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Simple Summary: PET/CT is an important staging modality in the baseline assessment of locally
advanced esophageal squamous cell carcinoma. Accurate staging and response prediction in these
patients is essential for management. The aim of this retrospective study was to assess the usefulness
of 18F-FDG PET/CT radiomics features in predicting outcomes such as tumor and nodal categories,
PET-based response to induction chemotherapy, progression-free survival, and overall survival.
In a final cohort of 74 patients, we found that the developed radiomics models can predict these
clinical and prognostic outcomes with reasonable accuracy, similar or better than those derived from
conventional imaging. Future studies with a larger cohort would be helpful in establishing the
significance of these models.

Abstract: This study aimed to assess the usefulness of radiomics features of 18F-FDG PET/CT in
patients with locally advanced esophageal cancers (ESCC) in predicting outcomes such as clinical
tumor (cT) and nodal (cN) categories, PET response to induction chemotherapy (PET response),
progression-free survival (PFS), and overall survival (OS). Pretreatment PET/CT images from patients
who underwent concurrent chemoradiotherapy from July 2002 to February 2017 were segmented, and
data were split into training and test sets. Model development was performed on the training datasets
and a maximum of five features were selected. Final diagnostic accuracies were determined using the
test dataset. A total of 86 PET/CTs (58 men and 28 women, mean age 65 years) were segmented. Due
to small lesion size, 12 patients were excluded. The diagnostic accuracies as derived from the CT,
PET, and combined PET/CT test datasets were as follows: cT category—70.4%, 70.4%, and 81.5%,
respectively; cN category—69.0%, 86.2%, and 86.2%, respectively; PET response—60.0%, 66.7%, and
70.0%, respectively; PFS—60.7%, 75.0%, and 75.0%, respectively; and OS—51.7%, 55.2%, and 62.1%,
respectively. A radiomics assessment of locally advanced ESCC has the potential to predict various
clinical outcomes. External validation of these models would be further helpful.

Keywords: esophageal squamous cell carcinoma; PET/CT; radiomics; progression-free survival;
overall survival

1. Introduction

Positron emission tomography/computed tomography (PET/CT) with 18-fluorine-
labeled fluorodeoxyglucose (18F-FDG) has become an established modality of investigation
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in the staging of patients with esophageal cancer, providing incremental information lead-
ing to changes in management for up to one third of patients [1]. It has been shown
to provide valuable prognostic information prior to any treatment and during and after
chemoradiotherapy [2,3]. Correlations between prognosis and various metabolic param-
eters such as standardized uptake value, total lesion glycolysis, and metabolic tumor
volume have been reported in several studies [4–7]. Radiomics analysis allows us to
use the diagnostic images further by extracting information otherwise “invisible” to the
naked eye and thus potentially improve the diagnostic and prognostic accuracy of a given
study [8,9]. It follows a complex workflow which includes image acquisition, preprocessing,
region of interest (ROI) segmentation, feature extraction, and feature analysis [10]. In a
meta-analysis, Park et al. highlighted that almost 90% of the radiomics analyses were
conducted for oncological studies, and mainly utilized for diagnosis and grading of the
tumor, molecular biology and genomics assessment, predicting survival outcomes, and
treatment response [11].

In an overview of the currently available imaging biomarkers in upper gastrointestinal
cancers, Gabelloni et al. concluded that various imaging biomarkers and radiomic features
provide significant additional information to conventional imaging parameters that can
guide the management of these patients at all stages [12]. In recent years, there has been
increasing interest in the radiomics analysis of esophageal cancers for prediction of extent of
disease and response to treatment. Most of these studies predominantly focus on predicting
response to treatment [13–15]. By contrast, very few studies have looked at clinical outcome
parameters such as nodal status, tumor stage, overall survival (OS), or progression-free
survival (PFS) [16–20]. Low sample size is also one of the limiting factors in assessment
of radiomics signatures in many esophageal cancer studies. It should also be noted that
there are significant differences in tumor biology, characteristics, and prognostic features
between esophageal squamous cell carcinoma (ESCC) and adenocarcinoma, and as such
these should be treated as different diseases.

We hypothesized that, in a specific subset of esophageal cancer patients, i.e., those
with locally advanced ESCC without distant metastases, the radiomics features of 18F-
FDG PET/CT could provide valuable information regarding various clinical outcome
parameters which might inform further management. Thus, the purpose of this study
was to investigate various radiomics features on CT, PET, and combined PET/CT image
datasets to predict clinical tumor and nodal categories as defined by the American Joint
Committee on Cancer (AJCC), PFS, and 3-year OS in patients with locally advanced ESCC
without distant metastases.

