoint [21]. We investigated the

checkpoint response to Fhit-silencing in HEK293 cells, as these

cells exhibit replication defects and spontaneous DSBs, first by

immunoblot of lysates of HEK293 cells transfected with FHIT

siRNAs, to assess expression of phospho-Chk1 (Ser317). We did

not detect increased expression of phospho-Chk1 following Fhit

knockdown, suggesting that the S phase checkpoint was not

activated (Figure S5A). We also assessed the cell cycle distribution

by flow cytometric analysis of DNA content to determine if Fhit-

deficient cells accumulated in S or G2 phase. Consistent with the

phospho-Chk1 western blot data, Fhit knockdown did not cause

accumulation of cells in S or G2 phase (Figure S5B and S5C).

While surprising, the results are not without precedent. For

example, it is known that cells can traverse mitosis with under-

replicated DNA due to replication stress and subsequently form

DNA lesions marked by 53BP1 nuclear bodies in daughter G1

cells [32,33]. Thus, we determined if Fhit-silenced cells complete

cell division despite endogenous replication stress and DNA

damage, by assessing the incidence of 53BP1 nuclear bodies in G1

cells by immunofluorescence staining of 53BP1 and Cyclin A.

Within 3 days, Fhit knockdown in HEK293 cells led to a

significant increase in the number of 53BP1 bodies in G1 phase

cells, defined as the Cyclin A-negative cells (Figure 6A and 6B).

Prolonged knockdown of Fhit in HEK293 cells, by transfecting

fresh FHIT siRNAs every 4 days for 2 weeks, led to an even

greater incidence of 53BP1 foci per G1 phase cell (Figure 6C). The

results suggest that Fhit-deficient cells continue to proliferate and

accumulate replication stress-induced DNA alterations.

In addition to the 53BP1-marked lesions, cells can acquire other

replication stress-induced chromosomal aberrations during mito-

sis. For example, replication stress can cause micronucleus

formation, due to failed segregation of chromosome fragments

broken at fragile sites during mitosis or due to nondisjunction of

chromosomes with incompletely replicated loci or unresolved

replication intermediates [34,35], events that result in large

deletions or aneuploidy, respectively. In Fhit-silenced HEK293

cells, we observed an ,3-fold increase in the percent of

micronucleated cells relative to control cells (Figure 6D and 6E),

confirming that replication stress caused chromosomal alterations.

To measure aneuploidy incidence, we analyzed metaphase spreads

from normal kidney cells established from Fhit+/+ and Fhit2/2

mice. At passage 8, nearly 30% of Fhit2/2 cells were aneuploid,

compared to fewer than 5% of the Fhit+/+ cells (Figure 6F). In

addition, Fhit2/2 cells exhibited a 2-fold increase in the number of

chromosome breaks/metaphase (Figure 6G). Taken together, the

results show that Fhit loss–induced replication stress causes DNA

lesions and chromosomal abnormalities following cell division in

the absence of DNA damage checkpoint activation.

Genomic alterations caused by Fhit loss expedite cell
immortalization

Because FHIT is an early target of allelic deletion in

preneoplasia [4,5,36] and loss of Fhit protein expression induces

replication stress, micronucleation and aneuploidy, we determined

if Fhit-deficiency contributes to the onset of genomic instability in

cells undergoing immortalization in vitro. Mouse embryo fibroblasts

(MEFs) were established from Fhit+/+ and Fhit2/2 embryos (3

embryos per mouse strain) and were immortalized using the 3T3

protocol. Fhit2/2 MEFs became immortalized and exhibited rapid

growth at earlier tissue subcultures (passage 12, 14, and 16)

compared to matching Fhit+/+ MEFs (passage 14, 20, and 20)

(Figure 7A). Fhit expression in Fhit+/+ MEFs decreased as cells

became immortalized (Figure 7B), and for the Fhit+/+ MEF cell

line showing rapid growth and immortalization by passage 14, a

corresponding early loss of Fhit expression occurred. Therefore,

loss of Fhit expression may be selected for as an essential step in

the process of immortalization.

We then assessed somatic copy number aberrations, defined as

DNA amplifications or deletions spanning more than 10 kb in size,

using genomic DNA isolated from Fhit+/+ and Fhit2/2 MEFs

grown in culture, pre- and post-senescence (at subcultures 3 and

25). Multiple copy number aberrations were detected in the pre-

and post-senescent Fhit2/2 MEFs, whereas only one was observed

in one Fhit+/+ MEF line (Figure 7C and Table S1). Somatic

aberrations in the Fhit2/2 MEFs occurred at 8 different genomic

loci, 6 of which corresponded with fragile sites previously mapped

in mouse fibroblasts [37] or lymphocytes [38] (Table S2), which

implies that the genomic changes were caused by replication stress,

and is consistent with reports that replication stress induces copy

number changes [39,40]. Across the 3 Fhit2/2 MEF lines

analyzed, 12 somatic aberrations occurred only in post-senescent

cells, suggesting clonal expansion of cells harboring these genomic

changes. Notably, 2 of the 3 Fhit2/2 MEF cell lines acquired allelic

gains within chromosome band 10D2, encompassing the murine

Mdm2 gene, an oncogene involved in cell transformation, and

Mdm2 gene amplification correlated with ,4-fold increase in

Mdm2 mRNA expression. These amplifications were likely

selected for during immortalization, as they were present only in

the cells that had escaped senescence.

