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Abstract

Onset detection of P-wave in seismic signals is of vital importance to seismologists because

it is not only crucial to the development of early warning systems but it also aids in estimating

the seismic source parameters. All the existing P-wave onset detection methods are based

on a combination of statistical signal processing and time-series modeling ideas. However,

these methods do not adequately accommodate some advanced ideas that exist in fault

detection literature, especially those based on predictive analytics. When combined with a

time-frequency (t-f) / temporal-spectral localization method, the effectiveness of such meth-

ods is enhanced significantly. This work proposes a novel real-time automatic P-wave

detector and picker in the prediction framework with a time-frequency localization feature.

The proposed approach brings a diverse set of capabilities in accurately detecting the P-

wave onset, especially in low signal-to-noise ratio (SNR) conditions that all the existing

methods fail to attain. The core idea is to monitor the difference in squared magnitudes of

one-step-ahead predictions and measurements in the time-frequency bands with a statisti-

cally determined threshold. The proposed framework essentially accommodates any suit-

able prediction methodology and time-frequency transformation. We demonstrate the

proposed framework by deploying auto-regressive integrated moving average (ARIMA)

models for predictions and the well-known maximal overlap discrete wavelet packet trans-

form (MODWPT) for the t-f projection of measurements. The ability and efficacy of the pro-

posed method, especially in detecting P-waves embedded in low SNR measurements, is

illustrated on a synthetic data set and 200 real-time data sets spanning four different geo-

graphical regions. A comparison with three prominently used detectors, namely, STA/LTA,

AIC, and DWT-AIC, shows improved detection rate for low SNR events, better accuracy of

detection and picking, decreased false alarm rate, and robustness to outliers in data. Specif-

ically, the proposed method yields a detection rate of 89% and a false alarm rate of 11.11%,

which are significantly better than those of existing methods.
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Introduction

Accurate detection and P-wave picking is the most crucial step in developing early warning

systems (EWS). Naturally, this topic has been of great interest to seismologists with the effect

that there exists a vast amount of literature spanning a history of six decades [1–6]. Among the

repertoire of existing methods, only a few have been prominently used [2, 7] owing to their

simplicity and reasonable success. In principle, the requirements of any detector/picker are:

(i) accuracy of detection, (ii) low false alarm rate, (iii) robustness to outliers, (iv) ability to

detect in low-quality seismograms, (v) ability to handle missing data and finally (vi) ease of

implementation or simplicity. None of the existing methods or any prospective method can be

expected to meet all the stated requirements since they are conflicting. For instance, one may

have to sacrifice simplicity for accuracy and robustness for precision, especially under low sig-

nal-to-noise ratio (SNR) conditions. Furthermore, any method is expected to take into

account, to the best possible extent, additional process and measurement related aspects such

as (i) weak and emergent nature of the wave, (ii) the form of P-wave varies with the source

and geographical location, (iii) masking of the P-wave by natural or human-made noise and,

(iv) the influence of instrument bandwidth, noise, dispersion, etc., on the recorded signal

(measurement). It may be possible to devise a method that can cater to P-waves of different

strengths, varying noise conditions, and geographical regions; however, the method may have

to be tailored for a specific instrument. The primary motivation for this work is that existing

methods are not necessarily effective under low SNR conditions, as we argue through a critical

review of the prevailing literature below while also offering some useful perspectives. More-

over, there exists a rich literature on fault detection techniques, especially those that are based

on predictive models, for engineering systems [8] that can be potentially tailored for enhanced

P-wave onset detection. This path has been hardly explored in the seismic data analysis litera-

ture. We present, in this article, a new predictive framework with time-frequency localization

capability for P-wave detection by fusing model-based fault detection techniques in process

engineering and projection-based methods for signal analysis.

The proposed framework is not necessarily limited to the detection of seismic events but is

rather generic in that it can be used for fault detection in other domains as well. The scope of

this presentation is confined to single-channel seismic signals. A positive offshoot of the pro-

posed framework is that it facilitates P-wave reconstruction once it has been detected. We has-

ten to add that this is an idea at its nascent stage and requires sufficient development and

validation that is outside the scope of this work. We envisage two potential benefits of a fully

developed P-wave reconstruction algorithm. Firstly, the reconstructed or the estimated (fil-

tered) P-wave can then be used for building a library of mathematical models for P-wave. The

developed empirical P -wave model can be used for detecting the onset using Kalman filters or

Bayesian methods, wherein a few of the hidden variables (or the states) correspond to the

dynamics of P-wave. The reconstructed P-wave can also be used in what is known as scenario

matching, where the incoming P-wave can be matched with the dictionary of historical recon-

structed P-waves to estimate the source parameters without using S-wave information. These

are exploratory ideas that constitute topics for future studies. We return to a description of the

salient features of the proposed predictive framework in the discussion to follow.

The core idea of the proposed framework is to monitor the difference of squared absolute

magnitude between the data and one-step-ahead predictions in the t-f domain with the aid of

a data-driven threshold. Working in a prediction framework allows the user to highlight the

event even under low SNR conditions, while the t-f tool offers localization in frequency bands

over desired time intervals. The localization in the t-f plane can be thought of as a zoom-in fea-

ture, which enables the user to zoom into the frequency bands of interest, thereby improving
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the SNR significantly since the discarded frequency bands carry away significant amounts of

noise. The primary advantages of this work over the existing t-f methods are that it (i) is com-

mensurate with the noise characteristics resulting in minimal sensitivity to outliers or robust
detection, (ii) offers a more flexible frequency band selection, by decomposing both lower and

higher frequencies in each level, resulting in accurate detection, and (iii) it allows the user to

discard the noise in undesired t-f bands resulting in improved SNR. An important remark on

the prevalent definition of SNR is in order here. However, it is a conservative metric and serves

well for time-domain methods or those that work with all frequency bands. Where time-fre-

quency localization-based methods are concerned, a band-limited SNR, defined as the ratio of

the energy of t-f coefficients of the signal to that of the t-f coefficients of noise in the desired

frequency band, is better suited for understanding their effectiveness. By virtue of its defini-

tion, the band-limited SNR can be high even as the standard SNR is very low. This aspect

essentially explains why t-f localization methods can be superior to pure time- or frequency-

domain methods.