2. Materials and Methods
2.1. Patient Inclusion

This was a retrospective, Health Insurance Portability and Accountability Act-compliant
study with approval from our institutional review board and a waiver for written informed
consent. Patients with locally advanced ESCC, without distant metastases, and who under-
went induction chemotherapy followed by concurrent chemoradiation at our institution
between July 2002–February 2017 were included in the study. The sample was derived
from a prior study which evaluated post-induction chemotherapy PET/CT for predicting
outcomes in the patients with ESCC who received chemoradiation [2]. Of the 106 patients
initially identified, 20 patients were excluded due to esophageal stents in situ, PET/CTs
performed with intravenous contrast, poor image quality due to increased background
statistical noise, and non-FDG-avid primary tumors. A total of 86 patients were included
for tumor segmentation. A flowchart of patient inclusion to the study is presented in
Figure 1.
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Figure 1. Flowchart of patient inclusion in the study. Abbreviations: T, clinical tumor category; N, 
clinical nodal category; PFS, progression-free survival; OS, overall survival. 

2.2. Treatment and Imaging 
All patients underwent a pretreatment baseline PET/CT and another PET/CT follow-

ing induction chemotherapy. Patients received a variety of platinum-based induction 
chemotherapy regimens and the post-induction PET/CT was performed within a median 
of 8 days (range, 1–32 days) from completion of induction chemotherapy. Patients with a 
minimum of 35% decrease in maximum standard uptake value (SUVmax) in the primary 
tumor after induction chemotherapy were considered as responders [3,21]. Those patients 
who were considered responders continued with the same chemotherapy during radia-

Figure 1. Flowchart of patient inclusion in the study. Abbreviations: T, clinical tumor category; N,
clinical nodal category; PFS, progression-free survival; OS, overall survival.

2.2. Treatment and Imaging

All patients underwent a pretreatment baseline PET/CT and another PET/CT fol-
lowing induction chemotherapy. Patients received a variety of platinum-based induction
chemotherapy regimens and the post-induction PET/CT was performed within a median
of 8 days (range, 1–32 days) from completion of induction chemotherapy. Patients with a
minimum of 35% decrease in maximum standard uptake value (SUVmax) in the primary
tumor after induction chemotherapy were considered as responders [3,21]. Those patients
who were considered responders continued with the same chemotherapy during radiation.
Of the 25 patients who were considered PET non-responders, 16 patients were continued
on the same chemotherapy during chemoradiation, and the remainder were changed to
alternate chemotherapy. The decision to perform surgery was based on individual cases.
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In this analysis, the PET non-responders were analyzed as a single group, irrespective of
whether they continued with or changed chemotherapy during radiation.

2.3. Image Acquisition and Segmentation

The study included baseline PET/CTs that were performed either at our institution
or an outside institution. Scanners and PET/CT acquisition parameters are presented in
Table 1. Segmentations were performed on PET and CT separately, using Hermes Gold
LX software version 2.9.1.0, Stockholm, Sweden, by two radiologists with 8 and 10 years
of experience in oncological imaging, blinded to each other’s contours and to clinical
information (VP and VSJ). The PET/CT images were analyzed on the Hermes Hybrid 3D
software version 3.0.1, Stockholm, Sweden. The tumor was first identified by the readers
on the attenuation-corrected PET images and a constraint ROI was manually drawn around
the tumor. An automatic target volume was then generated within the constraint ROI using
a threshold tool in Hermes Hybrid 3D software set to “Hot mode” with a minimum default
of 2.5 SUVbw. This threshold tool uses an isocontour around a collection of a volume of
voxels generated by a mathematical rule. In the Hermes software, “Hot mode” selects
the values inside the isocontour that are greater than a threshold value. In this case, we
used a value of SUVbw 2.5. Ideally, this means that the minimum set is the value of all
the pixels on the edge, but due to discrete values, it should be close. Once the automatic
volume was generated by the Hermes software, individual readers corrected the delineated
segments to remove what was subjectively judged (based on their own clinical experience)
to be inflammatory uptake along the proximal and distal edges of the tumor. On CT, the
esophagus was manually segmented at the levels of the tumor identified on PET and the
voxels representing air were excluded from analysis. Paraesophageal lymph nodes distinct
from the primary tumor with a clear fat plane were excluded from the segmented volume.
Twenty cases were segmented by both radiologists to assess inter-reader agreement.