independent experiments; statistical significance was determined using a 2-sided T-test. (E) Neutral comet assays in siRNA transfected HEK293 cells
treated with 2 mM hydroxyurea for 4 h. Box plots show quantification of Tail moments. P-values were determined using the Mann-Whitney rank sum
test. (F) Neutral comet assays in H1299 E1 and D1 cells with ponasterone A-induction treated with 2 mM hydroxyurea for 4 h. Box plots show
quantification of Tail moments. P-values were determined using the Mann-Whitney rank sum test.
doi:10.1371/journal.pgen.1003077.g002
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Figure 3. Loss of Fhit expression causes fork stalling. (A) siRNA transfected HEK293 cells were pulse-labeled with CldU for 30 min, washed and
pulse-labeled with IdU for 30 min. Representative indirect immunofluorescence images of labeled fibers are shown; bars, 10 mm. (B) Quantification of
fork velocity in HEK293 cells. Fork velocity was determined by measuring lengths (mm) of IdU-labeled fibers and converting to kbp using a conversion
factor of 1 mm = 2.59 kbp. Bars extending through boxplots indicate mean velocity, and bars contained within boxplots indicate median velocity.
Statistical significance was determined using a 2-sided Student’s T-test (n = 238 for siCtrl; n = 320 for siFHIT). (C) Representative images of sister forks
proceeding outward from a common origin in siRNA transfected HEK293 cells; bars, 10 mm. DNA fibers from siRNA transfected HEK293 cells were
prepared as in (A). (D) Scatter plots of distances traveled by left and right sister forks during pulse-labeling with IdU. The central area marked by red
lines represents sister forks with less than 25% length difference. The percentages of asymmetric sister forks are indicated at the upper left region of

Fhit Loss Initiates Genome Instability
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Copy number aberrations were also observed in genomic DNA

from Fhit2/2 weanling tail tissue (Table S3). Most Fhit2/2 tail

DNA aberrations did not overlap with those observed in MEF

cultures, suggesting that genomic instability is prevalent in Fhit2/2

tissue early during development and copy number aberrations are

selected during in vitro growth, depending on environment (eg, pre-

senescent, senescent and post-senescent cultures). Genome insta-

bility has previously been observed in p53- and Gadd45a-deficient

mice, where aneuploidy is detected in primary cells from multiple

tissues [41–43]. Unlike the chromosomal instability in p53- and

Gadd45a-deficient mouse cells, which exhibit aneuploidy due to

centrosome amplification and mitotic errors, Fhit-deficient mice

exhibit signs mostly of replication stress-induced DNA deletions

and gains. Based on these observations and the fact that the

genomic alterations begin in the knockout mouse tissue, we

propose that the deletions within FHIT loci observed in

preneoplastic human tissues in vivo initiate genomic instability

and accelerate the neoplastic process.

Discussion

Model for Fhit loss-induced genome instability
This study has shown that loss of Fhit expression promotes the

development of genomic instability. Fhit protein signals TK1

expression, and TK1 catalyzes the conversion of thymidine to

dTMP as part of the scavenger pathway. This reaction contributes

to dTTP pool production during S phase to support DNA

synthesis. Consequently, loss of Fhit expression indirectly impairs

replication fork progression, leading to fork stalling and DNA

double-strand breaks. In Fhit-deficient cells, replication defects fail

to activate the S or G2 checkpoints, and as cells complete mitosis,

chromosomal alterations occur and are propagated to daughter

cells. This process continues with each cell division cycle, and

chromosomal instability inevitably arises. Upon acquisition of

oncogenic mutations, selective pressures expedite cell transforma-

tion (see proposed model in Figure 7D).

Several alternative models have been proposed as common

mechanisms for the origin of genome instability, including

oxidative stress, telomere erosion, impaired DNA repair, and

chromosome segregation errors; however, these forms likely do not

contribute to the initiation of instability but rather to ongoing

instability as they are seen in more advanced lesions [44]. The

prevailing hypothesis for the origin of genome instability in

preneoplastic cells is that defects in DNA replication result in DNA

breaks and when incorrectly repaired, they produce chromosomal

changes [20]. Thus, it is important to define the molecular source

of replication stress that initiates genome instability. Oncogene

activation can cause replication stress, chromosomal instability

and promote tumorigenesis, and has been proposed as a

mechanistic basis of genome instability [2,44]. However, onco-

gene-induced replication stress is probably not the initiating event.