The proposed framework is demonstrated by deploying auto-regressive integrated moving

average (ARIMA) models for predictions and maximal overlap discrete wavelet packet trans-

form (MODWPT) for the t-f decomposition of data on a toy example and 200 real-time seis-

mic datasets. MODWPT provides two-sided decomposition making it superior to the other t-f

localization techniques. A comparative analysis with STA/LTA, AIC, and WPT-AIC methods

is presented to demonstrate the superiority of the proposed method. Preliminary ideas of the

specific methodology being taken up were presented at a conference [9], where we demon-

strated its applicability without alluding to any generic framework or the estimation of P-wave

using the reconstructed signal. Moreover, [9] does not prescribe a method for t-f band selec-

tion and excludes any comparative analysis with the existing methods for different datasets

with varying SNR scenarios.

The rest of this article is organized as follows. We first review the existing literature on

detection and picking of P-wave onset. We then describe the proposed framework, the under-

lying methodology, and engage in a brief discussion on the crucial user-specified parameters

that determine the effectiveness of the overall algorithm. Subsequently, we take up a case study

involving a synthetic process to demonstrate the proposed framework. This is followed by an

extensive application of the method to P-wave detection in 200 data sets from different stations

that are characterized by a range of SNRs and earthquake magnitudes. The article concludes

with a reflective summary of the work and directions for future studies.

Literature review

Most of the existing detector / pickers are based on tracking the abrupt changes in the signal

characteristics, such as amplitude, energy, frequency, higher-order statistics, etc, either in orig-

inal domain or the transformed domain on the arrival of seismic event [1–4, 10–14]. Among

these techniques, STA / LTA (short-term average / long-term average) [2] and its variants [15,

16] are widely used for the ease of computation and online implementation. The working prin-

ciple of STA/LTA methods is based on comparing the ratio of energies in a short and long win-

dow with a threshold. These methods result in a high false alarm rate because of the way they

differentiate noise from the signal. This is an inherent drawback to all the time-domain tech-

niques due to ignorance of P-wave frequency content. Moreover, since only time properties

are used, these methods are sensitive to outliers. The inherent limitations of time-domain

methods inspired the development of a handful of frequency-domain methods, where fre-

quency or energy is used as a feature to detect the P-wave onset [1, 3, 12]. However, these

methods did not receive wide attention in practice because they use the entire frequency range

PLOS ONE Fusing predictive analytics and time-frequency transforms for detection of P-waves

PLOS ONE | https://doi.org/10.1371/journal.pone.0250008 April 22, 2021 3 / 24

https://doi.org/10.1371/journal.pone.0250008


(0 to Nyquist frequency), thus not providing effectively any specific advantage over their time-

domain counterparts. The true benefit is realized by only combining the merits of working in

both domains. Thus, researchers developed time-frequency detectors taking into account the

time properties and frequency information of the seismic signal. Features in mixed-domain,

especially using time-frequency (t-f) tools such as continuous and discrete wavelet transform

(CWT, DWT) [13, 14], short-time Fourier transform (STFT) [5] and empirical mode decom-

position (EMD) [6], have been widely used in this regard. The generic idea underlying these

methods involves projecting the data into a t-f (or time-scale) domain and search for the fea-

ture either in the mixed-domain or in the reconstructed signal. Recent advancements in these

methods combine the benefits of time-domain methods with the t-f tools [7, 17, 18] to improve

the detection rate for low SNR seismic signals. Irrespective of the way in which the t-f tools

have been used in the seismic literature, their use has only involved decomposing the lower fre-

quency content (approximations) at each scale, thereby limiting the localization to lower fre-

quency ranges. This one-sided decomposition may not always contain the P-wave

information.

Early 1990s witnessed the development of pattern-based methods to detect the weak events

embedded in noise [19–22]. These methods compare the similarity between the earthquake

signal and the event pattern (template). [23] proposed a method to detect local events embed-

ded in locally stationary background noise. Most of the pattern-based methods either use a

fixed template of P-wave or assume that the signal under consideration exhibit specific fea-

tures. Moreover, various other factors, such as complicated source mechanisms and the depen-

dency of P-wave frequency on source-station location, limit the applicability of these detectors

to exceptional situations such as aftershocks and repeating sources.

In the recent years, detectors based on machine learning / deep learning (ML/DL) have

been proposed [24, 25]. The method of [24] delivers probabilities associated with the existence

of an earthquake event and two different seismic phases for each time point by using encoders

that intrinsically capture the temporal dependencies in seismic data. The decoders consist of

carefully designed set of deep learning network models comprising tens of layers and about

372000 tunable parameters for detecting and picking the seismic phase arrivals. The method

proposed by [25] utilizes capsule neural network (CapsNet) to pick the P-wave arrival. The

CapsNet consists of three main layers for classifying the data as noise and earthquake signal,

followed by the extraction of P-wave arrival time. In both the works, the trained complex mod-

els are shown to result in highly accurate detection and picking performance; however, the

approaches are not only data extensive (in the sense that huge amounts of data are required to

train the models) but also involves the design of a highly complex model architecture. Finally,

despite their high levels of complexity, the construct of these models may result in an unac-

ceptable level of false alarm rates. A remedy suggested by [24] is to explicitly incorporate the

spectral features of seismic signals.

It is evident that the existing P-wave onset detection literature can be classified in a few dif-

ferent ways depending on the viewpoints taken. A few useful perspectives are obtained by

choosing to classify the literature based on the approach adopted, namely, (i) feature-based,

(ii) pattern recognition-based, and (iii) model-based methods. The bulk of existing detection

methods are feature-based, while the pattern-based and model-based approaches are seen only

in a handful of methods. Regardless of the approach taken, the implementation can be directly

on the raw data (time-domain), or in the transform domain (usually frequency domain), or in

the mixed (e.g., time-frequency) domain. An advantage of working in the mixed-domain is

that the signal characteristics can be captured simultaneously in a time interval and frequency

band. Consequently, because the seismic signal is a multi-scale (each scale being associated

with a frequency band) signal, P-wave is better highlighted in the mixed-domain compared to
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the time-domain signal, especially for low SNR conditions. Moreover, since signal features are

concentrated in a relatively smaller region (lower frequency ranges), the undesired noise in the

higher frequency ranges can be ignored, resulting in improved detection. It is apparent, there-

fore, that time-domain implementations are the most widely used, followed by relatively more

recent works in the mixed-domain [13, 17] while transform-domain implementations have

received very little attention. Within the class of mixed-domain implementations, there exist a

subset of methods that work with projections (on to a chosen set of basis functions or atoms

such as wavelets) or coefficients, while the remaining subset uses reconstructed or filtered sig-

nals, where the particular transform is used essentially as a filter to select known components

of the seismic measurements. A significant advantage of projection-based approaches over the

reconstruction-based approaches is that the desired features in the signal are highly localized

in the projection-domain as compared to the time-domain (reconstructed signal). Moreover,

projection coefficients are not as strongly correlated as the reconstructed signal resulting in

the comparatively sparse representation in the projection-domain.