Table 1. Scanner and acquisition parameters.

Scanners Number of Scans

GE Discovery 690 13
GE Discovery 710 5
GE Discovery LS 10

GE Discovery QX/i 2
GE Discovery ST 7

GE Discovery STE 14
Philips Gemini TF TOF 64 1

Siemens Biograph 40 3
Siemens Biograph 6 8

Siemens Emotion Duo 6
Siemens Sensation 16 5

CT parameters Median (range)

kVp (kV) 130 (100–140)
Tube current (mA) 85 (35–305)

Matrix size All at 512 × 512
In-plane resolution 0.977 (0.775–1.523)

Slice thickness 3.8 (3.0–5.0)

PET parameters Median (range)

Matrix size 128 × 128 (128 × 128 to 484 × 484)
In-plane resolution (mm) 5.31 (1.03–5.47)

Slice thickness (mm) 3.3 (2.0–5.0)
Dose (MBq) 458 (320–788)

Uptake time (min) 65 (45–91)
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2.4. Radiomics Analysis

Segmented volumes were exported to MATLAB (version 9.3.0.713579 (R2017B), The
MathWorks, Inc., Natick, MA, USA) for feature extraction. All images were interpolated
to the median in-plane spatial resolution (0.977 mm for CT data and 5.31 mm for PET
data) prior to radiomics analysis. The CT images were reduced to 64 gray levels prior to
radiomics feature calculations. Because of the small pixel count due to reduced spatial
resolution, the PET data were reduced to 16 gray levels only; this also accounted for
institutional differences in PET acquisition. To ensure adequate counting statistics for
radiomics feature calculations, PET data with regions of interest (ROIs) of 50 or more pixels
only were included. Radiomics features were calculated using CERR, which has been
shown to be compatible with the emerging image biomarker standardization initiative [22].
One hundred and one features were calculated in six classes (22 first-order (FO), 26 based
on gray-level cooccurrence matrices (GLCM), 16 based on run-length matrices (RLM),
16 based on size-zone matrices (SZM), 16 based on neighborhood gray-level dependence
matrices (NGLDM), and 5 based on neighborhood gray-tone difference matrices (NGTDM)).
The data were initially split into separate training and test sets (60:40 split). All model
development was performed on the training set and the test set was reserved solely for
determination of final diagnostic metrics. Class imbalances in the training data were
removed by employing adaptive synthetic sampling to equalize class sizes [23]. This was
performed to prevent subsequent models potentially classifying all cases as belonging to
the majority class. An elastic net, combining ridge and LASSO regression, was then utilized
to determine which coefficients (radiomics features) were of most importance. A maximum
of 5 features were selected to avoid overfitting. If fewer features were determined to be
of importance, only those were forwarded for use in model development. Models were
considered utilizing CT radiomics data alone, PET radiomics data alone, and then CT and
PET radiomics data combined. Predictive models were then developed in MATLAB using
support vector machines and 5-fold cross-validation. The developed models were than
investigated using the test dataset to determine the final diagnostic accuracies. A similar
method employing separate training and test datasets, with predictive models developed
using cross-validation (in this case nested cross-validation) on the training data, has been
demonstrated in breast cancer [24].

Clinical parameters such as the clinical tumor and nodal categories and pathologic
complete response were recorded via the electronic medical records. PET responders were
calculated based on more than a 35% decrease in SUVmax values of the primary tumor
on post-induction PET/CT compared to the baseline study [6]. OS was calculated from
the date of post-induction PET/CT to the date of death. Patients who were alive and did
not experience an event were censored at the date of last follow-up. Date of progression
was based on either histology or imaging features consistent with recurrence or metastatic
disease. PFS was calculated from the date of the post-induction PET/CT to the date
of progression or death, whichever occurred first. The cases were classified into binary
categories as follows: T2 vs. T3/4, N0 vs. N1/2, PET responders vs. non-responders, PFS
“yes” or “no”, and 3-year OS “yes” or “no”. Response outcomes were predicted using these
binary classifiers.

2.5. Statistical Analysis

For all the final predictive models, diagnostic metrics including sensitivity, specificity,
positive predictive value, negative predictive value, accuracy, and area under the curve
(AUC) were calculated using MedCalc for Windows, version 15.0 (MedCalc software,
Ostend, Belgium) and compared with the test dataset using McNemar’s test.