For example, oncogene activation is achieved through various

mechanisms that involve chromosome alterations, including

translocations that change expression of the oncogene, duplica-

tions that increase the oncogene copy number, point mutations

within the oncogene that increase its activity, deletions of a

negative regulator, or epigenetic changes that affect gene

expression. Also, because many oncogenes that induce senescence

require a second genetic ‘‘hit’’ to uncouple mitogenic signaling

from the senescence barrier [45], it seems probable that some

degree of genetic instability and heterogeneity must precede

oncogene activation.

There are two important distinctions in the Fhit-loss model that

make it a more likely mechanism for the origin of genome

instability. First, because of the inherent fragility at the FRA3B

locus, the FHIT gene has been called the ‘‘weakest link’’ in the

genome [46], making it a first target for inactivation in cells

undergoing transformation, and its deletion a strong candidate

initiator of genomic instability. Indeed, alterations at the FHIT/

FRA3B locus are occasionally detected in normal cells without

exposure to known inducing agent. These alterations can be

caused by normal metabolic processes or by exposure to thus far

undefined environmental stresses. The second important feature of

the Fhit loss-induced genomic instability model is that cells acquire

replication stress-induced chromosomal alterations without DNA

damage response activation, in contrast to observations in

oncogene-activated cells, possibly because the replication defects

caused by Fhit loss fall below the threshold level needed to fully

activate the S and G2 checkpoints. Likewise, aphidicolin induces

fragile site expression by slowing or stalling replication forks, yet

fragile sites are routinely detected in metaphase chromosomes,

indicating a failure of the S and G2 checkpoints to block mitotic

entry despite the presence of damaged loci. Furthermore, studies

have suggested that eukaryotic cells lack a checkpoint surveillance

mechanism to insure completion of DNA replication before

mitotic entry [47]. Thus, it is possible that DNA replication is

incomplete in Fhit-deficient cells because of a shortage in dTTP

pools, and as cells pass through mitosis, under-replicated

chromosomes either break or fail to properly segregate. In theory,

without DNA damage checkpoint activation, Fhit-deficient cells

could continue to proliferate for years, and over time accumulate

extensive genome alterations generating significant mutational

diversity and cell heterogeneity, as is the case with Fhit2/2 mice.

Indeed, Fhit2/2 mice develop normally and live long lives, making

Fhit inactivation an ideal target to initiate genome instability

without compromising fitness at the cellular and organism levels.

Thus, Fhit loss would provide the ‘‘soil’’ for the emergence of

preneoplastic clones under selective pressure. This is consistent

with the recent finding that clonal somatic chromosome anomalies

increase with age in the normal population [9,10] and is consistent

with the fact that cancer risk increases with age. It is also consistent

with the enhanced susceptibility of Fhit2/2 mice to development of

spontaneous tumors and their highly enhanced susceptibility to

carcinogen-induced tumors [48].

Fhit and the supply of dTTP
Mechanistically, the replication stress in Fhit-deficient cells was