Model-based methods offer the privilege of taking a predictive approach to the detection

problem, which is not present in model-free methods. These approaches have been extensively

used in process engineering, especially for fault detection [8], ideas from which, however,

remain to be fully exploited in seismic data analysis. A handful of methods, widely known as

AR-AIC pickers, appeared in the late 1980s and 1990s built time-series models and tracked the

associated Akaike-Information criterion (AIC), [26–28]. AR-AIC pickers outperform the

STA/LTA detectors; however, these methods assume that noise and event are locally stationary

and do not provide proper justification for using AR models. Furthermore, it may not be tech-

nically appropriate to model P-wave as a stochastic process. In the aforementioned works, the

general tendency is to examine the AIC and not the predictions, thereby not truly leveraging

the benefits of a model-based approach. A significant benefit of working with predictive

approaches is that the measurements are decomposed into a predictable component and a pre-

diction error (what is unexplained by the model). The first consequence of this decomposition

is that the prediction error has a lower variance than that of the measurement—the extent to

which it is lower depends on the predictable component. The higher the strength of the pre-

dictable component in the measurement, the lower is the variance of prediction error. Sec-

ondly, any feature that is not contained in the historical record will appear in the prediction

error along with the unpredictable portion of the measurement. It is relatively easier to detect

the “new” signals in the prediction errors than in the original measurement because the signal-

to-noise ratio is enhanced significantly in the prediction error domain. Thus, a predictive

approach is naturally better positioned in handling low SNR measurements than the methods

that are not in the predictive framework. Needless to say, the goodness of a prediction-based

method depends on the model quality. To this end, the authors of this work, in a separate

study, have developed a systematic methodology for building statistically appropriate time-

series models for seismic noise [29]. This work essentially builds on the models developed and

exploits the advantages of a model-predictive framework, especially for handling low SNR

situations.

Proposed framework

This section presents the details of the proposed predictive framework for accurate detection

and picking of P-wave in the seismic signal using the vertical channel data. The proposed

framework essentially consists of two parts, as depicted in Fig 1, one that results in accurate

detection, and the other responsible for the accurate picking of P-wave. The predictive models

are developed in time-domain while the detection is carried out in the t-f domain with the aid
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of a t-f transformation tool. The principle underlying detection using the proposed method is

as follows. For a given time window, the estimated noise model would result in optimal predic-

tions if the window contains the background noise. On the contrary, predictions will be poor

if the window contains the event data. Further, as a consequence of working with predictions

in the t-f domain, an abrupt change in the difference of squared absolute magnitude of t-f coef-

ficients occurs on the arrival of the seismic event. This change is highlighted with the aid of a

threshold to alert the detection of an event. Post detection, picking (identifying the time of

event onset) is carried out by a ranking of the highlighted t-f bands noting that the difference

of squared absolute magnitude is more prominent in certain t-f bands pertaining to the P-

wave frequency than in other bands. This ranking not only facilitates picking but also the

reconstruction of the P-wave signature, which as aforementioned, is novel and potentially use-

ful in advanced stages of seismic data analysis. The proposed framework is graphically depicted

in Fig 1. This schematic describes the steps implemented on a window of data.

Assume initially that N observations (corresponding to a duration of T = NTs sec, where Ts
is the sampling interval) of the seismic signal y[k] are available online, where N is a user-

defined parameter (see below for details). The procedure consists of the following steps:

1. Construct a window of data
Standing at the instant k = N + (n − 1)S, where S is a user-defined sliding parameter and n
is the window index (initially set to 1), construct a window of N past observations as fol-

lows:

wn½k�≜ ½y½k�y½k � 1� . . . y½k � ðN � 1Þ��
T

ð1Þ

whereby wn is a vector of size N × 1.

Fig 1. Proposed framework for P-wave detection and picking that accommodates any modeling technique (for prediction)

and a t-f tool (for decomposition).

https://doi.org/10.1371/journal.pone.0250008.g001
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2. Compute one-step ahead predictions
Using the time-series model developed offline, compute one-step ahead predictions of

observations in the window,

ŵn½k j k � 1� ¼ ½ŷ½kjk � 1�ŷ½k � 1jk � 2� � � � ŷ½k � ðN � 1Þjk � ðN � 2Þ��
T

3. Project data and predictions using the t-f tool
Decompose both the incoming data, wn[k] and the predictions, ŵn[kjk − 1] in t-f domain

up to a desired level L using a suitable t-f tool. At each level l (l = 1, 2, � � �, L), t-f coefficients

are denoted by C(l, ωc,i): {C(l, ωc,i, k)}, where at level l, C(l, ωc,i) is 2l × N matrix, ωc,i repre-

sents the center frequency of the ith (i = 1, � � �, Bl) frequency band and k represents the time

instant. Note that the maximum index of frequency band at each level l is Bl = 2l.

4. Compute the squared absolute magnitude in t-f bands
The squared absolute magnitude of projections of data and predictions in the ith t-f band at

each level l is defined as:

Ewn
ðl;oc;iÞ ¼ j Cwn

ðl;oc;iÞj
2 ð2Þ

Eŵn
ðl;oc;iÞ ¼ j Cŵn

ðl;oc;iÞj
2 ð3Þ

where Cwn
and Cŵn

are the projections of signal and predictions respectively and ωc,i is the

center frequency as defined earlier.