Inter-reader agreement was determined using Jaccard indices (intersection size over
union size) and dice similarity coefficients (twice the intersection size over the sum of the
two individual regions) using MATLAB. A two-way mixed-effects model with a single
measure was used to judge the intraclass correlation coefficient. Results from these two
metrics were interpreted as follows: values < 0.40 = poor agreement, 0.41–0.59 = fair agree-
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ment, 0.60–0.79 = good agreement, and 0.80–1.00 = excellent agreement. Only parameters
with good or excellent agreement were considered for subsequent predictive model devel-
opment. As a result of ICC analysis, 11 CT radiomics features and 3 PET radiomics features
were excluded from further analysis (Supplementary Materials Table S2).

3. Results
3.1. Patient Characteristics

Baseline PET/CTs were segmented in 86 patients (58 men, 28 women) with a mean
age of 65 years (range, 41–87). A total of 12 patients were excluded from the analysis due to
small lesion size (<50 pixels), leaving a maximum of 74 patients for analysis. The clinical
outcomes were dichotomized and the patients whose clinical outcomes were not known
were excluded from respective assessments. Although there were several chemotherapy
combinations, virtually all were platinum-based and nearly 92% of the patients received
either platinum/paclitaxel- or platinum/irinotecan-based chemotherapy. Patient character-
istics are presented in Table 2. There was good to excellent inter-reader agreement with the
average Jaccard indices for the CT and PET data being 0.64 and 0.75, respectively, and the
average dice similarity coefficients for the CT and PET data being 0.77 and 0.85, respectively
(Figure 2).

Table 2. Patient characteristics.

Patient Characteristic Male Female Total or
p-Value

Total 51 23 74
Mean Age ± SD 65 (45–87) 66 (41–84) 0.852

Nodal Category (AJCC 8th)
N0 6 7 0.049

N1/2 43 15
Tumor Category (AJCC 8th)

T2 7 1 0.201
T3/4 39 21

PET Responders
No 17 8 0.903
Yes 34 15

Progression-Free Survival
Yes 15 6 0.694
No 34 17

Overall Survival (3 Yrs)
Yes 20 10 0.831
No 29 13

Induction Chemotherapy 51 23 74
Capecitabine/Oxaliplatin 0 1
Carboplatin/Irinotecan 1 0
Carboplatin/Paclitaxel 30 15

Cisplatin/Irinotecan 18 5
Cisplatin/Irinotecan/Docetaxel 1 1

Docetaxel/Irinotecan 1 1
Change in Chemo Regimen

Post-Induction PET/CT
Yes 10 6 16
No 41 17 58

SUVmax
12.55

(10.01–15.64)
12.51

(9.32–16.64) 0.931
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Figure 2. Coronal (A,D), sagittal (B,E), and axial (C,F) PET images, and coronal (G,J), sagittal (H,K),
and axial (I,F) CT images showing segmentation of primary tumor by reader 1 (A–C,G–I) and reader
2 (D–F,J–L), in a 64-year-old male patient with esophageal squamous cell carcinoma; the Jaccard
index and a dice similarity coefficient for inter-reader agreement on the segmented volumes were
0.657 and 0.793, respectively.

3.2. Diagnostic Accuracy of CT, PET, and Combined PET/CT Training and Test Datasets for
Various Clinical Parameters

The total number of patients included in each category, as well as classification into train-
ing and test datasets, is presented in Table 3. Diagnostic accuracy of CT, PET, and combined
PET/CT training and test datasets for various clinical parameters is presented in Table 4.
Radiomics features used for the model development and all diagnostic metrics obtained for
the training and test dataset are presented in the Supplementary Materials Tables S3–S8.
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Table 3. Classifications of training and test datasets for different clinical parameters.

Clinical Parameters Total Training Cases Test Cases

Nodal Category
N0 13 7 6

N1/2 58 35 23
Tumor Category

T2 8 5 3
T3/4 60 36 24

PET Responders
Yes 49 29 20
No 25 15 10

Progression-Free
Survival

Yes 28 20 8
No 44 31 13

Overall Survival (3
Yrs)
Yes 30 18 12
No 42 25 17

Table 4. Diagnostic accuracy of training and test datasets for various clinical parameters; 95%
confidence intervals are presented within parentheses.