caused by a decrease in dTTP pools: silencing Fhit expression led

to a moderate decrease in dTTP, a reduction sustained in stably

Fhit-silenced cells; thymidine supplementation rescued the repli-

cation defects and suppressed DSBs in Fhit-silenced cells. Notably,

there is a class of chromosome fragile sites, the folate-sensitive

fragile sites, that are unstable under conditions that cause

thymidylate depletion, including culturing in medium deficient

in thymidine or folate [49]. Thymidine supplementation rescues

the fragility of these sites. These findings independently establish

plots. (E) Fork asymmetry is calculated as the ratio of the longest IdU tract to the shortest for each pair of sister forks. P-value was determined using
the Mann-Whitney rank sum test. (F) DNA fiber analysis of fork velocity in Fhit+/+, Fhit2/2 and Fhit2/2 pRcCMV-FHIT-flag plasmid transfected mouse
kidney cells. Quantification and statistical analysis was performed as described in (B). (G) DNA fiber analysis of fork velocity in H1299 E1 and D1 cells
48 h after ponasterone A treatment. Quantification and statistical analysis was performed as described in (B).
doi:10.1371/journal.pgen.1003077.g003
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Figure 4. Fhit modulates dTTP pools to prevent DNA breaks. (A) Deoxyribonucleotide triphosphate (dNTP) levels in HEK293 cells 72 h after
Fhit knockdown. Bar graphs represent means of 4 independent experiments, and error bars denote the standard deviations. The P-values were
determined using a 2-sided T test; ns = not significant. (B) Correlation of relative Fhit expression and relative dTTP levels. siRNA transfected HEK293
cells were split into matching pairs, one for dNTP analysis and the other for western blot analysis of Fhit knockdown. Relative Fhit expression in Fhit
knockdown cells compared to control cells was determined by densitometry and normalized to GAPDH expression. Relative dTTP levels were defined
as dTTP concentration in siFHIT cells/dTTP concentration in siCtrl cells. (C) dNTP measurements in A549 cells with 7–9 week stable Fhit knockdown.
Bar graphs represent means of 7 independent experiments, and error bars denote the standard deviation. P-values were calculated as in (A). (D) Box
plots of Tail moments measured from neutral comet assays of HEK293 cells with Fhit knockdown, untreated or supplemented daily with 10 mM
thymidine for 48 h (siCtrl mock, n = 242; siCtrl+thymidine, n = 156; siFHIT mock, n = 193; siFHIT+thymidine, n = 115). Statistical significance was
determined using the Kruskal-Wallis rank sum test. (E) DNA fiber analysis of fork velocity in siRNA transfected HEK293 cells supplemented daily with
10 mM thymidine for 48 h. Statistical significance was determined using a 2-sided Student’s T-test (siCtrl mock, n = 136; siCtrl+thymidine, n = 152;
siFHIT mock, n = 155; siFHIT+thymidine, n = 153). (F) DNA fiber analysis of sister fork asymmetry in siRNA transfected HEK293 cells supplemented daily
with 10 mM thymidine for 48 h. Fork asymmetry and P-values were determined as in Figure 3E (siCtrl mock, n = 87; siCtrl+thymidine, n = 86; siFHIT
mock, n = 96; siFHIT+thymidine, n = 93). dT = thymidine 10 mM; ns = not significantly different.
doi:10.1371/journal.pgen.1003077.g004
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that an insufficient supply of dTTP can cause chromosome

instability at specific loci, and that the scavenger pathway, via TK1

activity, is a required source of dTTP to support DNA synthesis.

Interestingly, folate is an important nutrient that serves as a

cofactor for dTTP synthesis via activation of TYMS. Studies have

shown that folate-deficiency correlates with several types of cancer,

linking dTTP availability and tumorigenesis [50]. This is

consistent with our findings that loss of Fhit decreases dTTP

availability and promotes tumorigenesis.

dNTP pool depletion has been shown to affect DNA replication,

cause genome instability, and is likely involved in oncogenic

transformation [6]. Whereas oncogenes cause a dramatic decrease

in dNTP levels, Fhit loss causes only moderate dTTP reduction,

adequate to negatively affect DNA synthesis without blocking cell

cycle progression. It is also relevant that deficiency of BLM

helicase, in the highly penetrant autosomal recessive cancer-

causing syndrome, is associated with a strong cytidine deaminase

defect, leading to pyrimidine pool imbalance, specifically a 50%

increase in the dCTP pool and only a 17% decrease in dTTP

levels [51]. In BLM-deficient cells, thymidine supplementation

leads to reduction of sister chromatid exchange frequency and is

sufficient for full restoration of replication fork velocity. Fhit loss

causes a more significant reduction of dTTP than in BLM-

syndrome cells, ranging from a 25–50% decrease. It may be

puzzling that thymidine supplementation can restore the supply of

dTTP in Fhit-deficient cells, since TK1, down-modulated by Fhit-

deficiency, is needed to convert thymidine to dTTP. Clearly TK1

is not completely absent in Fhit-silenced cells, since BrdU, CldU

and IdU are also phosphorylated by TK1 prior to being

incorporated into newly synthesized DNA. It is possible that by

providing a continuous supply of thymidine for 48 h, even with

low TK1 expression, Fhit-deficient cells accumulate a sufficient

supply of dTTP leading up to S phase to support DNA synthesis.

TK1 is regulated in a cell cycle-dependent manner, with

minimal expression during most of G1 phase; as cells prepare to

start S phase, TK1 expression is dramatically up-regulated to

contribute to dTTP biosynthesis [29]. Control of TK1 expression

occurs at the transcriptional and the translation level [52–54].