5. Compute mean absolute deviation (μAD)
In the nth window wn[k], the mean absolute deviation of difference in squared absolute

magnitudes between the projections of data and predictions in the ith t-f band at each level l
is defined as:

μADl;iðnÞ ¼ mean j Edðl;oc;iÞ � medianðEdðl;oc;iÞÞ j ð4Þ

where, the difference, Ed, is given by

Edðl;oc;iÞ ¼ Ewn
ðl;oc;iÞ � Eŵn

ðl;oc;iÞ ð5Þ

μAD is known to be a biased estimate of standard deviation, therefore, we work with a bias-

corrected μAD,

μADl;iðnÞ ¼ K �mean j Edðl;oc;iÞ � medianðEdðl;oc;iÞÞ j ð6Þ

where, K = 1.25 is the correction factor that is numerically determined for the random vari-

able Ed through Monte-Carlo simulations (see S1 Appendix in S1 File). Note that Ed(l, ωc,i)
approximately follows a Gamma distribution, which is determined through an empirical fit.

6. Compare the μAD in selected t-f bands with the respective thresholds to detect the abrupt

changes.

Let δl,i be the vector of Bl thresholds for background noise in the respective t-f bands. If the

window, wn[k] contains only the seismic noise then μADl,i(n) in the t-f bands will not vary

as k varies, however, μADl,i(n) increases abruptly in certain t-f bands on the arrival of P-

wave in wn[k].

7. Make a decision
Flag those bands for which μADl,i(n)>δl,i across all bands and levels.
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• No Detection: In the case where no event is detected, set the detection flag to 0, slide the

window with sliding length (S) and proceed to step 8. Selection of S is based on various

factors such as SNR, the sampling rate of data and type of seismic event, etc.

• Detection: If an event is detected, implement the following

i. Set the detection flag to 1.

ii. Pick the onset of the event precisely by reducing the window length, and repeating the

steps for the detected segment of data. The new working window length in the detected

segment also depends on SNR, sampling rate, etc of the data. Typically, a window of

length 1-2 seconds is used for picking the event in the detected segment because the P-

wave is a short duration signal.

iii. Select the “best” t-f bands. The bands that are highlighted in Step 6 (on the arrival of P-

wave) are ranked in the ascending order of the detection onset time and are selected

for picking the onset of P-wave. Selecting the packets (bands) of interest dynamically as

against working with a pre-determined set of bands from historical data analysis

makes the approach adaptive to the form of P-wave, the source-station location, etc. In

addition, since the selected t-f bands generally span the P-wave frequency, they can be

used for reconstructing the time-domain signature of the P-wave, which in turn, can

be used for at least two different advanced seismic data analysis (refer to Introduction

section for a brief outline). This, we believe, is a positive outcome of the proposed

methodology.

8. Repeat the above steps for online detection of the seismic event.

The performance of the proposed method depends on various parameters or variables. A

summary with a brief description and optimal values (for user-defined parameters) of these

parameters is presented in Table 1. The optimal values of data-driven parameters vary with

datasets and therefore are represented by DD (data dependent) in the table. The influence of

these parameters on the performance of the proposed algorithm is discussed later in the fol-

lowing sections.

The efficacy of the proposed framework is demonstrated using a widely used time-series

model known as the ARIMA model for prediction purposes, and the a well-established t-f tool,

namely, the wavelet-transform based MODWPT as the t-f tool for decomposing the data in t-f

bands. ARIMA models are linear time-series models that essentially captures the integrating

effects by developing ARMA models on the differenced series [30]. The governing equation of

an ARIMA(p,d,m) model is given by:

1 �
Xp

i¼1

�iq
� i

 !

ð1 � q� 1Þ
dy½k� ¼ 1þ

Xm

j¼1

yjq
� j

 !

e½k� ð7Þ

Table 1. List of parameters used by the algorithm with brief description and values used in the study.

Parameter Nature Description Value

N user-defined Length of working window (scalar) 240

S user-defined Sliding length (scalar) 5

δ data-driven Threshold (vector) DD

L user-defined Level of decomposition (scalar) 4 for 20 sps data

5 for 40 sps data

t-f bands data-driven Selected t-f bands DD

https://doi.org/10.1371/journal.pone.0250008.t001
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where, q−1 is the backshift operator, ϕi and θj are the AR and MA coefficients of order p and m
respectively, d is the degree of differencing and e[k] is a zero-mean Gaussian white-noise (tem-

porally uncorrelated) of variance s2
eÞ. Estimation of ARIMA models involves identification of

the model orders p, d, q, where d is the degree of differencing, and p and q represents the order

of AR and MA coefficients, p + qmodel parameters and variance of the driving force. The

unknowns are estimated using a maximum likelihood estimation algorithm.

MODWPT is the generalization of wavelet transform in which signal is decomposed into

low and high-frequency bands, and both the low-frequency (approximations) and high-fre-

quency (details) coefficients are further decomposed into sub-frequency bands at each level

[31]. Fig 2 shows the MODWPT schematic, where each box is referred to as a wavelet packet

(also called as a node). Each packet corresponds to a particular frequency band. Frequency

mapping for MODWPT packets up to level 4 is given in Table 2 for a sampling frequency of 20

Hz. The range of frequencies spanned by each band for a different sampling frequency Fs can

be re-calculated in a straightforward manner as 0 − Fs/4, Fs/4 − Fs/2 at Level 1 and so on.

A remark on the data requirements and model complexity for the chosen predictive model

class is in order here. About 10 minutes of data is sufficient to obtain a reasonably good

Fig 2. Schematic of MODWPT decomposition upto level 4. ‘A’ and ‘D’ refers to approximation and detail

respectively. Integer in the top-right corner of each box indicates the packet number in increasing frequency order.

https://doi.org/10.1371/journal.pone.0250008.g002

Table 2. Frequency mapping for MODWPT packets. Level indicates the level of decomposition and the frequencies are reported for a signal sampled at 20 Hz.

Level Node Frequency (Hz) Level Node Frequency (Hz)

Level 1 1 0-5 Level 4 16 0.625-1.25

2 5-10 17 1.25-1.87

Level 2 3 0-2.5 18 1.87-2.5

4 2.5-5 19 2.5-3.126

5 5-7.5 20 3.126-3.75

6 7.5-10 21 3.75-4.376

Level 3 7 0-1.25 22 4.376-5

8 1.25-2.5 23 5-5.625

9 2.5-3.75 24 5.625-6.25

10 3.75-5 25 6.25-6.876

11 5-6.25 26 6.876-7.5

12 6.25-7.5 27 7.5-8.126

13 7.5-8.75 28 8.126-8.75

14 8.75-10 29 8.75-9.376

Level 4 15 0-0.625 30 9.376-10

https://doi.org/10.1371/journal.pone.0250008.t002
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estimate of the model. Secondly, the number of tunable parameters is restricted to about 20.