Clinical
Parameter

Training CT
Dataset

Test CT
Dataset

Training PET
Dataset

Test PET
Dataset

Training
Combined

PET/CT
Dataset

Test
Combined

PET/CT
Dataset

Nodal Category 64.3
(51.9–75.4)

69.0
(49.2–84.7)

85.7
(75.3–92.9)

86.2
(68.3–96.1

87.1
(77.0–94.0)

86.2
(68.3–96.1)

Tumor Category 90.3
(81.0–96.0)

70.4
(49.8–86.3)

83.3
(72.7–92.1)

70.4
(49.8–86.3)

83.3
(72.7–91.1)

81.5
(61.9–93.7)

PET Responders 69.0
(55.5–80.5)

60.0
(40.6–77.3)

72.4
(59.1–83.3)

66.7
(47.2–82.7)

75.9
(62.8–86.1)

70.0
(50.6–85.3)

Progression-Free
Survival

66.1
(53.0–77.7)

60.7
(40.6–78.5)

77.4
(65.0–87.1)

75.0
(55.1–89.3)

77.4
(65.0–87.1)

75.0
(55.1–89.3)

Overall Survival
(3 Yrs)

56.0
(41.3–70.0)

51.7
(32.6–70.6)

58.0
(43.2–71.8)

55.2
(35.7–73.6)

68.0
(53.3–80.5)

62.1
(42.3–79.3)

For the prediction of tumor category, the AUC of the training datasets for CT, PET,
and combined PET/CT was 0.89, 0.90, and 0.87, respectively (Figure 3). The diagnostic
accuracies of the test dataset for the prediction of tumor category were similar for CT, PET,
and combined PET/CT datasets (70.4%, 70.4%, and 81.5%, respectively; p-value CT vs.
PET/CT = 0.219, PET vs. PET/CT = 0.289, CT vs. PET = 1.000). The AUC for the CT and
combined PET/CT test datasets was above 90% (0.96 for CT test and 0.90 for the PET/CT
test). All three models, however, demonstrated a poor negative predictive value.

For the prediction of nodal status, the AUC for the CT, PET, and PET/CT training
datasets was 0.75, 0.98, and 0.93, respectively. The PET and the combined PET/CT test
datasets showed higher accuracy (86.2% each) and had a similar AUC of 0.90 compared to
the CT test dataset (Figure 4). There was no improvement in the accuracy when CT or PET
datasets were compared to the PET/CT datasets (p-value CT vs. PET/CT = 0.109, PET vs.
PET/CT = 1.000). There was, however, a trend towards significance between the PET and
the CT data (p-value = 0.070). The combined PET/CT dataset had a better specificity than
the PET dataset alone (66.7% vs. 33.3%).
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Response assessment based on percentage reduction of SUVmax on the post-induction
PET/CT has shown to predict disease-free survival and overall survival [6]. The training
dataset for the prediction of PET response demonstrated an AUC of 0.68, 0.77, and 0.84 for
the CT, PET, and combined PET/CT radiomics models, respectively. For the test datasets,
the radiomics model predicted a 70.0% diagnostic accuracy of the combined PET/CT data,
which was better than the CT or PET alone (60.0% and 66.7%, respectively). The sensitivity
and the positive predictive value for the combined PET/CT data were 75.0% and 79.0%,
whereas the negative predictive value was only 54.6%.
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The radiomics models for the CT, PET, and combined PET/CT training sets predicting
PFS had an AUC of 0.65, 0.81, and 0.81, respectively (Figure 5). The PET and the combined
PET/CT test data in this category showed similar specificity, negative predictive value,
and diagnostic accuracy of 85.0%, 81.0%, and 75.0%, respectively. The radiomics model
predicting OS had a diagnostic accuracy for both training and test datasets ranging from
51.7 to 68.0% (Table 4).
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4. Discussion

In this study, we extracted radiomics features from CT, PET, and combined PET/CT
datasets in patients with locally advanced ESCC to predict various clinical outcomes such
as tumor and nodal categories, PET responders to induction chemotherapy, PFS, and OS.
The diagnostic accuracies of the CT test datasets for tumor and nodal categories, PET
response, and PFS were between 60.0 and 70.4%. The PET and the combined PET/CT
dataset radiomics models for these clinical outcomes demonstrated diagnostic accuracies
from 66.7 to 85.7%, and from 75.0 to 86.2%, respectively. The diagnostic accuracy of all
three models for predicting OS was between 51.7 and 68.0%.