TK1 protein expression remains high throughout S and G2 phase

to facilitate sufficient dTTP production and as cells near the end of

mitosis the enzyme is rapidly degraded to prevent overproduction

of dTTP [55]. Accordingly, positive regulation of TK1 by Fhit

may either occur through activation of mRNA transcription,

protein translation or by restricting TK1 protein degradation to

mitosis. Given that Fhit-deficient cells have decreased TK1

expression, it is probable that Fhit-deficient cells are reliant on

TYMS, the de novo pathway, for synthesis of dTTP. This finding

has clinical relevance as many chemotherapeutic agents, including

5-fluorouracil, target TYMS activity. Fhit expression in cancer

cells may therefore be a predictor of cancer cell resistance to 5-

Figure 5. Fhit activates TK1 expression. (A) Western blot analysis of TK1 and TYMS expression in siRNA transfected HEK293 cells. Western blots
were performed on 5 independent experiments, and a representative blot is shown. (B) Western blot analysis of TK1 expression in siRNA transfected
HEK293 cells with or with exogenous Fhit overexpression. pRcCMV expression plasmid carrying FHIT cDNA was co-transfected with FHIT siRNAs to
achieve exogenous Fhit overexpression. A representative blot is shown. (C) Western blot analysis of TK1 expression in Fhit+/+ and Fhit2/2 mouse
kidney epithelial cells. A representative blot is shown. (D) Western blot analysis of TK1 expression in A549 cells with Fhit stably knocked down for 7–9
weeks. A representative blot is shown.
doi:10.1371/journal.pgen.1003077.g005
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Figure 6. Loss of Fhit causes replication stress-induced chromosomal instability. (A) Cyclin A and 53BP1 immunofluorescence after Fhit
knockdown in HEK293 cells. Representative images are shown; bars, 20 mm. (B and C) Histograms of 53BP1 nuclear bodies/G1 phase cell 3 days
following siRNA transfection (B) or 14 days after siRNA transfection with fresh siRNAs transfected every 4 days (C). G1 phase cells were defined as cells
negative for Cyclin A staining. Mann-Whitney rank sum test was used to determine P-values. (D) Representative images of DAPI-stained nuclei in siCtrl
or siFHIT cells. Arrow marks a micronucleus; bars, 5 mm. (E) Quantification of micronucleated cells 3 days after siRNA transfections. Bar graphs
represent the means, and error bars mark the standard deviations. P-value determined using a 2-sided T-test. (F) Percentage of aneuploid or
tetraploid kidney cells established from Fhit+/+ or Fhit2/2 mouse kidney epithelial cells. Cells were sub-cultured 8 times and metaphase chromosomes
were prepared and counted (n = 37 for Fhit+/+; n = 40 for Fhit2/2 metaphases). (G) Quantification of the number of breaks/metaphase for the mouse
kidney cells described in (F).
doi:10.1371/journal.pgen.1003077.g006
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fluorouracil, and administration of 5-fluorouracil to patients with

Fhit-negative cancers may improve survival.

FHIT deletion as a cancer-driving mutation
When common fragile sites were discovered in the early ‘80 s, it

was noted that many of them mapped to loci that are non-

randomly altered in cancers [56]. Thus it was thought that cloning

of fragile sites would lead to discovery of genes that contribute to

cancer development through genomic alteration. However, after

the first fragile site gene was cloned and characterized as a cancer

suppressor [57], it was suggested that FHIT and other fragile genes

are altered in cancers due to their exquisite stress sensitivity rather

than to a selective advantage imparted by loss of expression of

fragile gene products [58]. An interesting twist to the story of

fragile sites and cancer has been provided by the demonstration

that the location of fragile sites in lymphoblasts and fibroblasts is

different and dependent on the tissue specific, epigenetic

determination of positions of DNA replication origins [59–61];

such tissue specificity of chromosome locations of common fragile

sites had actually been observed much earlier for rodent and

Figure 7. Genomic instability in Fhit-deficient cells correlates with onset of rapid proliferation and immortalization. (A) Analysis of
Fhit+/+ and Fhit2/2 3T3 MEF cell lines (n = 3, cell lines established from 3 embryos for each mouse strain). Arrows mark the passage numbers when
MEFs became immortalized. (B) Western blot of Fhit+/+ MEFs for Fhit and GAPDH expression. Immunoblots were performed on lysates obtained at the
indicated passage number. (C) Summary of copy number aberrations (CNAs) in pre- and post-senescence MEFs from Fhit+/+ and Fhit2/2 mice. (D) The
Fhit loss–induced genome instability model. Deletions in FHIT alleles occur due to FRA3B fragility causing loss of Fhit protein expression. Fhit loss
causes dTTP pool insufficiency triggering replication stress, followed by stress-induced chromosomal instability. Chromosomal instability increases
the likelihood of activating mutations in oncogenes and/or inactivating mutations in tumor suppressors, which are then selected for, facilitating cell
transformation.
doi:10.1371/journal.pgen.1003077.g007
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human tissues [62,63]. Thus it is possible that the FHIT locus is

not very fragile in epithelial cells, from which most cancers with

FHIT deletions derive. If the FRA3B/FHIT locus is not the most

fragile region in epithelial cells, then the fact that loss of

heterozygosity at the FHIT gene is the most frequent alteration

in cancer cells would suggest that loss of Fhit expression was a

selected event in clonally expanded cells.