Thus, in terms of both, data requirements and model complexity, the chosen model is several

orders lower as compared to the DL-based methods. This presents a feasible opportunity to

update the model as one obtains streaming data. Thirdly, the data does not have to be sub-

jected to labelling and other pre-processing steps as the prevailing DL models necessarily

require.

Results and discussions

In this section, the performance of the proposed method is illustrated with the help of synthetic

data with varying SNR and 200 real-time seismic datasets characterized by a range of SNRs

and earthquake magnitude.

Application to synthetic datasets

The primary purpose of this section is to illustrate the application of the proposed framework

to detect a short-lived signal for varying SNR with the help of synthetic data.

Data generation. Synthetic data y[k]: {k = 1, 2, . . ., 50000} can be represented as

y½k�
measurement

¼ s½k�
signal
þ v½k�

colored noise
ð8Þ

where, s[k] represents the desired short-lived signal generated using an exponentially decaying

sine wave, and v[k] represents the colored noise. The signal s[k] is given by

s½k� ¼

( ae� bk sin ð2pf0kÞ; 20000 < k � 20040

0; otherwise
ð9Þ

where, f0 is fixed at 1.8 Hz, signal s[k] is sampled at 20 samples per second (sps) and the values

of a & b are varied to change the SNR. Details of different values of a and b along with the SNR

and band-limited SNR are summarized in Table 3. The noise sequence v[k] is generated using

a realistic time-series model developed for real-time seismic noise from TSUM station,

Namibia, Africa. Data generating process for v[k] is given by

v½k� ¼
1

1 � q� 1
v0 ½k� ð10Þ

v0 ½k� ¼
1 � 0:39q� 1 � 1:7q� 2 þ 1:03q� 3 þ 0:82q� 4 � 0:75q� 5

1 � 0:43q� 1 � 1:3q� 2 þ 0:02q� 3
. . .

. . .
þ0:03q� 6 þ 0:09q� 7 � 0:105q� 8

þ0:73q� 4
e½k�

ð11Þ

where e[k] is a zero mean Gaussian white noise with variance σ2 = 155.78.

Table 3. Details of parameters used to generate synthetic data.

Case 1 Case 2 Case 3 Case 4 Case 5

a 100 110 180 200 500

b 0.8 0.8 0.8 0.8 0.8

f0 (Hz) 1.8 1.8 1.8 1.8 1.8

SNR 0.021 0.049 0.46 1.8 2.09

Band-limited SNR 0.209 0.29 1.46 10.76 26.55

https://doi.org/10.1371/journal.pone.0250008.t003
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Results for synthetic data. Given the measurements y[k], the method aims to accurately

detect and pick the onset of signal s[k]. Implementation of the proposed framework is illus-

trated in detail for the case 1 data, with the results being summarized for the rest of the cases.

Case 1 data (SNR = 0.021) is shown in Fig 3. Initial 10000 data points are used to estimate the

predictive ARIMA(4, 1, 8) model and calculate the threshold in each packet. Using a sliding

window of 240 samples with sliding of 10 samples, both wn[k] and ŵn½k� are decomposed in

the time-frequency domain using Daubechies 4 (dB4) wavelets via MODWPT. The μAD of the

difference of squared absolute magnitude of MODWPT coefficients of wn[k] and ŵn½k� in all

the packets is compared to the threshold in the respective packets. On the arrival of signal s[k],

certain t-f bands (packets 8, 18, 17 and 30 for case 1 data) are highlighted. Fig 4 shows the

selected packets in the ascending order of the detection onset. Packets that detect the onset of s
[k] with minimum samples of s[k] in wn[k] are given higher priority. It can also be observed

that when the moving window does not contain any event, no packets are highlighted (repre-

sented by 0 value in the top plot of Fig 4). The presence of 1 indicates the highlighted packets.

The μAD in different packets along with the threshold is shown in Fig 5. For picking purposes,

a sliding window of 20 samples with a sliding of 1 sample is used in the detected segment for

the selected packets. For the case 1 data, the method picks the onset of s[k] with an error of 3

samples.

Fig 6 shows the reconstructed signal using the selected packets. For reconstruction purpose,

data from k = 19500 to k = 20500 is used. The onset of signal s[k] is clearly visible in the recon-

structed signal even for the low SNR case. The main purpose of reconstructing the signal is to

obtain a mathematical model for signal s[k] from the measurements. This can be extremely

useful in obtaining a P-wave model, which is otherwise missing in the literature.

Fig 3. Low SNR synthetic data with a short-lived event embedded in noise.

https://doi.org/10.1371/journal.pone.0250008.g003
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Fig 4. Packet selection. The plot on top depicts the selected packets on the fly based on the ranking of highlighted packets. Y-axis represents the

window onset time in the ranked order (top to bottom). The presence of 1 indicates detection, and 0 represents no detection. The duration of

highlighted packets is shown in the bottom plot, where the X-axis represents the onset of the working window.

https://doi.org/10.1371/journal.pone.0250008.g004

Fig 5. μAD in the highlighted packets. There is a sudden increase in the μAD in certain packets (30, 14 and 17) while

in other packets (16 is shown in the figure, but it holds for the rest of the packets), μAD is always below the threshold.

https://doi.org/10.1371/journal.pone.0250008.g005
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Similarly, we have applied the proposed method to the rest of the four cases, and it is

observed that the method detects the onset of s[k] even for extremely low SNR cases. The rea-

son for accurate detection, especially for low SNR scenarios, is that the signal is highly localized

in the t-f domain. Further, the band-limited SNR is higher than the standard SNR for all the

cases, reported in Table 3. The latter looks at a frequency band spanning from 0 to Nyquist fre-

quency (10 Hz for this case) while the former spans the frequencies in the desired band (from

1.25 to 2.5 Hz). This explains the improved performance of the proposed method even for

extremely low SNR cases. It is also observed from Fig 7 that with the increasing SNR, more

packets are highlighted.

Fig 6. Reconstructed signal. Amplitude of the reconstructed signal is smaller than the original s[k].

https://doi.org/10.1371/journal.pone.0250008.g006

Fig 7. Selected packets for different SNR cases. Number of highlighted packets increases as the SNR increases.

https://doi.org/10.1371/journal.pone.0250008.g007
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Application to real-time seismic data

The ability and efficacy of the proposed framework to detect the onset of P-wave is illustrated

using 200 real-time seismic datasets of varying magnitudes and signal-to-noise ratio (SNR).