Our radiomics model based on CT, PET, and PET/CT for predicting the clinical
tumor (cT) category performed well with a diagnostic accuracy of over 70%. Although
the AUC for the PET data was low in our study, the combined PET/CT dataset had an
AUC of 0.90 with an accuracy of 81.5% (95% CI, 61.9–93.7%). Despite the low negative
predictive value, which could be a reflection of low numbers in the minority class, our
results demonstrate that the developed radiomics model has the potential to differentiate
early and late cT-category ESCC. The final model incorporating both CT and PET radiomics
features utilized four features from CT and only one from PET, suggesting that CT data are
more important in this circumstance. Two of the first three selected features were derived
from size-zone matrices, indicating that the assessment of zones with similar intensities is
key here. Busyness measures changes in gray levels between neighboring voxels; thus, the
ROI looking “busy” was the second most important feature selected.

Regarding the prediction of the cT category in patients with esophageal cancers,
currently, endoscopic ultrasound is considered the most useful tool, although the accuracy
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depends on the stage. In a meta-analysis of 44 studies, the overall diagnostic accuracy
of endoscopic ultrasound was reported to be 0.79 (95% CI: 77–80) with a relatively better
performance in T1 substaging and T4 disease, whereas the CT-based diagnostic accuracy
for the T category was 0.59 (95% CI: 54–64) [25]. Our CT test model showed an AUC of 0.96
(95% CI 0.87–1.00). The results were slightly better than the radiomics model developed
by Yang et al. (AUC 0.857; 95% CI 0.691–1.000) [26]. In another study, Wu et al. used a
radiomics approach to identify early- and late-stage ESCC prior to surgery [17]. The group
demonstrated a significant discrimination between stages I–II and stages III–IV with an
AUC of 0.795 (95% CI: 0.714−0.875) in the primary cohort and 0.762 (95% CI: 0.600−0.924)
in the validation cohort. To our knowledge, prediction of the cT category based on PET
or combined PET/CT radiomics models has not been reported in the literature before. T
staging on PET/CT based on visual parameters alone is known to be poor. Mantziari et al.
utilized FDG PET/CT-derived metabolic parameters such as maximum standardized
uptake value (SUVmax), total lesional glycolysis (TLG), and metabolic tumor volume
(MTV) to predict preoperative cT staging, reporting that higher SUVmax and TLG were
found to be associated with cT3/T4 categories [27]. However, in clinical practice, it is
very difficult to ascribe a particular cut-off value of metabolic parameters to ascertain the
cT stage. Our results, as well as a very limited number of radiomics studies currently
available in the literature, suggest that radiomics features could provide this information
with reasonable accuracy.

Regarding the prediction of the cN category, the PET and the combined PET/CT test
datasets in our study were revealed to be the best models for predicting this category, with
a diagnostic accuracy of 86.2% (95% CI 68.3–96.1) and AUC of 0.90 (95% CI; 0.78–1.00),
respectively. Radiomics features selected here include minimum intensity from the PET
image, suggesting low uptake is important. This is further reinforced by the selection of
the 10th percentile from the PET data. Here, four out of the five selected features were
derived from PET data. Complexity, as calculated from the NGTDM which quantifies
non-uniformity and rapid changes in gray levels, also appears to be of major importance in
the prediction of the cN category. The CT test data showed a relatively lower diagnostic
accuracy compared to PET and combined PET/CT data, with an AUC of 0.65 (95% CI
0.44–0.86). This was, however, still better than the accuracy of around 55% demonstrated by
conventional analysis on CT or 57% on PET/CT [28]. A radiomics nomogram incorporating
five features developed by Tan et al. significantly exceeded the AUC compared to size
criteria alone: AUC 0.77 (95% CI 0.67–0.88) vs. 0.59 (95% CI 0.49–0.69) [18]. In another
radiomics study, Wu et al. described a multilevel CT radiomics model with addition
of computer vision (CV) and deep radiomics signature into clinical risk factors, which
improved the prediction of lymph nodal metastasis in patient with ESCC [16]. Shen et al.
also developed a predictive model for prediction of preoperative esophageal cancer lymph
node metastases incorporating the radiomics signature, CT-reported suspicious lymph node
number, and tumor position, although the study used a mixed cohort of adenocarcinoma
(ADC) and ESCC patients [29]. Yet, prior to our study, radiomics features for PET and
combined PET/CT had not been assessed before. In our study, the PET- and combined
PET/CT-based models performed better than the CT-based radiomics models, suggesting
the potential usefulness of radiomics analysis in predicting the nodal stage.