Our findings strongly support the view that loss of Fhit provides

a selective advantage in sporadic cancers, directly or indirectly,

because Fhit-deficient cells, which are genomically unstable, have

a greater likelihood of acquiring cancer-promoting mutations. The

relevance of Fhit loss during the neoplastic process has been

inferred from the .50% frequency of Fhit loss in epithelial cancers

[46], and from its tumor suppressor activity. The demonstration

that Fhit2/2 MEFs rapidly become immortalized and begin to

acquire oncogenic DNA copy number aberrations, provide direct

evidence of a genome ‘caretaker’ function for Fhit that is lost early

in tumorigenesis. The development of sebaceous gland tumors in

Fhit-deficient mice [64], a condition analogous to the sebaceous

tumors of Muir-Torre syndrome in mismatch repair-deficient mice

and humans [65,66], and the observation that there are two forms

of sebaceous tumors in humans, one form exhibiting mismatch

repair gene deficiency and one exhibiting Fhit-deficiency [67,68],

can now be understood as a classic illustration of the caretaker

function of Fhit. We conclude that Fhit loss is a common

underlying initiator of genome instability in preneoplasia and a

driver of the transformation process.

Materials and Methods

Ethics statement
The experiments involving isolation of mouse tissues for DNA

analysis and for establishment of cell lines were done according to

a protocol approved by the Ohio State University Institutional

Animal Care and Use Committee (IACUC).

Cell lines and reagents
HEK293 cells and Fhit+/+ and Fhit2/2 mouse kidney cells from

C57Bl/B6 background mice, were cultured in MEM with 10%

FBS and 100 mg/ml gentamicin. Fhit-deficient H1299 lung

carcinoma cells were previously transfected with an inducible

FHIT cDNA and tightly regulated inducible clones were isolated,

including the D1 clone; empty vector control clones, including E1

cells, were also isolated [69]. For experiments using E1 and D1

cells, Fhit expression was induced by addition of ponasterone A

(ponA) to growth medium (MEM, 10% FBS, gentamicin, zeocin

and geneticin) for 48 h. A549 lung carcinoma cells with

integration of a lentivirus containing shCtrl or shFHIT shRNAs

were cultured in DMEM with 10% FBS, 100 mg/ml gentamicin

and 1 mg/ml puromycin. For certain experiments, 2 mM

hydroxyurea (Sigma) or 10 mM thymidine (Sigma) was added to

cells for times indicated in text.

siRNA transfections
HEK293 cells (60–80% confluent) were transfected with

siRNAs targeting human FHIT or a non-specific control siRNA

(Santa Cruz Biotechnology) using the manufacturer’s recom-

mended protocol. For each 60 mm2 dish, 1 mg of siRNAs and 5 ml

of Lipofectamine 2000 (Invitrogen) were diluted in Opti-MEM

(Gibco) and incubated for 30 min. Cells were washed in Opti-

MEM, overlaid with the siRNA/Lipofectamine solution and

incubated overnight at 37uC. Verification of siRNA knockdown of

Fhit expression was performed 48–96 h later by Western blot.

Comet assays
Neutral comet assays were performed using the CometAssay kit

(Trevigen) and recommended protocol. Images were acquired

with a Zeiss Axioskop 40 fluorescent microscope mounted with an

AxioCam HRc camera, and using an A-Plan 106/0.25 objective

lens. Images were converted to Bitmap files using Axiovision 3.1

software, and comet tail moments were scored using Comet Score

1.5 (TriTek, autocomet.com).

Immunofluorescence
Cells were grown on 8-chamber slides (Lab-Tek II), fixed with

4% paraformaldehyde, permeabilized with ice-cold 70% ethanol

and blocked in 1% BSA. Primary antisera, rabbit anti-cH2AX,

1:200 (Cell Signaling Technologies); rabbit anti-53BP1, 1:200

(Cell Signaling Technologies); rabbit anti-pATR, 1:100 (Cell

Signaling Technologies); mouse anti-Cyclin A, 1:100 (Santa Cruz

Biotechnology); mouse anti-BrdU, 1:100 (Millipore), were added

and cells incubated with antisera overnight at 4uC. Slides were

washed 3610 min in PBS, and secondary antisera (AlexaFluor

488 or 594 - conjugated donkey anti-rabbit IgG or anti-mouse

IgG, 1:500, Molecular Probes) were added and incubated for 1 h

at room temperature. Slides were washed and coverslips mounted

using Fluoro-Gel II – with Dapi (Electron Microscope Sciences).

Images were acquired at room temperature with an Olympus

FV1000 spectral confocal microscope, a UPLFLN 40XO objective

lens, NA 1.30, and with Olympus FLOWVIEW acquisition

software. Brightness and contrast were adjusted equally for all

images using Adobe Photoshop, and images were analyzed using

Image J software.