Data is collected from four different stations, ANMO (New Mexico, US), ANTO (Turkey),

MAJO (Matsushiro, Japan), and TSUM (Namibia, Africa), and is freely available on Incorpo-

rated Research Institutions for Seismology (IRIS). A link to the website from where the data

sets can be directly downloaded is being provided in S2 Data in S1 File. Out of 200, 173 data-

sets contain seismic events while 27 are event-free, i.e., they do not contain any seismic event

(noise). Magnitude of datasets is classified into four categories, (i) Mag�2.5, (ii) 2.5< Mag

�4, (iii) 4< Mag�6, and (iv) Mag >6 to evaluate the performance of the proposed method.

Details of all the datasets are summarized in Table 4 where SNRBL stands for band-limited

SNR. For real-time datasets, SNRBL is the ratio of the energy of t-f coefficients of the signal in

the detected segment to that of the t-f coefficients of noise in the highlighted t-f bands. We

have also compared the performance of the proposed framework with STA/LTA, AIC picker,

and DWT-AIC picker. Time reported on the IRIS website is considered as the reference time.

Vertical channel low magnitude (<2.5) and low SNR (<2) data acquired at different sta-

tions are shown in Fig 8(a) (SNR = −0.7), Fig 8(d) (SNR = 1.5), and Fig 8(g) (SNR = 0.001). Fig

8(b), 8(e) and 8(h) depict the mean absolute deviation corresponding to the packets 8, 35 and

31, respectively. As observed from Fig 8(c), 8(f) and 8(i) (zoomed snapshots of data), the algo-

rithm picks the low magnitude and low SNR events with high accuracy (less than 0.2 sec) as

compared to the onset time of event as reported on IRIS website.

For detection and picking purposes, an initial 10 min data is used for developing predictive

models and computing threshold in the selected packets. Background noise at each station is

modeled using ARIMA models of suitable orders. For instance, noise at ANMO is modeled

using ARIMA(5, 1, 3), ANTO using ARIMA(4, 1, 6), MAJO using ARIMA(6, 1, 5), and TSUM

using ARIMA(4, 1, 8) model. Both data and one-step-ahead predictions are decomposed into

the time-frequency (t-f) domain using Daubechies 4 (db4) wavelet up to level 4 for 20 samples

per second (sps) data and level 5 for 40 sps data. For most of the datasets, packets 8, 9, 16, 17,

18, 19, 21 are selected for 20 sps data. Additional to packets selected for 20 sps data, packets 27,

31, 32, 32, 33, 35 are also selected for 40 sps data. A sliding window (wn[k]) of length 240 sam-

ples with a sliding length (S) of 5 samples are used to detect the event. For accurate picking, a

window of 1 sec with a sliding length of 1 sample is used in the detected segment.

A comparative study of detected events with the true onset is carried out on all the 200 data-

sets to check the reliability of the proposed method. Fig 9 shows that the detection accuracy

increases with the increasing SNR. The top figure depicts the detection error in different mag-

nitude datasets downloaded from the ANMO station. The number on the top of each bar

Table 4. Seismic data. Details of different datasets downloaded from IRIS.

Station Magnitude Counts SNR (dB) SNRBL(dB) Station Magnitude Counts SNR (dB) SNRBL(dB)

ANMO M � 2.5 9 -.38 to.37 .09 to 16.03 ANTO M� 2.5 10 -.1 to.09 .08 to 3.2

2.5 <M� 4 14 -.8 to.82 .03 to 17.35 2.5 <M� 4 14 -1.4 to 3.9 .02 to 2.4 × 104

4 <M� 6 10 -2.6 to 17.2 .13 to 104.8 4 <M� 6 10 .18 to 38.5 5.1 to 9.6 × 103

M > 6 11 9 to 61 10 to 2.5 × 106 M > 6 10 -2.15 to 69.6 2.1 to 7.7 × 106

no event 27 - - TSUM M� 2.5 15 -1.2 to.08 .09 to 15.9

MAJO 2.5 <M� 4 19 -.7 to 1.2 .35 to 374.8 2.5 <M� 4 14 -1.4 to.02 .1 to 8.6

4 <M� 6 10 -.22 to 40 .14 to 1.38 × 104 4 <M� 6 11 -11.6 to 27.3 .47 to 1.07× 103

M > 6 11 10.3 to 71.7 35.8 to 1.17 × 106 M > 6 3 32 to 37.5 (.64 to 4.61) × 104

https://doi.org/10.1371/journal.pone.0250008.t004
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represents the detection error in samples, where a positive number indicates early detection

and a negative number indicates delay. Numbers written in red color indicates the missed

events. The corresponding SNRs are illustrated in the bottom plot of Fig 9. Furthermore, for

ANMO station data, out of 42 events in Fig 9, the method fails to detect 4 events (bars with red

Fig 8. Event detection results for low SNR datasets. Plots (a), (d), (g) shows the vertical channel data from MAJO, ANTO, and ANMO station

respectively, where the vertical black solid line indicates the onset of true event as reported on the IRIS website, plots (b), (e), (h) depicts corresponding

μAD in the selected packets. The solid horizontal line in the middle plots is the threshold value for the respective packets. Zoomed snapshots of

respective data with picked events is shown in plots (c), (f) and (i) where the red vertical lines indicate the time at which the proposed method picks the

event. Plots (c), (f), (i) shows the zoomed snapshot of data with picked events.

https://doi.org/10.1371/journal.pone.0250008.g008

Fig 9. ANMO station: Event detection vs SNR. Top and bottom figures depict the detection error and SNR,

respectively.

https://doi.org/10.1371/journal.pone.0250008.g009
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color numbers on the top). For some datasets, the algorithm detects the event a bit earlier,

despite the low SNR (<1 dB). A comparative study of different SNR data is also carried out to

analyze the accuracy of the proposed algorithm for different SNR. Detection rate of the pro-

posed method for low SNR (<1dB) is shown in Fig 10. Certain low magnitude datasets have

multiple events in close proximity. For such datasets, the algorithm picks the stronger event

among all the events (gray color bar in Fig 10). Fig 11 shows that the algorithm picks the high

SNR events with high accuracy (<0.02 sec). For the no-event scenarios (background noise),

the algorithm picks false events in 3 datasets out of 27, as shown in Fig 11.