No radiomics studies in the past have developed a model to predict PET responders
to induction chemotherapy. The MUNICON phase II study in gastroesophageal junc-
tion adenocarcinoma confirmed the significance of early metabolic response evaluation to
chemotherapy and showed the feasibility of a PET-guided algorithm for treatment modifi-
cation [3]. Meanwhile, Chhabra et al. demonstrated that the baseline and post-induction
PET metrics were prognostic for overall survival in patients with ESCC [6]. In another
study, Greally et al. conducted research based on the hypothesis that changing to differ-
ent chemotherapy during radiation would salvage the PET non-responders; however, in
their study, all PET non-responders had the same poor outcome, irrespective of whether
they continued with the same chemotherapy regimen during radiation or were changed
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to an alternative chemotherapy [2]. Our combined PET/CT radiomics model predicted
a response to induction chemotherapy with 35% or more decrease in SUVmax with an
accuracy of 70% (95% CI 50.6–85.3) and performed better than the CT or PET models alone.
The model combining CT and PET radiomics features utilized two parameters from CT
data and three from PET data, suggesting that both imaging models are important here.
The first selected feature was coarseness, which is an inverse measure of the level of the
spatial rate of change in intensity, derived from CT data, and the second selected feature
was the minimum value from PET data.

For predicting PFS, our radiomics models from the PET and combined PET/CT
dataset showed an accuracy of 75% (95% CI 55.1–89.3). In the literature, assessment of
conventional parameters on PET/CTs for predicting PFS has been shown to be difficult.
PFS decreases with increased SUVmax at the initial PET/CT [30]. In a systematic review
of 16 studies, the pooled hazard ratio (HR) of the MTV and TLG for event-free survival
based on pretreatment PET/CTs was 2.03 (95% CI 1.66–2.49) and 2.57 (95% CI 1.82–3.62),
respectively [31]. In a mixed cohort of ADC and ESCC, intra-tumoral heterogeneity was also
shown to be associated with decreased PFS (HR, 10.78; 95% CI 1.31–88.96) [32]. Qiu et al.
investigated a pretreatment CT radiomics nomogram incorporating eight radiomics features
and clinical risk factors to predict postoperative recurrence risk in patients with ESCC who
achieved complete pathological response after neoadjuvant chemoradiotherapy followed by
surgery [33]. The nomogram yielded a C-index of 0.72 (95% CI 0.70–0.75) in the validation
cohort, which was significantly better than those derived from a radiomics signature or the
clinical nomogram alone (p < 0.0001 for each comparison) [33]. Luo et al. also developed
and validated a model based on pretreatment CT radiomics features and clinical parameters
to predict PFS [34]. Using 17 radiomics features, the nomogram in that study demonstrated
a C-index of 0.72 (95% CI 0.65–0.79) in the validation cohort. Our radiomics model from
the PET and PET/CT datasets showed similar results, although we used only five features
for model development. The results from our CT datasets were relatively lower compared
to others (AUC 60.7; 95% CI 40.6–78.5).

The prediction of 3-year OS in our datasets was lower than that of the other clinical
outcomes studied. However, our results were similar to the random forest model based
on CT radiomics developed by Larue et al. with an AUC of 0.61 (95% CI 0.47–0.75) [19].
Their study was based on the mixed cohort of both ADC and ESCC patients. Lu et al.
also showed a similar result in predicting OS in patients with ESCC based on a CT tumor
radiomics signature (C-Index 0.63, 95% CI 0.578–0.69), although the nomogram based on
the radiomics and clinicopathological risk factors in their study showed a slightly better
prediction with a C-index of 0.73 (95% CI 0.69–0.78) [35]. A CT subregion-based radiomics
survival prediction model developed by Xie et al. had a similar C-index (0.71; 95% CI
0.63–0.78) [20].

For both PFS and OS, the first two selected features were derived from PET data,
potentially suggesting that images from this modality are more informative in this situation.
In the case of PFS, these two features were difference variance (GLCM-derived), which is a
measure of heterogeneity that places higher weights on differing intensity level pairs and
energy (NGLDM-derived), which assesses image homogeneity. For OS, these two features
had gray-level variance (SZM-derived), which quantifies the variance in zone counts for
different gray levels and cluster prominence and which determines the asymmetry of the
GLCM from which it is calculated.