Western blot analysis
Cells were lysed with RIPA buffer (Thermo Scientific)

supplemented with Halt Protease Cocktail Inhibitors (Thermo

Scientific). Proteins were separated by SDS gel electrophoresis,

transferred to nylon membranes and immunoblotted with antisera

against human Fhit [70], GAPDH (Calbiochem), human TK1

(AbD serotec), mouse TK1 (Santa Cruz Biotechnology), or

phospho-Chk1 (Ser 317) (Cell Signaling).

Flow cytometry
siRNA transfected HEK293 cells were prepared for flow

cytometric analysis of DNA content 72 h after transfection. Cells

were harvested, fixed in ice-cold 70% ethanol at 4uC overnight.

Cells were stained with propidium iodide solution (0.1 mg/ml

propidium iodide, 0.1% Triton X-100, 0.2 mg/ml DNase-free

RNase A) for 30 min and analyzed using a BD FACS Calibur.

DNA fiber analysis
Cells were pulsed with 25 mM CldU for 30 min, washed, and

pulsed with 250 mM IdU for 30 min. DNA fibers were prepared as

described [24]. Cells were resuspended in PBS at 106 cells/ml, 2 ml

were spotted on glass sides and lysed with 5 ml of lysis buffer (0.5%

SDS, 200 mM Tris-HCl, pH 7.4, 50 mM EDTA) for 10 min.

Slides were tilted 15u to stretch DNA fibers by gravitational flow.

Fibers were fixed with methanol/acetic acid (3:1), denatured with

2.5 N HCl for 1 h, and blocked with 1% BSA. Rat anti-BrdU

(1:50, AbD Serotec) was used to detect CldU, and mouse anti-

BrdU (1:20, Becton Dickinson) to detect IdU. Primary antibodies

were fixed with 4% paraformaldehyde and detected with

AlexaFluor 594 – conjugated donkey anti-rat IgG (1:250,

Molecular Probes) and AlexaFluor 488 – conjugated donkey

anti-mouse IgG (1:250, Molecular Probes). Coverslips were

mounted using Fluoro-Gel II – with Dapi (Electron Microscope
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Sciences). Images were acquired at room temperature using an

Olympus FV1000 spectral confocal microscope and with a

PLAPON 60XO objective lens, NA 1.42. Fiber lengths were

measured using Olympus FLUOVIEW software, and velocities

were estimated using a conversion factor of 1 mM = 2.59 kbp.

Brightness and contrast were adjusted equally for all images using

Adobe Photoshop.

Preparation of metaphase spreads
Metaphase chromosomes were prepared from Fhit+/+ or Fhit2/

2 mouse kidney cells at the 8th subculture. Cells were treated with

colcemid (0.1 mg/ml) for 1 h to block cells in mitosis. Cells were

trypsinized, pelleted and resuspended in 0.075 M KCl hypotonic

solution for 10 min at 37uC. Cells were fixed in methanol/acetic

acid (3:1), dropped on glass slides and allowed to air dry.

Chromosomes were analyzed using a Zeiss Axioskop Widefield

LM at 1006magnification.

dNTP pool measurements
HEK293 cells transfected with siFHIT or siCtrl were cultured in

10 cm2 dishes for 72 h and dNTPs were extracted as previously

described [71]. Exponentially growing cells were washed twice with

ice-cold PBS, covered in ice-cold methanol and incubated at 220uC
for 1–3 h. An additional plate of exponentially growing cells was

used to calculate the total cell number per extract. Cell extracts were

collected and incubated in boiling water for 3 min, and separated

from cell debris by centrifugation at 17,0006g, for 10 min at 4uC.

dNTP extracts were dried using a Speed vacuum. dNTP pools were

assayed using the enzymatic method. For each dNTP to be

measured an oligonucleotide template was used [72]. The same

primer was used for all four assays. The reaction mixture was mixed

with either the dNTP extracts or known standards used to construct

a standard curve, and DNA polymerization was carried out at 37uC
for 45 min. Reaction mixtures were spotted on DE81 chromatog-

raphy paper, dried and washed in 5% Na2HPO4, followed by water,

and finally in 95% ethanol. Samples were counted using a liquid

scintillation counter. dNTP concentrations were determined by

reference to the standard curve.

3T3 cell culture and analysis of cell growth kinetics
Mouse embryonic fibroblasts were isolated from individual 13-

day embryos of Fhit+/+ and Fhit2/2 pregnant females and cultured

in Dulbecco Modified Eagle’s Medium with 10% fetal bovine serum

and 100 mg/ml gentamicin. Primary MEFs were subcultured by

trypsinizing and replating 36105 cells per 6 cm2 dish every three

days (3T3 protocol). The time of immortalization was defined

retrospectively as the first tissue culture passage after which the cell

population increased consistently with each subculture.