In order to illustrate the importance of packet (t-f band) selection, vertical channel data

with more than one event from the TSUM station (mag Ml0.8) is selected. As shown in Fig

12(b), packet 16 fails to detect any of the events, packet 9 (Fig 12(c)) detects the second event

accurately while missing the main event (of interest). However, as observed in Fig 12(d),

packet 27 detects both the events with high accuracy. Therefore, if the user selects the wrong

Fig 10. Detection rate for low SNR conditions. Detection rate of the proposed algorithm for SNR<5 dB. These

datasets have events in the magnitude range from 0.13 to 4.

https://doi.org/10.1371/journal.pone.0250008.g010

Fig 11. Detection error. The left plot depicts the detection rate of the proposed algorithm for high SNR>1 dB. The

right plot shows the false alarm rate of the proposed method for background noise, where the red square box indicates

no detection in the noise and blue boxes indicate false detection of events in background noise.

https://doi.org/10.1371/journal.pone.0250008.g011
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packets (t-f bands), the algorithm either fails to pick the event or miss it. As compared to the

existing methods and the event time reported on the IRIS website, the algorithm successfully

picks the extremely low SNR and low magnitude event with high accuracy (less than 2.5 sec).

The proposed method’s performance is further evaluated by comparing it with the widely

used STA/LTA detector, AIC, and DWT-AIC pickers. A set of user-defined parameters, such

as window length, choice of wavelet, etc., govern the performance of each of these methods.

These parameters are optimized for each station. For the STA/LTA detector, data is first fil-

tered using a 4th order Butterworth filter, with a passband of 0.2–2 Hz, before evaluating the

characteristic function. The lengths of STA and LTA windows are fixed to 0.3 and 12 seconds,

respectively. For the DWT-AIC picker, data is decomposed up to scale 7 using Daubechies 4

wavelet. It is observed from Fig 12(e) that both the STA/LTA detector and AIC pickers fail to

detect or pick the low magnitude and low SNR event while the DWT-AIC picker picks the

later phases (surface waves). Further, Figs 13 and 14(a) allow us to conclude that for events

with magnitude <2.5, all the three existing methods fail to detect / pick the event onset. How-

ever, 20% of the later phases (surface waves) were detected by STA/LTA detector, 24% were

picked by AIC picker, and 62% were picked by DWT-AIC picker. On the other hand, 20% of

the P-wave arrivals in low magnitude events are picked with low accuracy, while 50% of the

later phases were detected using the proposed method.

The detection rate of the proposed method is compared with the widely used STA/LTA

detector while the picking rate is compared with the AIC and DWT-AIC pickers. Detection

and picking errors of the proposed method and the existing detectors and pickers are depicted

in Figs 13 and 14, respectively.

For the events of magnitude ranging from 2.5 to 4 (SNR<1 dB), STA/LTA fails to detect

the P-wave onset in almost all the datasets (Fig 13). STA/LTA detects the P-wave arrival in

only one out of the 61 datasets, however, around 20% of the later phases were detected. The

proposed method, on the other hand, detects nearly 84% of the events with an accuracy of

�2.5 sec. As shown in Fig 14, the widely used pickers also fail to pick most of the low magni-

tude and low SNR events. AIC and DWT-AIC pickers pick 3% and 8% of the P-wave arrival,

Fig 12. Low magnitude event detection results. Vertical channel TSUM station (a) data with two events—solid

vertical black line indicates the true onset of the seismic event of interest and the dashed black color line indicates the

second event in the data. Plots (b), (c) and (d) depict the μAD corresponding to packets 9, 16 and 27 respectively and

plot (e) is a zoomed snapshot of data—the red vertical line indicate the time at which the proposed algorithm picks the

low magnitude event.

https://doi.org/10.1371/journal.pone.0250008.g012
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respectively, with an accuracy of less than 5 sec. DWT-AIC picker picks 54% of the later phases

while the AIC picker picks only 39%. The proposed method picks 56% of the P-wave arrival

with high accuracy (<0.05 sec) while picking 33% with an accuracy of 2.5 sec. The proposed

method fails to pick only 11% of the arrivals. For higher magnitude events (category 3:

Fig 13. Comparison with existing detector. Detection error in samples of STA/LTA and the proposed method for events of different magnitude

range.

https://doi.org/10.1371/journal.pone.0250008.g013

Fig 14. Comparison with existing pickers. Picking error in samples is reported for all the four categories, (a) Mag�2.5, (b) 2.5<Mag�4, (c) 4<Mag

�6 and (d) Mag>6.

https://doi.org/10.1371/journal.pone.0250008.g014
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4< Mag�6), all the methods detect or pick the P-wave arrival with a maximum error of 2.5

sec. However, around 14%, 24%, 54%, and 80% of the P-arrivals are detected/picked with an

accuracy less than 0.05 sec by STA/LTA, AIC, DWT-AIC, and the proposed method, respec-

tively. Figs 13 and 14(d) depicts that the higher magnitude events (Mag >6) are detected and

picked by all the four methods with a maximum error of 1.25 sec. P-wave arrival is detected/

picked accurately (with 0 error) in 10 datasets out of 34 by STA/LTA, 16 by AIC, and 22 by

DWT-AIC picker. On the other hand, the proposed method accurately picks the P-wave

arrival in 32 datasets.

We have also compared the performance of these methods based on a false alarm rate, i.e.,

detecting an event when there is no event. Thus, all the three existing methods and the pro-

posed method are implemented on seismic noise (event-free data). The 27 event-free datasets

are carefully selected in the sense that we have considered impulsive noise (noise with impul-

sive spikes), noise during night time (less cultural activity), and daytime (cultural activities

contribute significantly to noise) to study the robustness feature of the proposed framework. It

is observed from Fig 15 that the proposed method outperforms the existing methods in that it

results in lower false alarms than other methods.

Therefore the proposed method outperforms the existing methods by picking 63% of the P-

wave arrivals with high accuracy (less than 0.05 sec) while detecting 27.6% of the arrival onset

with an accuracy less than 2.5 sec. Table 5 summarizes the detection/picking accuracy and

false alarm rate (FAR) of different methods. The proposed method outperforms the existing

methods in both the metrics.