For all clinical outcomes, it is evident that data from both CT and PET images con-
tributed to the classification accuracy, emphasizing the utility of both modalities. It is
also apparent that calculating features from all six classes (first-order, GLCM, RLM, SZM,
NGLDM, and NGTDM-based) is beneficial. Whilst it is difficult to demonstrate equiva-
lence between individual features and human eye observation, the prevalence of second-
and high-order features in the final models indicates that complex image heterogeneity,
reflecting underlying tumor heterogeneity, is a major driver in clinical outcomes.
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Conventional cross-sectional imaging in pretreatment evaluation of the ESCC suffers
from low sensitivity and specificity in terms of clinical staging and outcome predictions.
18F-FDG PET/CT is now a standard of care for the management of these patients. Although
the metabolic parameters SUVmax, TLG, and MTV can help in risk stratification of patients
to a certain extent, there is an unmet need for better disease staging and prognostic assess-
ment. Compared to other malignancies such as rectal or breast cancers, radiomics analysis
of the esophageal cancer is still in its early stages. Some of these early studies combined
patients with adenocarcinoma and those with ESCC, although adenocarcinoma and ESCC
have been proven to be two distinct entities in terms of tumor biology, clinical characteris-
tics, and response to treatment, as well as prognostic features [36]. Hence, the results from
these studies should be interpreted with caution. One also has to consider the quality of
the radiomics assessment performed and avoid overfitting or overparameterization. We
limited our study to patients with squamous cell carcinomas only, as well as excluded
patients with small lesions (<50 pixels), as texture analysis requires good statistical counting.
Radiomics assessment of tumor and nodal categories on PET or combined PET/CT data
has not been performed before. Radiomics analysis of PET responders is also uncharted
territory. Our results demonstrate that radiomics-based analysis of 18F-FDG PET/CT can
predict clinical outcomes and prognostic factors better than the conventional cross-sectional
imaging and are comparable to other studies in the literature.

Our study has limitations. We included PET/CT scans performed within and outside
our institution. This may have resulted in protocol variations. Despite this variation, a
real-world phenomenon, our results equal or exceed those in the literature. Our sample size
was small, and due to stringent inclusion criteria, we excluded several patients that further
reduced our cohort size. Our study included patients treated with several chemotherapy
combinations. However, almost all were platinum-based, and the majority combined
with either paclitaxel or irinotecan. In this regard, it could be argued that the treatment
regimens were relatively homogenous. The PET non-responders were grouped together
as it was demonstrated in prior studies that the clinical outcomes in this cohort were
similar, irrespective of the treatment regimen used [2]. In addition, not all patients in this
series underwent surgery following chemoradiation; older patients who achieved a clinical
complete response often deferred surgery. However, two phase III studies revealed no
clear improvement in OS for surgery following chemoradiation, especially in patients with
a clinical response [37,38]. There was class imbalance between various outcome groups
which was addressed by using adaptive synthetic sampling. The decision to reduce the
data to 64 gray levels for the CT data and 16 gray levels for the PET data is somewhat
arbitrary. However, these are pragmatic choices. A reduced number of gray levels was
chosen for the PET data due to the reduced spatial resolution which results in a lower pixel
count for each tumor compared to the CT data. This ensures reasonable counting statistics
whilst still maintaining a level of discriminatory power. Alternatively, the use of a fixed
bin width may be appropriate here [38], but a satisfactory bin width, ensuring adequate
counting statistics for all tumors, could not be determined for this dataset. These measures
establish the robustness of our methods and perhaps will help in future studies when we
seek external validation. A part of the segmentation was based on individual assessment;
however, the inter-reader agreement was good to excellent. Finally, this was a retrospective
study with its own inherent limitations, although most, if not all, radiomics or AI studies
are retrospective.

5. Conclusions

This study demonstrates that PET/CT radiomics features in patients with locally
advanced ESCC have the potential to predict clinical outcomes such as tumor and nodal
status and PFS with greater accuracy than conventional anatomical or functional assessment.
Radiomics models can also predict PET responders to induction chemotherapy. Before
venturing into radiomics analysis of esophageal cancer, it is imperative that one considers
histological variations with the inclusion of patients into the research, as well as avoids
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some of the basic pitfalls inherent to radiomics assessment. Future studies will be helpful
for external validation of our model and evaluation of similar clinical outcomes in patients
with adenocarcinoma.
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