Copy number variation analysis
Genomic DNA was isolated from Fhit+/+ and Fhit2/2 MEFs at

tissue culture passages 3 and 25 (n = 3 lines, 1 from each of 3 embryos,

for each pair at each passage) using DNeasy Blood and Tissue

(Qiagen). Genomic DNA was also isolated from Fhit+/+ and Fhit2/2

weanling tail DNA. Genomic DNA samples were analyzed for copy

number aberrations at Jackson Labs using the Affymetrix Mouse

Diversity Genotype Array. Fhit+/+ tail DNA served as reference DNA.

Statistical analysis
For all boxplots, bottom and top of the box correspond to the

25th and 75th percentiles, respectively, and whiskers represent data

points within 1.56IQR (interquartile range). The gray line

extending through the boxplot indicates the mean value, and the

black line contained within the boxplot represents the median

value. Two-sided T-tests were used to determine significance for

data with a normal distribution and equal variances. Nonpara-

metric data was analyzed using the Mann-Whitney rank sum test

for single comparisons or using the Kruskal-Wallis test for multiple

comparisons. Groups with P-values less than an alpha of 0.05 were

considered significantly different.

Supporting Information

Figure S1 Western blot analysis of Fhit expression in HEK293

and H1299 cells. (A) siRNA knockdown of Fhit protein expression

48 h after transfection. (B) Ponasterone A – induction of Fhit

expression in H1299 D1 cells. Cells were treated with ponasterone

A, final concentration of 5 mM, and incubated for 3 days. D1

clones contain the ponasterone A – inducible FHIT cDNA

expression plasmids. E1 clones contain the empty vector controls.

ponA = ponasterone A, 5 mM.

(TIF)

Figure S2 DNA breaks occur during S phase in Fhit deficient

cells. (A) Immunofluorescence of Cyclin A and cH2AX in H1299 E1

and D1 cells 48 h after ponA addition. Representative images are

shown. (B) Quantification of cH2AX-only or cH2AX and Cyclin A-

positive E1 and D1 cells. (C) Immunofluorescence of BrdU-

incorporation and cH2AX in E1 and D1 cells 48 h after ponA

addition. BrdU was added for 15 min before fixing. Representative

images are shown. (D) Quantification of cH2AX-only or cH2AX

and BrdU-positive E1 and D1 cells. (E) Immunofluorescence of

cH2AX in E1 cells 6 h after treatment with roscovitine or mock

treatment. (F) Quantification of cH2AX-positive E1 and D1 cells.

(TIF)

Figure S3 Low hydroxyurea concentration reduces fork speed

and causes DNA breaks. (A) Illustration of experimental design.

PonA-treated H1299 E1 and D1 cells were cultured in the presence

of hydroxyurea (50 uM) for 48 h, then sequentially pulsed with

CldU and IdU. (B) DNA fiber analysis of fork velocity in H1299 E1

and D1 cells cultured as in (A). (C) Comet assay analysis of DNA

breaks in H1299 E1 and D1 cells cultured as in (A).

(TIF)

Figure S4 Thymidine supplementation restores dTTP pools in

Fhit-silenced cells. dNTP pools in siRNA transfected HEK293 cells

supplemented daily with thymidine 10 mM for 48 h. Bar graphs

illustrate the means of 1 experiment performed in quadruplicate.

Error bars show the standard deviations. dT = thymidine.

(TIF)

Figure S5 Fhit knockdown in HEK293 does not activate the

DNA damage checkpoint. (A) Western blots of phospho-Chk1

(Ser317), Fhit, and GAPDH expression in HEK293 cells following

siRNA transfections. (B) Cell cycle distributions of HEK293 cells 4

days after siRNA transfections. (C) Flow cytometric analysis of

DNA content in HEK293 cells 4 days after siRNA transfections.

(TIF)

Table S1 Complete list of copy number aberrations in Fhit+/+
and Fhit2/2 MEFs. List of copy number aberrations (gains and

losses) detected in genomes of MEF cell lines from Fhit+/+ or

Fhit2/2 mice at passage 3 or 25. MEFs were established from 3

different embryos for each genotype. NA, not applicable as no

CNAs were detected in the DNA of these MEF cell lines.

(DOCX)

Table S2 CNAs occur predominantly at fragile loci. List of the

loci where CNAs were detected in Fhit2/2 MEFs. Many of these

loci were previously shown to be fragile in MEFs or in mouse
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lymphocytes. Medium expression and high expression refer to the

frequency of breaks detected at a given locus following mild

replication stress induced by aphidicolin. Loci with high expression

develop breaks at a high frequency; loci with medium expression

develop breaks but at a lower frequency than the high expression

loci; and non-fragile loci rarely develop breaks.

(DOCX)

Table S3 Copy number aberrations in Fhit2/2 tail tissue. List

of copy number aberrations (all losses) in DNA isolated from

mouse tail tissue. Four of the deleted loci were also observed in

DNA of Fhit2/2 MEF cell lines, whereas the remaining 12

deleted loci were unique to the tail tissue.

(DOCX)
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