Fig 15. False alarm rate for different P-wave arrival detector / picker.

https://doi.org/10.1371/journal.pone.0250008.g015

Table 5. Detection/Picking rate and false alarm rate in percentage. FAR stands for false alarm rate which is defined

as the % of datasets with false detection of event.

Algorithm % of datasets

� 0.05 sec <5 sec FAR

STA/LTA detector 8.23 30.59 70.37

AIC picker 14.11 40.59 59.25

DWT-AIC picker 23.5 51.76 22.22

Proposed framework 63 27.6 11.11

https://doi.org/10.1371/journal.pone.0250008.t005
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As discussed earlier, the performance of the proposed algorithm depends on certain data-

driven and user-defined parameters. The following sub-section is devoted to the sensitivity

analysis of these parameters.

Crucial parameters

The performance of the proposed framework depends on the choice of parameters such as

window length, sliding parameter (tuning parameters), threshold, etc. The influence of these

parameters on the performance is discussed below.

1. Tuning Parameters: Parameters such as window length and sliding parameter govern the

performance of the detector and picker.

i. Window length (N): The choice of a suitable window length for online detection and pick-

ing is one of the crucial steps. There exists a trade-off between the window length and

detection rate. A shorter window with a small N results in increased type I error (false

alarm rate; detecting events when there are no events) because of the increased sensitivity

to the small changes in the data. On the other hand, selecting a wider window, larger N,

reduces the type I error at the cost of increased type II error (detection rate; the probability

of missing the event when there are events) because of the reduced sensitivity to the small

changes. Therefore, it is necessary to select a window of suitable length that results in a

low false alarm rate without compromising the detection rate.

ii. Sliding length (S): The choice of S depends on whether the purpose of the algorithm is to

detect or to pick the event accurately. Larger S can be selected for detection purposes,

while for precise picking of an event, a shorter S shall be used.

The effects of these parameters on the performance of the proposed method are depicted

in Fig 16. For illustration purposes, data from the ANMO station is considered. The

detection error, indicated on the vertical axis of the plot, is defined as the difference

between the true onset of the event and detected by the proposed method. As shown in

Fig 16. Sensitivity of crucial parameters. Effects of (a) varying window length for a fixed sliding length of 5 samples

and (b) varying sliding length for fixed window length of 240 samples on the performance of the proposed method.

Vertical axis indicates the detection error for varying tuning parameters. Blue color circles indicate the detection error,

and the red color solid line is the fitted curve for both the parameters.

https://doi.org/10.1371/journal.pone.0250008.g016
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Fig 16(a) initially, the detection error decreases with the increase in window length.

However, after reaching the minima, the error increases with increasing window length.

As observed from Fig 16(b), detection error increases with the increasing sliding length

for a fixed window length of 240 samples.

2. Threshold (δ): In this work, we use a data-driven static threshold computed offline from the

historical event-free data (background noise). The threshold varies with t-f bands because

each t-f band contains band-limited information. Therefore, using the same threshold for

all the t-f bands result in erroneous detection.

3. Level of decomposition (L): This parameter determines the total number of t-f bands in the

t-f decomposition. L plays a vital role in determining the detection accuracy of the proposed

framework. At a lower value of L, the bandwidth of t-f bands is higher, resulting in more

contribution of noise and hence poor detection. However, if L is chosen to be high, the

bandwidth of each t-f band reduces, resulting in the loss of the desired feature by splitting

the information across several bands, thereby missing the event.

Conclusion

This work presented a new prediction framework with a time-frequency localization feature to

detect and pick the onset of P-wave in seismic measurements. The work is not only novel but

is significant since it overcomes a key shortcoming of existing methods in handling low SNR

measurements. Furthermore, it leverages the advantages of predictive analytics and the zoom-

in feature of time-frequency transformation techniques. The main contributions of this work

have been in (i) extending the applicability of predictive framework with t-f localization for

efficient detection and picking of the seismic event, especially for low SNR cases, (ii) selecting

suitable t-f bands on the fly to improve the detection accuracy, and (iii) optimally selecting the

tuning parameters in order to reduce the false alarm rate. The devised picker provides an ele-

gant detection and picking technique commensurate with the noise properties and is highly

localized in the t-f domain. Therefore, it is robust to outliers and results in accurate detection

for low SNR seismograms with minimal false alarms. The proposed method, by way of its con-

struction, possesses certain desired features such as low false alarm rate, robustness to outliers,

and, quite importantly, the ability to detect P-wave in low-quality seismograms. One of the

most crucial steps that give the proposed method its ability to detect low SNR events is select-

ing the t-f bands, which is done through a ranking procedure. Finally, the use of variability in

the difference of energies between the data and predictions in the t-f domain as a statistic to

conduct the test of detection makes it sensitive to the arrival of P-wave. An added benefit of

the proposed method that has significant potential in mathematical modelling of P-waves is

that it facilitates the reconstruction of P-wave signatures from seismic measurements, which

has not been addressed before in the reported literature.

We have demonstrated the proposed framework using ARIMA models as predictive vehi-

cles and the maximal overlap DWT for time-frequency projections of measurements and pre-

dictions. The ARIMA models were built using a systematic procedure developed by the

authors and reported elsewhere. Implementation on nearly 200 datasets with diverse charac-

teristics showed that the proposed framework is not only robust to outliers (low false alarm in

the noisy data) but is also capable of detecting the extremely low SNR (<0.13) and low magni-

tude (<0.9) events. The proposed framework outperforms widely used STA / LTA, AIC, and

DWT-AIC methods, especially for low SNR events.

The success of the proposed framework and its ability to detect under extremely low SNR

conditions should not be construed as a coincidence since the success of the proposed method
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rests on the band-limited SNR and not on the conventional SNR, a widely used yardstick. The

band-limited SNR is high even as the standard SNR is very low for the events under analysis.

This is due to the significant differences in the time-frequency distributions of the event and

seismic noise characteristics (multi-scale nature of the seismic measurement). By their con-

struction, existing methods do not exploit the high-value of band-limited SNRs or rather the

multi-scale nature of data and hence fail to perform under low SNR scenarios. Any method

that zooms into the t-f characteristics of the data potentially stands to benefit from the band-

limited SNR. Adding a layer of predictions and comparing the differences in characteristics

between the two layers (data and predictions) significantly improves the discriminating ability

of the detection technique. This essentially is the core idea of the proposed framework and

rationalizes the benefits it brings in to the problem of interest.
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